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Quantum systems

Quantum states have the following two properties:

@ quantum states can be in a superposition
= probabilities

@ tests (measurements) changes the quantum state
= modal operators
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Quantum states

@ A quantum state is a 1-dimensional ray in a Hilbert space.
@ A test corresponds to a projection onto a closed subspace.
e Unitary operators are (reversible) rotations.

o We refer to both tests and unitaries as programs.

sin~y

cos 7y

J. M. Bergfeld (UvA) Coalgebraic Dynamic Quantum Logic 31 Mar 12 4/ 16



Quantum algorithms

@ Shor's factoring algorithm (exponential speed-up).

@ Grover's search algorithm (quadratic speed-up).

@ Both algorithms are probabilistic!
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Previous work

o (Baltag, Smets) A PDL-type quantum logic (with tests).
o (Leal Rodriguez) A coalgebraic PDL.

@ (Abramsky) A coalgebraic framework, which can represent all physical
symmetries.
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Rough idea

@ We take an arbitrary set of programs.
e We fix a set functor.

@ We put restrictions on the coalgebra to obtain a quantum framework
(“Hilbert space”).
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Coalgebraic quantum framework

@ Set of states S.

@ Set of tests T C PS.

@ Set of unitaries U.

o Set of programs M ={P? | P T}UU.
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Coalgebraic quantum framework

@ Set of states S.

@ Set of tests T C PS.

@ Set of unitaries U.

@ Set of programs N ={P? | P T}UU.

F:S+— [{0}+(0,1] x S]™.
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Coalgebraic quantum framework

@ Set of states S.

@ Set of tests T C PS.

@ Set of unitaries U.

@ Set of programs N ={P? | P T}UU.

F:S+— [{0}+(0,1] x S]".

Given a coalgebra (S,0), and a program g, then

e o(s)(q) = (p, t) means running program q on s leads to t with
probability p and fails otherwise.

@ o(s)(g) = 0 means running g on s always fails.
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Probabilistic modalities

We define a family of predicate liftings, for g € 1 and p € [0, 1], let

AO(Y):={6€FS|d(q) €(0,1] x Y}, and
AP(Y):={d€FS|d(q) €lp, 1] x Y}, (p>0).
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Probabilistic modalities

We define a family of predicate liftings, for g € 1 and p € [0, 1], let

AO(Y):={6€FS|d(q) €(0,1] x Y}, and
AP(Y):={d€FS|d(q) €lp, 1] x Y}, (p>0).

We define the following labelled modalities:

llglg] := o 0 AZ%[¢], and
[la]>p¢] == 0" 0 AE7[9].
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From coalgebra to functions

We define the following projections:

m {0} +(0,1] x S — [0,1], and
7T2Z{0}+(0,1]X545.
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From coalgebra to functions

We define the following projections:

m {0} +(0,1] x S — [0,1], and
7T2:{0}+(0,1]><545.

A coalgebra ¢ : S — FS associates with each g € I a partial function

q=m(o(=)(q):5—S.
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Notation

o T2(s):={P?(s)| P T}
ot s iftdT7s).
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Notation

o T2(s):={P?(s)| P T}
ot s iftdT7s).

@ Orthocomplement:

~P:={s|s L tforall t e P}.
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Notation

o T2(s):={P?(s)| P T}
ot s iftdT2s).

@ Orthocomplement:
~P:={s|sLtforall t € P}.
@ Quantum join; the closure of the span of P and Q:

PUQ:=~(~PN~Q).

J. M. Bergfeld (UvA) Coalgebraic Dynamic Quantum Logic 31 Mar 12 11 /16



Axioms for testable properties

@ Closure under arbitrary conjunctions: (T’ € T forany T' C T.
@ Closure under orthocomplementation: if P € T, then ~P € T.
@ Atomicity: {s} € T forany s € S.
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Axioms for tests

Q Adequacy: o(s)(P?)=(1l,s)ifse PeT.

© Repeatability: P?(s) € P whenever P?(s) is defined.

@ Covering law: if P?(s) # t € P, then v L s for some v € T?(t) N P.
@ Self-adjointness: for any s, t € §

m(a(P(s))({t}7)) = m(a(P?(1))({s}?))-

@ Proper superposition: T?(s)NT?(t) # () for any s,t € S.
Q@ If Pp L Py (PyC ~P;1), thenforallse$S

m1(o(s)(Po U P1?7)) = m1(o(s)(Po?)) + mi(a(s)(P17?))-
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Axioms for unitary operators

@ Reversibility and totality: for every s € S there is a t € S such that
o(s)(U) = (1,t) and for every t € S there is an s € S such that
a(s)(U) = (1, 1).

@ Orthogonality preservation: s | t iff U(s) L U(t) for any s,t € S
and U e U.

@ Mayet's condition: there exist U € U, P € T and t,w € S such that
{U(s)|s€ P}C P, t Lw,and, for every s € ~~{t, w}, U(s) =s.
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Conclusions and future work

We have shown that using coalgebras we can extend Baltag and Smets’
quantum logic to a probabilistic setting.

@ Axiomatize the logic.
e Explicitly add the tensor (for compound quantum systems).

e Investigate the nabla-operator V (measurements).
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