Coalgebraic Dynamic Quantum Logic

Jort Bergfeld Kohei Kishida Sonja Smets

Institute for Logic, Language and Computation Universiteit van Amsterdam

Saturday 31 March 2012 CMCS'12

Outline

- Quantum systems
- 2 Previous work
- 3 Coalgebraic quantum semantics
- 4 Conclusion

Quantum systems

Quantum states have the following two properties:

- quantum states can be in a superposition
 ⇒ probabilities
- tests (measurements) changes the quantum state
 ⇒ modal operators

Quantum states

- A quantum state is a 1-dimensional ray in a Hilbert space.
- A test corresponds to a projection onto a closed subspace.
- Unitary operators are (reversible) rotations.
- We refer to both tests and unitaries as programs.

Quantum algorithms

- Shor's factoring algorithm (exponential speed-up).
- Grover's search algorithm (quadratic speed-up).
- Both algorithms are probabilistic!

Previous work

- (Baltag, Smets) A PDL-type quantum logic (with tests).
- (Leal Rodriguez) A coalgebraic PDL.
- (Abramsky) A coalgebraic framework, which can represent all physical symmetries.

Rough idea

- We take an arbitrary set of programs.
- We fix a set functor.
- We put restrictions on the coalgebra to obtain a quantum framework ("Hilbert space").

Coalgebraic quantum framework

- Set of states S.
- Set of tests $\mathcal{T} \subseteq \mathcal{PS}$.
- Set of unitaries \mathcal{U} .
- Set of programs $\Pi = \{P? \mid P \in \mathcal{T}\} \cup \mathcal{U}$.

Coalgebraic quantum framework

- Set of states S.
- Set of tests $\mathcal{T} \subseteq \mathcal{PS}$.
- Set of unitaries \mathcal{U} .
- Set of programs $\Pi = \{P? \mid P \in \mathcal{T}\} \cup \mathcal{U}$.

$$F: S \longmapsto [\{0\} + (0,1] \times S]^{\Pi}.$$

Coalgebraic quantum framework

- Set of states *S*.
- Set of tests $\mathcal{T} \subseteq \mathcal{PS}$.
- Set of unitaries \mathcal{U} .
- Set of programs $\Pi = \{P? \mid P \in \mathcal{T}\} \cup \mathcal{U}$.

$$F: S \longmapsto [\{0\} + (0,1] \times S]^{\Pi}.$$

Given a coalgebra (S, σ) , and a program q, then

- $\sigma(s)(q) = (p, t)$ means running program q on s leads to t with probability p and fails otherwise.
- $\sigma(s)(q) = 0$ means running q on s always fails.

Probabilistic modalities

We define a family of predicate liftings, for $q \in \Pi$ and $p \in [0,1]$, let

$$\label{eq:delta_S} \begin{split} \lambda_{S}^{q,0}(Y) &:= \{\, \delta \in \mathit{FS} \mid \delta(q) \in (0,1] \times Y \,\}, \text{ and } \\ \lambda_{S}^{q,p}(Y) &:= \{\, \delta \in \mathit{FS} \mid \delta(q) \in [p,1] \times Y \,\}, (p > 0). \end{split}$$

Probabilistic modalities

We define a family of predicate liftings, for $q \in \Pi$ and $p \in [0,1]$, let

$$\label{eq:delta-state-equation} \begin{split} \lambda_{\mathcal{S}}^{q,0}(Y) &:= \{\, \delta \in \mathit{FS} \mid \delta(q) \in (0,1] \times Y \,\}, \text{ and } \\ \lambda_{\mathcal{S}}^{q,p}(Y) &:= \{\, \delta \in \mathit{FS} \mid \delta(q) \in [p,1] \times Y \,\}, (p>0). \end{split}$$

We define the following labelled modalities:

From coalgebra to functions

We define the following projections:

$$\pi_1:\{0\}+(0,1]\times\mathcal{S}\rightarrow[0,1],$$
 and

 $\pi_2: \{0\} + (0,1] \times S \rightharpoonup S.$

From coalgebra to functions

We define the following projections:

$$\pi_1: \{0\} + (0,1] \times S \rightarrow [0,1], \text{ and}$$

 $\pi_2: \{0\} + (0,1] \times S \rightarrow S.$

A coalgebra $\sigma: S \to FS$ associates with each $q \in \Pi$ a partial function

$$\overline{q} = \pi_2(\sigma(-)(q)) : S \rightharpoonup S.$$

Notation

- $\overline{\mathcal{T}?}(s) := \{\overline{P?}(s) \mid P \in \mathcal{T}\}.$
- $t \perp s$, if $t \notin \overline{T?}(s)$.

Notation

- $\overline{\mathcal{T}?}(s) := \{\overline{P?}(s) \mid P \in \mathcal{T}\}.$
- $t \perp s$, if $t \notin \overline{T?}(s)$.
- Orthocomplement:

$$\sim P := \{ s \mid s \perp t \text{ for all } t \in P \}.$$

Notation

- $\overline{\mathcal{T}?}(s) := \{\overline{P?}(s) \mid P \in \mathcal{T}\}.$
- $t \perp s$, if $t \notin \overline{T?}(s)$.
- Orthocomplement:

$$\sim P := \{ s \mid s \perp t \text{ for all } t \in P \}.$$

• Quantum join; the closure of the span of *P* and *Q*:

$$P \sqcup Q := \sim (\sim P \cap \sim Q).$$

Axioms for testable properties

- **1** Closure under arbitrary conjunctions: $\bigcap \mathcal{T}' \in \mathcal{T}$ for any $\mathcal{T}' \subseteq \mathcal{T}$.
- **②** Closure under orthocomplementation: if $P \in \mathcal{T}$, then $\sim P \in \mathcal{T}$.
- **3** Atomicity: $\{s\} \in \mathcal{T}$ for any $s \in S$.

Axioms for tests

- Adequacy: $\sigma(s)(P?) = (1, s)$ if $s \in P \in \mathcal{T}$.
- **5** Repeatability: $\overline{P?}(s) \in P$ whenever $\overline{P?}(s)$ is defined.
- **o** Covering law: if $\overline{P?}(s) \neq t \in P$, then $v \perp s$ for some $v \in \overline{T?}(t) \cap P$.
- **9** Self-adjointness: for any $s, t \in S$

$$\pi_1(\sigma(\overline{P?}(s))(\{t\}?))=\pi_1(\sigma(\overline{P?}(t))(\{s\}?)).$$

- **3** Proper superposition: $\overline{\mathcal{T}?}(s) \cap \overline{\mathcal{T}?}(t) \neq \emptyset$ for any $s, t \in S$.
- $\textbf{ 0} \ \ \mathsf{If} \ P_0 \perp P_1 \ \big(\ P_0 \subseteq {\sim} P_1 \ \big), \ \mathsf{then} \ \mathsf{for} \ \mathsf{all} \ s \in S$

$$\pi_1(\sigma(s)(P_0 \sqcup P_1?)) = \pi_1(\sigma(s)(P_0?)) + \pi_1(\sigma(s)(P_1?)).$$

Axioms for unitary operators

- **10** Reversibility and totality: for every $s \in S$ there is a $t \in S$ such that $\sigma(s)(U) = (1,t)$ and for every $t \in S$ there is an $s \in S$ such that $\sigma(s)(U) = (1,t)$.
- **①** Orthogonality preservation: $s \perp t$ iff $\overline{U}(s) \perp \overline{U}(t)$ for any $s, t \in S$ and $U \in \mathcal{U}$.

Conclusions and future work

We have shown that using coalgebras we can extend Baltag and Smets' quantum logic to a probabilistic setting.

- Axiomatize the logic.
- Explicitly add the tensor (for compound quantum systems).
- Investigate the nabla-operator ∇ (measurements).

Bibliography

S. Abramsky.

Coalgebras, chu spaces, and representations of physical systems.

In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages 411-420. IEEE, Oct. 2010.

A. Baltag and S. Smets.

QS7 Complete Axiomatizations for Quantum Actions.

International Journal of Theoretical Physics, 44(12):2267–2282, Dec. 2005.

R. Mayet.

Some Characterizations of the Underlying Division Ring of a Hilbert Lattice by Automorphisms.

International Journal of Theoretical Physics, 37(1):109–114, 1998.

D Pattinson

Coalgebraic modal logic: soundness, completeness and decidability of local consequence.

Theoretical Computer Science, 309(1-3):177–193, Dec. 2003.

R. A. L. Rodríguez.

Modalities Through the Looking Glass.

PhD thesis, Universiteit van Amsterdam. 2011.