Permutations in Coinductive Graph Representation

Celia Picard and Ralph Matthes

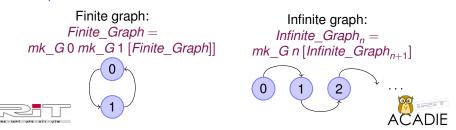
Institut de Recherche en Informatique de Toulouse (IRIT) affiliated with University of Toulouse and C.N.R.S. Team : ACADIE CMCS'12 in Tallinn, Estonia research partly supported by the CLIMT project (ANR-11-BS02-016) (some small typographical improvements applied to this presentation on April 3)

- 2 Capturing Permutations on ilist
- 3 A More Liberal Bisimulation Relation on Graph
- 4 Related Work and Conclusions

The Problem A first representation

Context: certified model transformations (Coq)

Aim: representing metamodels as graphs and graphs using coinductive types (to directly represent navigability in loops) First attempt: coinductive constructor (for coinductive rose trees): $mk_G: T \rightarrow list (Graph T) \rightarrow Graph T$ Examples:



The Problem Guard condition

An example

We would like to define the function (with *f* of type $T \rightarrow T'$):

applyF2G f $(mk_G t I) = mk_G (f t) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Why is it a problem?

The definition above actually is semantically correct!

The Problem Guard condition

An example

We would like to define the function (with *f* of type $T \rightarrow T'$):

 $applyF2G f (mk_G t I) = mk_G (f t) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

Why is it a problem?

The definition above actually is semantically correct!

The Problem Guard condition

An example

We would like to define the function (with *f* of type $T \rightarrow T'$):

 $applyF2G f (mk_G t I) = mk_G (f t) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

Why is it a problem?

The definition above actually is semantically correct!

GegPerm

Conclusions

The Solution: *ilist* – the container view of lists *ilist* implementation

Implementation using **functions** to represent lists

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The *ilist* : *ilist* $(T : Set) = \Sigma(n : nat)$.*ilistn* T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on *ilist*

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel_R \ l_1 \ l_2 \Leftrightarrow$ $\exists h : lg \ l_1 = lg \ l_2 \to (\forall i : Fin (lg \ l_1), R (fct \ l_1 \ i) (fct \ l_2 \ i'_h)) where lg and fct are projections on ilist, R is a relation on T and i'_h is i, converted from type Fin (lg \ l_1) to type Fin (lg \ l_2)$

Tools

Replacement for map: *imap* $f I = \langle Ig I, f \circ (fct I) \rangle$

GegPerm

Conclusions

The Solution: *ilist* – the container view of lists *ilist* implementation

Implementation using **functions** to represent lists

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The *ilist* : *ilist* $(T : Set) = \Sigma(n : nat)$.*ilistn* T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on *ilist*

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel_R \ l_1 \ l_2 \Leftrightarrow$ $\exists h : lg \ l_1 = lg \ l_2 \to (\forall i : Fin \ (lg \ l_1), R \ (fct \ l_1 \ i) \ (fct \ l_2 \ i'_h))$ where lg and fct are projections on *ilist*, R is a relation on T and i'_h is *i*, converted from type $Fin \ (lg \ l_1)$ to type $Fin \ (lg \ l_2)$

Tools

Replacement for map: *imap f I* = $\langle Ig I, f \circ (fct I) \rangle$

The Solution: *ilist* – the container view of lists *ilist* implementation

Implementation using **functions** to represent lists

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The *ilist* : *ilist* $(T : Set) = \Sigma(n : nat)$.*ilistn* T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on ilist

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel_R \ l_1 \ l_2 \Leftrightarrow$ $\exists h : lg \ l_1 = lg \ l_2 \to (\forall i : Fin \ (lg \ l_1), R \ (fct \ l_1 \ i) \ (fct \ l_2 \ i'_h))$ where lg and fct are projections on *ilist*, R is a relation on T and i'_h is *i*, converted from type $Fin \ (lg \ l_1)$ to type $Fin \ (lg \ l_2)$

Tools

Replacement for map: *imap* $f I = \langle Ig I, f \circ (fct I) \rangle$

New Graph Representation Definition of Graph

Graph (coinductive definition)

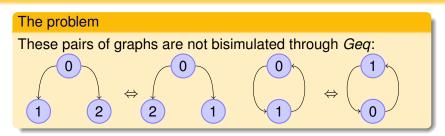
Graph : $mk_G : T \rightarrow ilist(Graph T) \rightarrow Graph T$

applyF2G (corecursive definition) applyF2G with $f : T \rightarrow T'$: applyF2G $f (mk_G t I) = mk_G (f t) (imap (applyF2G f) I)$

Equivalence on Graph (coinductively defined relation)

Geq generic coinductive notion of bisimilarity on *Graph* $\forall g_1 \ g_2 : Graph \ T, \ Geq_R \ g_1 \ g_2 \Leftrightarrow$ *R* (*label* g_1) (*label* g_2) \land *ilist_rel*_{*Geq*_R} (*sons* g_1) (*sons* g_2) where *label* and *sons* are the projections on *Graph*

Need for a more Liberal Relation on Graph



Solution

- Define a new equivalence relation on *ilist* for permutations
- Define a new equivalence relation on *Graph* using the previous equivalence on *ilist* and taking into account rotations

Capturing Permutations on *ilist* Inductive definition of permutations on *ilist* (*iperm* and *iperm*' in the paper)

 $\forall l_1 \ l_2, \ iperm_R \ l_1 \ l_2$ $\Rightarrow \begin{cases} lg \ l_1 = lg \ l_2 = 0 & \text{or} \\ \exists i_1 \ i_2, R \ (fct \ l_1 \ i_1) \ (fct \ l_2 \ i_2) \land \\ iperm_R \ (remEl \ l_1 \ i_1) \ (remEl \ l_2 \ i_2) \end{cases}$ $\Rightarrow \begin{cases} lg \ l_1 = lg \ l_2 \land \ (\forall i_1 \exists i_2, R \ (fct \ l_1 \ i_1) \ (fct \ l_2 \ i_2) \\ \land \ iperm_R \ (remEl \ l_1 \ i_1) \ (remEl \ l_2 \ i_2) \end{cases}$

where *remEl I i* removes the *i*th element of *I*.

The proof of equivalence is not straightforward since one definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to prove on one than on the other and vice versa.

Capturing Permutations on *ilist*

Definition using bijective functions and comparison between definitions

Definition of *ipermb*

Idea : use a bijective function to define *ipermb* in the same style as ilist rel. $\forall f g$, bij $f g \Leftrightarrow (\forall t, g(f t) = t) \land (\forall u, f(g u) = u)$ $\forall l_1 \ l_2, ipermb_R \ l_1 \ l_2 \Leftrightarrow \exists f \ g, bij \ f \ g \land (\forall i, R \ (fct \ l_1 \ i) \ (fct \ l_2 \ (f \ i)))$

Equivalence between definitions

- We can show that $\forall l_1 \ l_2$, iperm_B $l_1 \ l_2 \Leftrightarrow iperm_B \ l_1 \ l_2$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions

iperm (specially first def.) captures better the intuition than ipermb but is inductive. Contejean's definition is on lists. We prefer a definition on *ilist* \Rightarrow our choice is *iperm* (first variant)

A Relation on *Graph* Using *iperm* An unsuccessful attempt

Definition of *GPerm* (coinductive)

 $\forall g_1 g_2, GPerm_R g_1 g_2 \Leftrightarrow R (label g_1) (label g_2) \land iperm_{GPerm_R} (sons g_1) (sons g_2)$

Lemma: $\forall R, R \text{ reflexive} \Rightarrow \forall g, GPerm_R g g$ Proof (by coinduction): We must prove that $R (label g) (label g) \land iperm_{GPerm_R} (sons g) (sons g)$ ok has to be inductive

An impredicative definition — the type-theoretic way of getting a final coalgebra

The impredicative definition: implementation of $GPerm_R g_1 g_2$

$$\exists \mathcal{R}, \ \left(\forall \ g_1' \ g_2', \ \mathcal{R} \ g_1' \ g_2' \Rightarrow R \ (label \ g_1') \ (label \ g_2') \ \land \right.$$

 $i\!perm_{\mathcal{R}}\left(\mathit{sons}\ g_{1}^{\prime}
ight)\left(\mathit{sons}\ g_{2}^{\prime}
ight)
ight) \,\wedge\,\, \mathcal{R}\left(g_{1}^{\prime}\left(g_{2}^{\prime}
ight)
ight)$

where variable \mathcal{R} ranges over relations on Graph T

Tools and definitions

Coinduction principle:

 $(\forall g_1 \ g_2, \ \mathcal{R} \ g_1 \ g_2 \Rightarrow R \ (label \ g_1) \ (label \ g_2) \land$

 $\begin{array}{l} \textit{iperm}_{\mathcal{R}} (\textit{sons } g_1) (\textit{sons } g_2) \end{pmatrix} \Rightarrow \ \mathcal{R} \subseteq \textit{GPerm}_{R} \\ \textbf{Unfolding principle:} \ \forall \ g_1 \ g_2, \ \textit{GPerm}_{R} \ g_1 \ g_2 \Rightarrow \\ \textit{R} (\textit{label } g_1) (\textit{label } g_2) \land \textit{iperm}_{\textit{GPerm}_{R}} (\textit{sons } g_1) (\textit{sons } g_2) \\ \textbf{Constructor:} \ \forall \ g_1 \ g_2, \ \textit{R} (\textit{label } g_1) (\textit{label } g_2) \land \\ \textit{iperm}_{\textit{GPerm}_{R}} (\textit{sons } g_1) (\textit{sons } g_2) \Rightarrow \textit{GPerm}_{R} \ g_1 \ g_2 \end{array}$

A Relation On Graph Using iperm Mendler-style definition — inspired by work of Keiko Nakata and Tarmo Uustalu

Definition (coinductive)

 $\forall g_1 g_2, GPermMendler_R g_1 g_2 \Leftrightarrow \forall \mathcal{R}, \mathcal{R} \subseteq GPermMendler_R \land R (label g_1) (label g_2) \land iperm_{\mathcal{R}} (sons g_1) (sons g_2)$

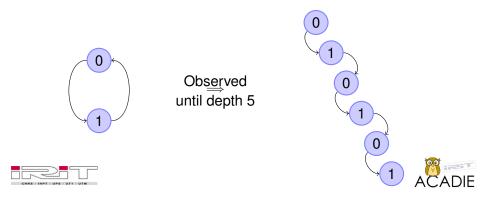
Properties

- Natively properly supported by Coq since only \mathcal{R} enters the inductive predicate and not the relation *GPermMendler*_R
- Equivalent to GPerm (the impredicative implementation)
- Preserves equivalence without Coq problems

A Relation On *Graph* Using *iperm* An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a certain depth.

 \Rightarrow no more mixing of inductive and coinductive types



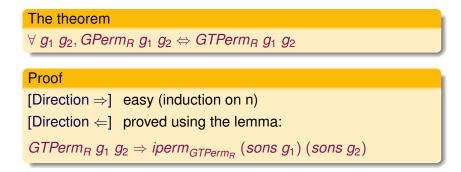
A Relation On *Graph* Using *iperm* An equivalent approach based on observation of "rose trees" - Definitions

iTree (inductive): *mk iTree* : $T \rightarrow ilist$ (*iTree* T) $\rightarrow iTree$ T**TPerm** (inductive): $\forall t_1 t_2$, **TPerm**_B $t_1 t_2 \Leftrightarrow$ R (labelT t_1) (labelT t_2) \land iperm_{TPerm_P} (sonsT t_1) (sonsT t_2) G2iT: $G2iT: \forall T, nat \rightarrow Graph T \rightarrow iTree T$ G2iT T 0 g := mk iTree (label g) G2iT T (n+1) (mk G t I) := mk iTree t (imap (G2iT n) I) $\equiv_{R,n}$: $\forall n g_1 g_2, g_1 \equiv_{R,n} g_2 \Leftrightarrow TPerm_R (G2iT n g_1) (G2iT n g_2)$ **GTPerm**: $\forall g_1 g_2, (GTPerm_B g_1 g_2 \Leftrightarrow \forall n, g_1 \equiv_{B,n} g_2)$

GegPerm

Conclusions

A Relation On *Graph* Using *iperm* An equivalent approach based on observation - Main theorem(1/2)



An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma

Main problem: problem of continuity. The unfolding gives: $(\forall n, g_1 \equiv_{R,n} g_2) \Rightarrow iperm_{\cap_n \equiv_{R,n}} (sons g_1) (sons g_2)$ \Rightarrow we need to "fix" a permutation that works for all *n*.

An equivalent approach based on observation - Main theorem (2/2)

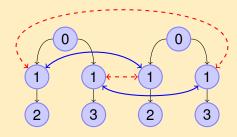
The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma



01/04/2012

Celia Picard and Ralph Matthes

Permutations in Coinductive Graph Representation 16/20

An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma

⇒ use of infinite pigeonhole principle Need to manipulate permutations ⇒ "certificates": $skel_type 0 := unit$ $skel_type (n+1) := (Fin (n+1) \times Fin (n+1)) \times skel_type n$

An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma

And we "include" them in *iperm*: $\forall l_1 \ l_2 \ H_{lgti} \ s, \ iperm_skel_R \ l_1 \ l_2 \ H_{lgti} \ s \Leftrightarrow$ $\begin{cases} lg \ l_1 = 0 & \text{or} \\ \exists \ i_1 \ i_2 \ s', R \ (fct \ l_1 \ i_1) \ (fct \ l_2 \ i_2) \ \land ``s = ((i_1, i_2), s')'' \ \land \\ iperm_skel_R \ (remEl \ l_1 \ i_1) \ (remEl \ l_2 \ i_2) \ H'_{lgti} \ s' \end{cases}$

(equivalent to iperm) / notion of continuity

An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma

We first get: $\forall n \exists s : skel_type (lg (sons g_1)),$ $iperm_skel_{\equiv_{R,n}} (sons g_1) (sons g_2) H_{lg} s$

The version of the infinite pigeonhole principle we want to use: $\forall m \forall P : \mathbb{N} \rightarrow skel_type \ m \rightarrow Prop,$ $(\forall n \exists s : skel_type \ m, P \ n \ s) \rightarrow$ $\exists s_0 : skel_type \ m, (\forall n \exists n', n' \ge n \land P \ n' \ s_0)$

An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

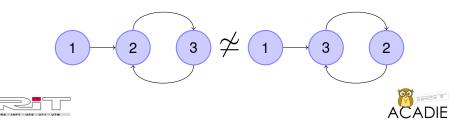
 $GTPerm_R g_1 g_2 \Rightarrow iperm_{GTPerm_R} (sons g_1) (sons g_2)$

Proof of the lemma

Using *iperm* equivalent to *iperm_skel*, goal becomes: *iperm_skel*_{GTPerm_R} (sons g₁) (sons g₂) H_{lg} s₀ Continuity: $\forall n$, *iperm_skel*_{$\equiv_{R,n}$} (sons g₁) (sons g₂) H_{lg} s₀ Using what the infinite pigeon hole principle says about s₀: $\forall n \exists n', n' \geq n \land iperm_skel_{\equiv_{R,n'}}$ (sons g₁) (sons g₂) H_{lg} s₀ $\equiv_{R,n'} \subset \equiv_{R,n} \Rightarrow \forall n$, *iperm_skel*_{$\equiv_{R,n'}$} (sons g₁) (sons g₂) H_{lg} s₀

The Final Relation Over Graph

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_1 \subset g_2 \land g_2 \subset g_1$
- Only for a "general" view:



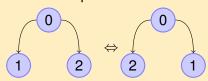
The Final Relation Over Graph Definitions

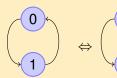
Inclusion

General definition (inductive): $\forall g_{in} \ g_{out}, GinG^*_{R_G} \ g_{in} \ g_{out} \Leftrightarrow \begin{cases} R_G \ g_{in} \ g_{out} & or \\ \exists i, GinG^*_{R_G} \ g_{in} \ (fct \ (sons \ g_{out}) \ i) \end{cases}$ Instantiation: $GinGP_R := GinG^*_{GPerm_P}$

The final relation

 $\forall g_1 g_2, GeqPerm_R g_1 g_2 \Leftrightarrow GinGP_R g_1 g_2 \land GinGP_R g_2 g_1$ Preserves equivalence.





Related Work

Guardedness issues

- Bertot and Komendantskaya: same approach with streams
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: solution using category theory but not usable here
- Danielsson: experimental solution to the problem in Agda (add constructors for each problematic function)
- Nakata and Uustalu: Mendler-style definition

Graph representation

• Erwig: inductive directed graph representation. Each node is added with its successors and predecessors.

Permutations

Contejean: treats the same problem for lists

Conclusions and Perspectives

- Done so far:
 - Complete solution to overcome the guardedness condition in the case of lists
 - Permutations captured for ilist
 - Quite liberal equivalence relation on Graph
 - Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)
 - But also completely described in mathematical language, see the forthcoming thesis by Celia
- Current and future work :
 - Instantiation of the graphs for finite automata (several contributions by quite some researchers to this ETAPS)
 - More general solution for any inductive type the container view may be most helpful
 - Use of the present work to represent transformations in the ANR CLIMT project on categorical and logical methods in model transformation (Grenoble/Toulouse)