Permutations in Coinductive Graph Representation

Celia Picard and Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT) affiliated with University of Toulouse and C.N.R.S.

Team : ACADIE
CMCS'12 in Tallinn, Estonia
research partly supported by the CLIMT project (ANR-11-BS02-016)
(some small typographical improvements applied to this presentation on April 3)
01/04/2012
ACADIE

Outline

(1) Coinductive Graph Representation
2) Capturing Permutations on ilist
(3) A More Liberal Bisimulation Relation on Graph

4 Related Work and Conclusions

ACADIE

The Problem
 A first representation

Context: certified model transformations (Coq)
Aim: representing metamodels as graphs and graphs using coinductive types (to directly represent navigability in loops)
First attempt: coinductive constructor (for coinductive rose trees): mk_G: $T \rightarrow$ list $($ Graph $T) \rightarrow$ Graph T
Examples:

Finite graph:
Finite_Graph = mk_G0 mk_G1[Finite_Graph]]

Infinite graph:
Infinite_Graph $h_{n}=$ mk_Gn[Infinite_Graph h_{n+1}]

The Problem

Guard condition

An example

We would like to define the function (with f of type $T \rightarrow T^{\prime}$):

$$
\text { applyF2G } f\left(m k _G t I\right)=m k _G(f t)(\operatorname{map}(\operatorname{applyF2G} f) I)
$$

but... forbidden!

> Explanation: Coq's guard condition
> Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

The Problem

Guard condition

An example

We would like to define the function (with f of type $T \rightarrow T^{\prime}$):

$$
\text { applyF2G } f\left(m k _G t I\right)=m k _G(f t)(\operatorname{map}(\text { applyF2G } f) I)
$$

but... forbidden!
Explanation: Coq's guard condition
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

The Problem

Guard condition

An example

We would like to define the function (with f of type $T \rightarrow T^{\prime}$):

$$
\text { applyF2G } f\left(m k _G t I\right)=m k _G(f t)(\operatorname{map}(\text { applyF2G } f) I)
$$

but... forbidden !
Explanation: Coq's guard condition
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

Why is it a problem?

The definition above actually is semantically correct!

The Solution: ilist - the container view of lists

ilist implementation

Implementation using functions to represent lists

The function : ilistn (T : Set) (n : nat) $=$ Fin $n \rightarrow T$
The ilist : ilist $(T: \operatorname{Set})=\Sigma(n$: nat). ilistn $T n$
Lemma : There is a bijection between ilist and list.

The Solution: ilist - the container view of lists

ilist implementation

Implementation using functions to represent lists

The function : ilistn (T : Set) $(n$: nat $)=$ Fin $n \rightarrow T$
The ilist : ilist $(T: S e t)=\Sigma(n$: nat). ilistn $T n$
Lemma : There is a bijection between ilist and list.

> An equivalence on ilist
> $\forall I_{1} I_{2}$: ilist T, ilist_rel $I_{1} I_{1} I_{2} \Leftrightarrow$
> $\exists h: \lg I_{1}=\lg I_{2} \rightarrow\left(\forall i: \operatorname{Fin}\left(\lg I_{1}\right), R\left(f c t I_{1} i\right)\left(f c t I_{2} i_{h}^{\prime}\right)\right)$ where \lg and fct are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin $\left(\lg l_{1}\right)$ to type Fin $\left(\lg l_{2}\right)$

The Solution: ilist - the container view of lists

 ilist implementation
Implementation using functions to represent lists

The function : ilistn (T : Set) $(n$: nat) $=$ Fin $n \rightarrow T$
The ilist : ilist $(T: S e t)=\Sigma(n$: nat). ilistn $T n$
Lemma : There is a bijection between ilist and list.

> An equivalence on ilist
> $\forall I_{1} I_{2}$: ilist T, ilist_rel $I_{1} I_{1} I_{2} \Leftrightarrow$
> $\exists h: \lg l_{1}=\lg l_{2} \rightarrow\left(\forall i: F i n\left(\lg l_{1}\right), R\left(f c t l_{1} i\right)\left(f c t l_{2} i_{h}^{\prime}\right)\right)$ where \lg and fct are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin $\left(\lg l_{1}\right)$ to type Fin $\left(\lg l_{2}\right)$

Tools

Replacement for map: imap $f I=\langle l g I, f \circ(f c t I)\rangle$

New Graph Representation

Definition of Graph

Graph (coinductive definition)
Graph : mk_G : T $\rightarrow \operatorname{ilist}($ Graph $T) \rightarrow$ Graph T
applyF2G (corecursive definition) applyF2G with $f: T \rightarrow T^{\prime}$: applyF2G $f\left(m k _G t I\right)=m k _G(f t)(\operatorname{imap}(\operatorname{applyF2G} f) I)$

Equivalence on Graph (coinductively defined relation)
Geq generic coinductive notion of bisimilarity on Graph $\forall g_{1} g_{2}$: Graph T, GeqR $g_{1} g_{2} \Leftrightarrow$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ ilist_rel $_{\text {Geq }_{R}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$ where label and sons are the projections on Graph

Need for a more Liberal Relation on Graph

The problem

These pairs of graphs are not bisimulated through Geq:

Solution

- Define a new equivalence relation on ilist for permutations
- Define a new equivalence relation on Graph using the previous equivalence on ilist and taking into account rotations

ACADIE

Capturing Permutations on ilist

 Inductive definition of permutations on ilist (iperm and iperm' in the paper)$$
\begin{aligned}
& \forall I_{1} l_{2}, \text { iperm } R l_{1} l_{2} \\
& \Leftrightarrow\left\{\begin{array}{l}
\lg l_{1}=\lg I_{2}=0 \\
\exists i_{1} i_{2}, R\left(\text { fct } l_{1} i_{1}\right)\left(\text { fct } l_{2} i_{2}\right) \wedge \\
\text { iperm }_{R}\left(\text { remEl } l_{1} i_{1}\right)\left(\text { remEl } l_{2} i_{2}\right)
\end{array}\right. \\
& \Leftrightarrow \begin{array}{l}
\lg I_{1}=\lg I_{2} \wedge\left(\forall i_{1} \exists i_{2}, R\left(\text { fct } I_{1} i_{1}\right)\left(\text { fct } I_{2} i_{2}\right)\right. \\
\left.\wedge \operatorname{iperm}_{R}\left(\text { remEl } I_{1} i_{1}\right)\left(\text { remEl } I_{2} i_{2}\right)\right)
\end{array}
\end{aligned}
$$

where remEl I i removes the $i^{\text {th }}$ element of l.
The proof of equivalence is not straightforward since one definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to prove on one than on the other and vice versa.

Capturing Permutations on ilist

Definition using bijective functions and comparison between definitions

Definition of ipermb

Idea: use a bijective function to define ipermb in the same style as ilist_rel. $\forall f g$, bij $f g \Leftrightarrow(\forall t, g(f t)=t) \wedge(\forall u, f(g u)=u)$ $\forall I_{1} I_{2}$, ipermb $R I_{1} I_{2} \Leftrightarrow \exists f g$, bij $f g \wedge\left(\forall i, R\left(f c t I_{1} i\right)\left(f c t I_{2}(f i)\right)\right)$

Equivalence between definitions

- We can show that $\forall I_{1} I_{2}$, iperm $I_{R} I_{1} I_{2} \Leftrightarrow$ ipermb $l_{R} I_{1} I_{2}$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions iperm (specially first def.) captures better the intuition than ipermb but is inductive. Contejean's definition is on lists. We prefer a definition on ilist \Rightarrow our choice is iperm (first variant)

A Relation on Graph Using iperm

An unsuccessful attempt

Definition of GPerm (coinductive)

$\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$
$R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm $_{G P e r m_{R}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$
The problem: proof that GPerm preserves reflexivity
Lemma: $\forall R, R$ reflexive $\Rightarrow \forall g$, GPerm $_{R} g g$ Proof (by coinduction): We must prove that $\underbrace{R(\text { label } g)(\text { label g) }}_{\text {ok }} \wedge \underbrace{\text { iperm }_{\text {GPerm }}(\text { sons } g)(\text { sons } g)}_{\text {has to be inductive }}$

A Relation on Graph Using iperm

An impredicative definition - the type-theoretic way of getting a final coalgebra
The impredicative definition: implementation of GPerm ${ }_{R} g_{1} g_{2}$
$\exists \mathcal{R},\left(\forall g_{1}^{\prime} g_{2}^{\prime}, \mathcal{R} g_{1}^{\prime} g_{2}^{\prime} \Rightarrow R\left(\right.\right.$ label $\left.g_{1}^{\prime}\right)\left(\right.$ label $\left.g_{2}^{\prime}\right) \wedge$
$\operatorname{iperm}_{\mathcal{R}}\left(\right.$ sons $\left.g_{1}^{\prime}\right)\left(\right.$ sons $\left.\left.g_{2}^{\prime}\right)\right) \wedge \mathcal{R} g_{1} g_{2}$
where variable \mathcal{R} ranges over relations on Graph T

Tools and definitions

Coinduction principle:
$\left(\forall g_{1} g_{2}, \mathcal{R} g_{1} g_{2} \Rightarrow R\left(\right.\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ $\operatorname{iperm}_{\mathcal{R}}$ (sons g_{1}) (sons $\left.\left.g_{2}\right)\right) \Rightarrow \mathcal{R} \subseteq$ GPerm $_{R}$ Unfolding principle: $\forall g_{1} g_{2}$, GPerm $g_{1} g_{2} \Rightarrow$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm $_{\text {GPerm }_{R}}$ (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$
Constructor: $\forall g_{1} g_{2}, R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm $_{\text {GPerm }_{R}}$ (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) \Rightarrow$ GPerm $_{R} g_{1} g_{2}$

A Relation On Graph Using iperm
 Mendler-style definition - inspired by work of Keiko Nakata and Tarmo Uustalu

Definition (coinductive)

$\forall g_{1} g_{2}$, GPermMendler $_{R} g_{1} g_{2} \Leftrightarrow \forall \mathcal{R}, \mathcal{R} \subseteq$ GPermMendler $_{R} \wedge$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm $_{\mathcal{R}}$ (sons $\left.g_{1}\right)$ (sons g_{2})

Properties

- Natively properly supported by Coq since only \mathcal{R} enters the inductive predicate and not the relation GPermMendler R_{R}
- Equivalent to GPerm (the impredicative implementation)
- Preserves equivalence - without Coq problems

A Relation On Graph Using iperm
 An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a certain depth.
\Rightarrow no more mixing of inductive and coinductive types

Observed until depth 5

A Relation On Graph Using iperm

An equivalent approach based on observation of "rose trees" - Definitions
iTree (inductive): mk_iTree : $T \rightarrow$ ilist (iTree T) \rightarrow iTree T
TPerm (inductive): $\forall t_{1} t_{2}$, TPerm $_{R} t_{1} t_{2} \Leftrightarrow$
$R\left(\right.$ label $\left.T t_{1}\right)\left(\right.$ label $\left.T t_{2}\right) \wedge \operatorname{iperm}_{\text {TPerm }}^{R}\left(\operatorname{sonsT} t_{1}\right)\left(\right.$ sons $\left.T t_{2}\right)$
G2iT:
G2iT : $\forall T$, nat \rightarrow Graph $T \rightarrow$ iTree T
G2iT T $0 \mathrm{~g}:=$ mk_iTree (label g) 【】
G2iT T $(n+1)\left(m k _G t\right):=m k _i T r e e t(\operatorname{imap}(G 2 i T n) I)$
$\equiv_{R, n}: \forall n g_{1} g_{2}, g_{1} \equiv_{R, n} g_{2} \Leftrightarrow \operatorname{TPerm}_{R}\left(\right.$ G2iT $\left.n g_{1}\right)\left(\right.$ G2iT $\left.n g_{2}\right)$
GTPerm: $\forall g_{1} g_{2},\left(\right.$ GTPerm $\left._{R} g_{1} g_{2} \Leftrightarrow \forall n, g_{1} \equiv_{R, n} g_{2}\right)$

A Relation On Graph Using iperm
 An equivalent approach based on observation - Main theorem(1/2)

```
The theorem
\forallg}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ GPerm}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}\Leftrightarrow\mp@subsup{\mathrm{ GTPerm}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{
```


Proof

[Direction \Rightarrow] easy (induction on n) [Direction \Leftarrow] proved using the lemma: GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm $_{\text {GTPerm }_{R}}$ (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)

> The theorem
> $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma

$$
\text { GTPerm }_{R} g_{1} g_{2} \Rightarrow \text { iperm }_{\text {GTPerm }_{R}}\left(\text { sons } g_{1}\right)\left(\text { sons } g_{2}\right)
$$

Proof of the lemma

Main problem: problem of continuity. The unfolding gives:
$\left(\forall n, g_{1} \equiv_{R, n} g_{2}\right) \Rightarrow$ iperm $_{\cap_{n} \equiv_{R, n}}$ (sons g_{1}) (sons g_{2})
\Rightarrow we need to "fix" a permutation that works for all n.

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)
The theorem
$\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
The auxiliary lemma GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm $_{\text {GTPerm }_{R}}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)

> The theorem
> $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm $_{\text {GTPerm }_{R}}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

\Rightarrow use of infinite pigeonhole principle
Need to manipulate permutations \Rightarrow "certificates":
skel_type 0 := unit
skel_type $(n+1):=($ Fin $(n+1) \times$ Fin $(n+1)) \times$ skel_type n

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
 $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma
GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm $_{\text {GTPerm }}^{R}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

And we "include" them in iperm:
$\forall I_{1} I_{2} H_{\text {lgti }} s$, iperm_skel $I_{R} I_{1} I_{2} H_{\text {lgti }} s \Leftrightarrow$

$$
\left\{\begin{array}{l}
\lg I_{1}=0 \\
\exists i_{1} i_{2} s^{\prime}, R\left(\text { fct } l_{1} i_{1}\right)\left(f c t l_{2} i_{2}\right) \wedge " s=\left(\left(i_{1}, i_{2}\right), s^{\prime}\right)^{\prime} \wedge \\
\text { iperm_skel }{ }_{R}\left(\text { remEl } I_{1} i_{1}\right)\left(\text { remEl } I_{2} i_{2}\right) H_{\text {lgti }}^{\prime} s^{\prime}
\end{array}\right.
$$

or
(equivalent to iperm) / notion of continuity

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)

> The theorem
> $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma

```
GTPerm}\mp@subsup{\mp@code{R}}{1}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{\prime=}\mp@subsup{i\mp@code{iperm}}{\mp@subsup{\mathrm{ GTPerm}}{R}{\prime}}{(\mathrm{ sons }\mp@subsup{g}{1}{})(\mathrm{ sons }\mp@subsup{g}{2}{\prime})
```


Proof of the lemma

We first get:
$\forall n \exists s$: skel_type (lg (sons $\left.g_{1}\right)$), iperm_skel $I_{R, n}$ (sons g_{1}) (sons g_{2}) $H_{l g} s$
The version of the infinite pigeonhole principle we want to use:
$\forall m \forall P: \mathbb{N} \rightarrow$ skel_type $m \rightarrow$ Prop,
($\forall n \exists$: : skel_type $m, P n s$) \rightarrow
$\exists s_{0}$: skel_type $m,\left(\forall n \exists n^{\prime}, n^{\prime} \geq n \wedge P n^{\prime} s_{0}\right)$

A Relation On Graph Using iperm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
 $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm $_{\text {GTPerm }_{R}}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

Using iperm equivalent to iperm_skel, goal becomes: iperm_skel $_{\text {GTPerm }_{R}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l g} s_{0}$ Continuity: $\forall n$, iperm_skel $\equiv_{\equiv_{R, n}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l g} s_{0}$ Using what the infinite pigeon hole principle says about s_{0} : $\forall n \exists n^{\prime}, n^{\prime} \geq n \wedge$ iperm_ske $\equiv_{\equiv_{R, n^{\prime}}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l g} s_{0}$ $\equiv_{R, n^{\prime}} \subset \equiv_{R, n} \Rightarrow \forall n$, iperm_skel $\equiv_{R, n}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l g} s_{0}$

The Final Relation Over Graph

The idea

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_{1} \subset g_{2} \wedge g_{2} \subset g_{1}$
- Only for a "general" view:

The Final Relation Over Graph

Definitions

Inclusion

General definition (inductive):
$\forall g_{\text {in }} g_{\text {out }}$, Gin $_{R_{G}}^{*} g_{\text {in }} g_{\text {out }} \Leftrightarrow\left\{\begin{array}{l}R_{G} g_{\text {in }} g_{\text {out }} \\ \left.\exists i, G i n G_{R_{G}}^{*} g_{\text {in }}\left(\text { fct (sons } g_{\text {out }}\right) i \text { or }\right)\end{array}\right.$ Instantiation: $\operatorname{Gin} \mathcal{F P}_{R}:=\operatorname{Gin}_{G G_{G e r m}^{R}}^{*}$

The final relation

$\forall g_{1} g_{2}$, GeqPerm $_{R} g_{1} g_{2} \Leftrightarrow \operatorname{GinGP}_{R} g_{1} g_{2} \wedge \operatorname{Gin}_{2} P_{R} g_{2} g_{1}$ Preserves equivalence.

Related Work

Guardedness issues

- Bertot and Komendantskaya: same approach with streams
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: solution using category theory but not usable here
- Danielsson: experimental solution to the problem in Agda (add constructors for each problematic function)
- Nakata and Uustalu: Mendler-style definition

Graph representation

- Erwig: inductive directed graph representation. Each node is added with its successors and predecessors.

Permutations

- Contejean: treats the same problem for lists

Conclusions and Perspectives

- Done so far:
- Complete solution to overcome the guardedness condition in the case of lists
- Permutations captured for ilist
- Quite liberal equivalence relation on Graph
- Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)
- But also completely described in mathematical language, see the forthcoming thesis by Celia
- Current and future work:
- Instantiation of the graphs for finite automata (several contributions by quite some researchers to this ETAPS)
- More general solution for any inductive type - the container view may be most helpful
- Use of the present work to represent transformations in the ANR CLIMT project on categorical and logical methods in model transformation (Grenoble/Toulouse)

