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The Problem
A first representation

Context: certified model transformations (Coq)
Aim: representing metamodels as graphs and graphs using
coinductive types (to directly represent navigability in loops)
First attempt: coinductive constructor (for coinductive rose
trees): mk_G : T → list (Graph T )→ Graph T
Examples:

Finite graph:
Finite_Graph =

mk_G 0 mk_G 1 [Finite_Graph]]

0

1

Infinite graph:
Infinite_Graphn =

mk_G n [Infinite_Graphn+1]

0 1 2 . . .
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The Problem
Guard condition

An example

We would like to define the function (with f of type T → T ′):

applyF2G f (mk_G t l) = mk_G (f t) (map (applyF2G f ) l)

but... forbidden !

Explanation: Coq’s guard condition

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

Why is it a problem?
The definition above actually is semantically correct!
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The Solution: ilist – the container view of lists
ilist implementation

Implementation using functions to represent lists

The function : ilistn (T : Set) (n : nat) = Fin n→ T
The ilist : ilist (T : Set) = Σ(n : nat).ilistn T n
Lemma : There is a bijection between ilist and list .

An equivalence on ilist
∀l1 l2 : ilist T , ilist_relR l1 l2 ⇔
∃h : lg l1 = lg l2 → (∀i : Fin (lg l1),R (fct l1 i) (fct l2 i ′h)) where
lg and fct are projections on ilist , R is a relation on T and i ′h is i ,
converted from type Fin (lg l1) to type Fin (lg l2)

Tools
Replacement for map: imap f l = 〈lg l , f ◦ (fct l)〉
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New Graph Representation
Definition of Graph

Graph (coinductive definition)

Graph : mk_G : T → ilist(Graph T )→ Graph T

applyF2G (corecursive definition)

applyF2G with f : T → T ′:
applyF2G f (mk_G t l) = mk_G (f t) (imap (applyF2G f ) l)

Equivalence on Graph (coinductively defined relation)
Geq generic coinductive notion of bisimilarity on Graph
∀g1 g2 : Graph T , GeqR g1 g2 ⇔
R (label g1) (label g2) ∧ ilist_relGeqR (sons g1) (sons g2)
where label and sons are the projections on Graph

01/04/2012 Celia Picard and Ralph Matthes Permutations in Coinductive Graph Representation 6/20



Coinductive Graph Representation Capturing Permutations on ilist GeqPerm Conclusions

Need for a more Liberal Relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

0

1 2
⇔

0

2 1

0

1
⇔

1

0

Solution
Define a new equivalence relation on ilist for permutations
Define a new equivalence relation on Graph using the
previous equivalence on ilist and taking into account
rotations
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Capturing Permutations on ilist
Inductive definition of permutations on ilist (iperm and iperm′ in the paper)

∀l1 l2, ipermR l1 l2

⇔


lg l1 = lg l2 = 0 or
∃i1 i2,R (fct l1 i1) (fct l2 i2) ∧
ipermR (remEl l1 i1) (remEl l2 i2)

⇔ lg l1 = lg l2 ∧
(
∀i1∃i2,R (fct l1 i1) (fct l2 i2)

∧ ipermR (remEl l1 i1) (remEl l2 i2)
)

where remEl l i removes the i th element of l .

The proof of equivalence is not straightforward since one
definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to
prove on one than on the other and vice versa.
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Capturing Permutations on ilist
Definition using bijective functions and comparison between definitions

Definition of ipermb
Idea : use a bijective function to define ipermb in the same style
as ilist_rel . ∀f g,bij f g ⇔ (∀t ,g(f t) = t) ∧ (∀u, f (g u) = u)
∀l1 l2, ipermbR l1 l2 ⇔ ∃f g,bij f g ∧ (∀i ,R (fct l1 i) (fct l2 (f i)))

Equivalence between definitions
We can show that ∀l1 l2, ipermR l1 l2 ⇔ ipermbR l1 l2
Permutations on lists by Contejean equivalent to ours

Comparison between definitions
iperm (specially first def.) captures better the intuition than
ipermb but is inductive. Contejean’s definition is on lists. We
prefer a definition on ilist ⇒ our choice is iperm (first variant)
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A Relation on Graph Using iperm
An unsuccessful attempt

Definition of GPerm (coinductive)
∀ g1 g2, GPermR g1 g2 ⇔
R (label g1) (label g2) ∧ ipermGPermR

(sons g1) (sons g2)

The problem: proof that GPerm preserves reflexivity
Lemma: ∀ R, R reflexive⇒ ∀ g, GPermR g g
Proof (by coinduction): We must prove that
R (label g) (label g)︸ ︷︷ ︸

ok

∧ ipermGPermR
(sons g) (sons g)︸ ︷︷ ︸

has to be inductive
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A Relation on Graph Using iperm
An impredicative definition — the type-theoretic way of getting a final coalgebra

The impredicative definition: implementation of GPermR g1 g2

∃R,
(
∀ g′1 g′2, R g′1 g′2 ⇒ R (label g′1) (label g′2) ∧

ipermR (sons g′1) (sons g′2)
)
∧ R g1 g2

where variable R ranges over relations on Graph T

Tools and definitions
Coinduction principle:(
∀ g1 g2, R g1 g2 ⇒ R (label g1) (label g2) ∧

ipermR (sons g1) (sons g2)
)
⇒ R ⊆ GPermR

Unfolding principle: ∀ g1 g2, GPermR g1 g2 ⇒
R (label g1) (label g2) ∧ ipermGPermR

(sons g1) (sons g2)
Constructor: ∀ g1 g2, R (label g1) (label g2) ∧
ipermGPermR

(sons g1) (sons g2)⇒ GPermR g1 g2
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A Relation On Graph Using iperm
Mendler-style definition — inspired by work of Keiko Nakata and Tarmo Uustalu

Definition (coinductive)
∀ g1 g2, GPermMendlerR g1 g2 ⇔ ∀R,R ⊆ GPermMendlerR ∧
R (label g1) (label g2) ∧ ipermR (sons g1) (sons g2)

Properties
Natively properly supported by Coq since only R enters the
inductive predicate and not the relation GPermMendlerR

Equivalent to GPerm (the impredicative implementation)
Preserves equivalence — without Coq problems
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A Relation On Graph Using iperm
An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a
certain depth.
⇒ no more mixing of inductive and coinductive types

0

1

Observed
=⇒

until depth 5

0

1

0

1

0

1
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A Relation On Graph Using iperm
An equivalent approach based on observation of “rose trees” - Definitions

iTree (inductive): mk_iTree : T → ilist (iTree T )→ iTree T

TPerm (inductive): ∀ t1 t2, TPermR t1 t2 ⇔
R (labelT t1) (labelT t2) ∧ ipermTPermR

(sonsT t1) (sonsT t2)

G2iT :
G2iT : ∀ T ,nat → Graph T → iTree T
G2iT T 0 g := mk_iTree (label g) JK
G2iT T (n + 1) (mk_G t l) := mk_iTree t (imap (G2iT n) l)

≡R,n: ∀ n g1 g2,g1 ≡R,n g2 ⇔ TPermR (G2iT n g1) (G2iT n g2)

GTPerm: ∀ g1 g2, (GTPermR g1 g2 ⇔ ∀n,g1 ≡R,n g2)
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A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem(1/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

Proof
[Direction⇒] easy (induction on n)
[Direction⇐] proved using the lemma:

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)
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A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)

Proof of the lemma

Main problem: problem of continuity. The unfolding gives:
(∀n,g1 ≡R,n g2)⇒ iperm∩n≡R,n

(sons g1) (sons g2)

⇒ we need to “fix” a permutation that works for all n.
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0

1 1

2 3

0

1 1

2 3
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A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)

Proof of the lemma

⇒ use of infinite pigeonhole principle
Need to manipulate permutations⇒ “certificates”:
skel_type 0 := unit
skel_type (n + 1) := (Fin (n + 1)× Fin (n + 1))× skel_type n
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A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)

Proof of the lemma

And we “include” them in iperm:
∀ l1 l2 Hlgti s, iperm_skelR l1 l2 Hlgti s ⇔

lg l1 = 0 or
∃ i1 i2 s′,R (fct l1 i1) (fct l2 i2) ∧ “s = ((i1, i2), s′)” ∧
iperm_skelR (remEl l1 i1) (remEl l2 i2) H

′

lgti s′

(equivalent to iperm) / notion of continuity
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A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)

Proof of the lemma

We first get:
∀n∃s : skel_type (lg (sons g1)),
iperm_skel≡R,n

(sons g1) (sons g2) Hlg s

The version of the infinite pigeonhole principle we want to use:
∀m ∀P : N→ skel_type m→ Prop,
(∀n∃s : skel_type m,P n s)→
∃s0 : skel_type m, (∀n∃n′,n′ ≥ n ∧ P n′ s0)

01/04/2012 Celia Picard and Ralph Matthes Permutations in Coinductive Graph Representation 16/20



Coinductive Graph Representation Capturing Permutations on ilist GeqPerm Conclusions

A Relation On Graph Using iperm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

GTPermR g1 g2 ⇒ ipermGTPermR
(sons g1) (sons g2)

Proof of the lemma

Using iperm equivalent to iperm_skel , goal becomes:
iperm_skelGTPermR

(sons g1) (sons g2) Hlg s0

Continuity: ∀n, iperm_skel≡R,n
(sons g1) (sons g2) Hlg s0

Using what the infinite pigeon hole principle says about s0:
∀n ∃n′,n′ ≥ n ∧ iperm_skel≡R,n′

(sons g1) (sons g2) Hlg s0

≡R,n′⊂≡R,n ⇒ ∀n, iperm_skel≡R,n
(sons g1)(sons g2) Hlg s0

2
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The Final Relation Over Graph
The idea

Change in the “point of view” for the observation of the
graph
Single-rooted graph⇒ path from the root to all nodes
Change in the root⇒ both roots in the same cycle⇒
g1 ⊂ g2 ∧ g2 ⊂ g1

Only for a “general” view:

1 2 3 6' 1 3 2
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The Final Relation Over Graph
Definitions

Inclusion
General definition (inductive):

∀gin gout ,GinG∗RG
gin gout ⇔

{
RG gin gout or
∃i ,GinG∗RG

gin (fct (sons gout ) i)

Instantiation: GinGPR := GinG∗GPermR

The final relation
∀ g1 g2, GeqPermR g1 g2 ⇔ GinGPR g1 g2 ∧GinGPR g2 g1

Preserves equivalence.

0

1 2
⇔

0

2 1

0

1
⇔

1

0
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Related Work
Guardedness issues

Bertot and Komendantskaya: same approach with streams
Dams: defines everything coinductively and restricts the
finite parts with properties of finiteness
Niqui: solution using category theory but not usable here
Danielsson: experimental solution to the problem in Agda
(add constructors for each problematic function)
Nakata and Uustalu: Mendler-style definition

Graph representation
Erwig: inductive directed graph representation. Each node
is added with its successors and predecessors.

Permutations
Contejean: treats the same problem for lists
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Conclusions and Perspectives
Done so far:

Complete solution to overcome the guardedness condition
in the case of lists
Permutations captured for ilist
Quite liberal equivalence relation on Graph
Completely formalised in Coq (available at:
www.irit.fr/~Celia.Picard/Coq/Permutations/)
But also completely described in mathematical language,
see the forthcoming thesis by Celia

Current and future work :
Instantiation of the graphs for finite automata (several
contributions by quite some researchers to this ETAPS)
More general solution for any inductive type — the
container view may be most helpful
Use of the present work to represent transformations in the
ANR CLIMT project on categorical and logical methods in
model transformation (Grenoble/Toulouse)
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