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Coalgebra and Reflexivity

The message I would like to deliver:

There can be a wider rôle for coalgebra than the familiar applications in
Computer Science.

In particular, coalgebra is (part of) the mathematics of reflexivity.

Reflexivity is (almost) everywhere: in life, cognition, communication,
language, social processes, economics, . . .

There are great scientific possibilities to use these tools in wider contexts.

I shall discuss one example: limited, but fascinating and suggestive.

The Brandenburger-Keisler paradox

N.B. Return to caveats on last slide.
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Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Epistemic Game Theory

Epistemic game theory adds to the usual game structure of strategies and payoffs
explicit representations of the epistemic states of the players. These are known as
type spaces (Harsanyi).

As one analyzes situations in games, these naturally go to all levels:

Alice believes that Bob believes that . . .

In particular, there is a project of justifying solution concepts in games, such as
forwards or backwards induction, iterated admissibility etc., with reference to
these spaces.

This needs some fairly strong notions of completeness: the type spaces need to be
sufficiently rich to represent enough epistemic states.

Brandenburger and Keisler showed that this is close to a logical boundary: if the
completeness assumptions are too strong, we get an inconsistency.

This can be seen as a kind of many-person version of Russell’s paradox.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 3 / 30



Setting for the BK argument

The ‘real’ game theory applications involve probabilities; players’ beliefs are
represented as various forms of probability measures (conditional, lexicographic
etc.).

To expose the essential structure of their core argument, Brandenburger and
Keisler present it in a simplified, relational setting.

Type spaces Ua and Ub for Alice and Bob:

Elements of Ua represent possible epistemic states of Alice in which she holds
beliefs about Bob, Bob’s beliefs, etc.
Symmetrically, elements of Ub represent possible epistemic states of Bob.

The relations Ra ⊆ Ua × Ub, Rb ⊆ Ub × Ua specify these beliefs. Thus
Ra(x , y) expresses that in state x , Alice believes that state y is possible for
Bob.

We say that a state x ∈ Ua believes P ⊆ Ub if Ra(x) ⊆ P.
Modally, ‘x believes P’ is just x |= 2aP.

We say that x assumes P if Ra(x) = P.
This is x |= �aP, where �a is the modality defined by

x |= �aφ ≡ ∀y .Ra(x , y)⇔ y |= φ.
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Assumption Completeness

A structure (Ua,Ub,Ra,Rb) is assumption-complete with respect to a collection of
predicates on Ua and Ub if for every predicate P on Ub in the collection, there is a
state x on Ua such that x assumes P; and similarly for the predicates on Ua.

The hypothesis of assumption completeness is needed to show the soundness of
various solution concepts in games.

Brandenburger and Keisler show that this hypothesis, in the case where the
predicates include those definable in the first-order language of this structure,
leads to a contradiction. (They also show the existence of assumption complete
models for some other cases.)

Our aim is to understand the general structures underlying this argument. Our
first step is to recast their result as a positive one — a fixpoint lemma.
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The hypothesis of assumption completeness is needed to show the soundness of
various solution concepts in games.

Brandenburger and Keisler show that this hypothesis, in the case where the
predicates include those definable in the first-order language of this structure,
leads to a contradiction. (They also show the existence of assumption complete
models for some other cases.)

Our aim is to understand the general structures underlying this argument. Our
first step is to recast their result as a positive one — a fixpoint lemma.
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The Basic Lemma
A 2-universe is a structure (Ua,Ub,Ra,Rb) where

Ra ⊆ Ua × Ub, Rb ⊆ Ub × Ua.

We assume that for ‘all’ (in some ‘definable’ class of) predicates p on Ua there is
x0 such that:

(1) Ra(x0) ⊆ {y | Rb(y) = {x | p(x)}}

(2) ∃y .Ra(x0, y).

Modally: x0 |= 2a �b p & 3a>.

Remark We can read (1) as saying: ‘x0 believes that (y assumes that p)’, in the
terminology of Brandenburger and Keisler.

Lemma (Basic Lemma)

From (1) and (2) we have:

p(x0) ⇐⇒ ∃y .[Ra(x0, y) ∧ Rb(y , x0)].
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The BK Fixpoint Lemma

Lemma (BK Fixpoint Lemma)

Under our assumptions, every unary propositional operator O has a fixpoint.

Proof Since p was arbitrary, we can define

q(x) ≡ ∃y .[Ra(x , y) ∧ Rb(y , x)]
p(x) ≡ O(q(x)).

N.B. It is important that p is defined without reference to x0 to avoid circularity.
By the Basic Lemma, this yields

q(x0) ⇐⇒ O(q(x0)).

�

Taking O ≡ ¬ yields the BK ‘paradox’.
(In fact ¬q(x) is equivalent to their ‘diagonal formula’ D).
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Some questions

How can this be related to standard fixpoint notions. In particular, we aim to
relate it to Lawvere’s categorical formulation of diagonal arguments.

Where does this particular form “believes . . . assumes . . . ” come from?

How do these ideas generalize? Is there some general idea of many-person
versions of classical one-person notions?

Under what circumstances can “sufficiently complete type spaces” be
constructed? Coalgebra can be used here!
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Lawvere fixpoint lemma: concrete formulation

We start off concretely working in Set.

Basic situation: a function
g : X → VX

or equivalently, by cartesian closure:

ĝ : X × X → V

Think of V as a set of ‘truth values’: VX is the set of ‘V-valued predicates’. Then
g is showing how predicates on X can be represented by elements of X . In terms
of ĝ : a predicate p : X → V is representable by x ∈ X if for all y ∈ X :

p(y) = ĝ(x , y)

If predicates ‘talk about’ X , then representable predicates allow X to ‘talk about
itself’.

If g is surjective, then every predicate on X is representable in X .

When can this happen?
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p(y) = ĝ(x , y)

If predicates ‘talk about’ X , then representable predicates allow X to ‘talk about
itself’.

If g is surjective, then every predicate on X is representable in X .

When can this happen?

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 9 / 30



Lawvere fixpoint lemma: concrete formulation

We start off concretely working in Set.

Basic situation: a function
g : X → VX

or equivalently, by cartesian closure:
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The Fixpoint Lemma

Proposition

Suppose that g : X → VX is surjective. Then every function α : V → V has a
fixpoint: v ∈ V such that α(v) = v.

Proof Define a predicate p by

X × X
ĝ - V

X

∆

6

p
- V

α

?

There is x ∈ X which represents p: then

p(x) = α(ĝ(∆(x))) = α(ĝ(x , x)) = α(p(x))

so p(x) is a fixpoint of α. �

Some comments on the proof. (i) Constructive. (ii) Uses two descriptions of p.
(iii) Since x represents p, p(x) is (indirect) self-application.
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so p(x) is a fixpoint of α. �

Some comments on the proof. (i) Constructive. (ii) Uses two descriptions of p.
(iii) Since x represents p, p(x) is (indirect) self-application.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 10 / 30



The Fixpoint Lemma

Proposition

Suppose that g : X → VX is surjective. Then every function α : V → V has a
fixpoint: v ∈ V such that α(v) = v.

Proof Define a predicate p by

X × X
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Does this make sense?

Say that X has the fixpoint property (fpp) if every endofunction on X has a
fixpoint.

Of course, no set with more than one element has the fixpoint property!

Basic example: 2 = {0, 1}. The negation

¬0 = 1, ¬1 = 0

does not have a fixpoint.

So the meaning of the theorem in Set must be taken contrapositively:

For all sets X , V where V has more than one element, there is no surjective map

X → VX

Suitably formulated, this is valid in any elementary topos.
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Two Applications

Cantor’s Theorem. Take V = 2. There is no surjective map

X → 2X

and hence |P(X )| 6≤ |X |.

We can apply the fixpoint lemma to any putative such map, with α = ¬, to get
the usual ‘diagonalization argument’.

Russell’s Paradox. Let S be a ‘universe’ (set) of sets. Let

ĝ : S × S → 2

define the membership relation:

ĝ(x , y)⇔ y ∈ x

Then there is a predicate which can be defined on S, and which is not
representable by any element of S.

Such a predicate is given by the standard Russell set, which arises by applying the
fixpoint lemma.
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ĝ(x , y)⇔ y ∈ x

Then there is a predicate which can be defined on S, and which is not
representable by any element of S.

Such a predicate is given by the standard Russell set, which arises by applying the
fixpoint lemma.

Samson Abramsky and Jonathan Zvesper (Department of Computer Science, University of Oxford)From Lawvere to Brandenburger-Keisler: interactive forms of diagonalization and self-reference 12 / 30



Two Applications
Cantor’s Theorem. Take V = 2. There is no surjective map

X → 2X

and hence |P(X )| 6≤ |X |.

We can apply the fixpoint lemma to any putative such map, with α = ¬, to get
the usual ‘diagonalization argument’.

Russell’s Paradox. Let S be a ‘universe’ (set) of sets. Let
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The general case

Lawvere’s argument was in the setting of cartesian (closed) categories. Amazingly,
it only needs finite products!

(In fact, even less suffices: just monoidal structure and a ‘diagonal’ satisfying only
point naturality and monoidality.)

Let C be a category with finite products.

(Lawvere) An arrow f : A× A→ V is weakly point surjective (wps) if for every
p : A→ V there is an x : 1→ A such that, for all y : 1→ A:

p ◦ y = f ◦ 〈x , y〉 : 1→ V

In this case, we say that p is represented by x .
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Abstract Fixpoint Lemma

Proposition (Abstract Fixpoint Lemma)

Let C be a category with finite products. If f : A× A→ V is weakly point
surjective, then every endomorphism α : V → V has a fixpoint v : 1→ V such
that α ◦ v = v.

Proof Define p : A→ V by

A× A
f - V

A

∆A

6

p
- V

α

?

Suppose p is represented by x : 1→ A. Then

p ◦ x = α ◦ f ◦∆A ◦ x def of p
= α ◦ f ◦ 〈x , x〉 diagonal
= α ◦ p ◦ x x represents p.

so p ◦ x is a fixpoint of α. �
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Can we reduce BK to Lawvere?

There are many applications of Lawvere’s result.

The very nice article by Noson Yanofsky

A universal approach to self-referential paradoxes, incompleteness
and fixed points, (BSL 2003)

covers: semantic paradozes (Liar, Berry, Richard), the Halting Problem, existence
of an oracle B such that PB 6= NPB , Parikh sentences, Löb’s paradox, the
Recursion theorem, Rice’s theorem, von Neumann’s self-reproducing automata,
. . .

However, the question of using it to prove the BK result remained open.

We shall present a way of doing this.

This needs the two results to be put on a common footing — yet they look very
different!

The first step is to analyze exactly what logical resources are needed to carry
through the BK argument.
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Towards a categorical version of the BK argument

First observation: this argument is valid in regular logic, comprising sequents

φ `X ψ

where φ and ψ are built from atomic formulas by conjunction and existential
quantification.

The intended meaning of such a sequent is

∀x1 · · · ∀xn[φ⇒ ψ]

where X = {x1, . . . , xn}.

This is a common fragment of intuitionistic and classical logic. It plays a core rôle
in categorical logic.
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Formal version of the BK argument

The assumptions given in the informal argument:

For each p there is x0 such that

(1) Ra(x0) ⊆ {y | Rb(y) = {x | p(x)}}

(2) ∃y .Ra(x0, y).

can be expressed as regular sequents as follows.

(A1) Ra(c , y) & Rb(y , x) `{x,y} p(x)
(A2) Ra(c , y) & p(x) `{x,y} Rb(y , x)
(A3) ` ∃y .Ra(c , y)

Here (A1) and (A2) correspond to assumption (1) in the informal argument. We
use c as a Skolem constant for x0.
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(1) Ra(x0) ⊆ {y | Rb(y) = {x | p(x)}}

(2) ∃y .Ra(x0, y).

can be expressed as regular sequents as follows.

(A1) Ra(c , y) & Rb(y , x) `{x,y} p(x)
(A2) Ra(c , y) & p(x) `{x,y} Rb(y , x)
(A3) ` ∃y .Ra(c , y)

Here (A1) and (A2) correspond to assumption (1) in the informal argument. We
use c as a Skolem constant for x0.
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Formal Version of the Results

The formal version of the Basic Lemma:

Lemma

From (A1)–(A3) we can infer the sequents:

p(c) ` q(c), q(c) ` p(c)

where
q(x) ≡ ∃y .[Ra(x , y) ∧ Rb(y , x)].

A definable unary propositional operator will be represented by a formula context
O[·], which is a closed formula built from atomic formulas, plus a ‘hole’ [·]. We
obtain a formula O[φ] by replacing every occurrence of the hole by a formula φ.

The formal version of the Fixpoint Lemma is now stated as follows:

Lemma

Under the assumptions (A1)–(A3), every definable unary propositional operator
O[·] has a fixpoint, i.e. a sentence S ≡ q(c) such that

S ` O[S ], O[S ] ` S .
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Remarks

Regular logic can be interpreted in any regular category: well-powered with
finite limits and images, which are stable under pullbacks. These are exactly
the categories which support a good calculus of relations.

The BK fixpoint lemma is valid in any such category. Regular categories are
abundant — they include all (pre)toposes, all abelian categories, all
equational varieties of algebras, and compact Hausdorff spaces. But certainly
regularity is a significantly stronger requirement than merely having finite
products, as in the Lawvere lemma.

If the propositional operator O is fixpoint-free, the result must be read
contrapositively, as showing that the assumptions (A1)–(A3) lead to a
contradiction. This will of course be the case if O = ¬[·] in classical logic.
This yields exactly the BK argument.

In other contexts, this need not be the case. For example if the propositions
(in categorical terms, the subobjects of the terminal object) form a complete
lattice, and O is monotone, then by the Tarski-Knaster theorem there will
indeed be a fixpoint. This offers a general setting for understanding why
positive logics, in which all definable propositional operators are monotone,
allow the paradoxes to be circumvented.
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Relating Lawvere

How do we relate Lawvere to BK? Since BK needs a richer setting, we reformulate
Lawvere, replacing maps by relations.

To see how to do this, imagine the Lawvere wps situation

ĝ : X × X → Ω

is happening in a topos, and Ω is the subobject classifier.

Then this corresponds to a relation

R- - X × X

Such a relation is very weakly point surjective (vwps) if for every subobject
P- - X there is c : 1→ X such that:

JR(c , c)K = Jp(c)K.

This weaker notion is sufficient to prove the Fixpoint Lemma.
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What is a ‘propositional operator’?

To find the right ‘objective’ — i.e. language independent — notion, once again we
consider the topos case, and translate out of that into something which makes
sense much more widely.

In a topos, a propositional operator is an endomorphism of the subobject classifier

α : Ω→ Ω

(In more familiar terms: a operator on the lattice of truthvalues, e.g. BAO’s.)

Note that by Yoneda, since Sub ∼= C(−,Ω), such endomorphisms of Ω correspond
bijectively with endomorphisms of the subobject functor — i.e. natural
transformations

τ : Sub =⇒ Sub

Thus this is the right semantic notion of ‘propositional operator’ in general.

Naturality corresponds to commuting with substitution.
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The Relational Lawvere Lemma

Lemma (Relational Lawvere fixpoint lemma)

If R is a vwps relation on X in a regular (even a lex) category, then every
endomorphism of the subobject functor

τ : Sub =⇒ Sub

has a fixpoint.
NB: a fixpoint K1 =⇒ Sub is determined by its value at Sub(1).

Proof We define a predicate P(x) ≡ τ(R(x , x)), so JPK = τX (∆∗X (R)). By
vwps, there is c : 1→ X such that:

JP(c)K = c∗(P) = 〈c , c〉∗(R) = JR(c , c)K.

Then
JP(c)K = c∗(P) = c∗(τX (∆∗X (R)) = τ1(c∗ ◦∆∗X (R)) = τ1(〈c , c〉∗(R))

= τ1(c∗(P)) = τ1(JP(c)K).

�
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BK Reduced to Lawvere

Now given relations

Ra
- - A× B, Rb

- - B × A

we can form their relational composition R- - A× A:

JR(x1, x2)K ≡ J∃y . [Ra(x1, y) & Rb(y , x2)]K

Our Basic Lemma can now be restated as follows:

Lemma

If Ra and Rb satisfy the BK assumptions (A1)–(A3), then R is vwps.

Hence the relational Lawvere fixpoint lemma applies!

As an immediate Corollary, we obtain:

Lemma (BK Fixpoint Lemma)

If Ra and Rb satisfy the BK assumptions (A1)–(A3), then every endomorphism of
the subobject functor has a fixpoint.
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Multi-Agent Generalization

A multiagent belief structure in a regular category is

({Ai}i∈I , {Rij}(i,j)∈I×I )

where
Rij
- - Ai × Aj .

A belief cycle in such a structure is

A
R1
+ - A1

R2
+ - · · ·

Rn
+ - An

Rn+1
+ - A

The generalized BK assumptions for such a belief cycle:

For each subobject p- - A, there is some c : 1→ A such that

c |= 21 · · ·2n �n+1 p
∧
31> & 2132> & · · · & 21 · · ·2n−13n>

These assumptions can be written straightforwardly as regular sequents.
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Multiagent BK Fixpoint Lemma

We can define the relation R = R1; · · · ; Rn+1
- - A× A.

Lemma (Generalized Basic Lemma)

Under the Generalized BK assumptions, R is vwps.

Hence the Relational Fixpoint Lemma applies.

Note that in the one-person case n = 0, assumption completeness coincides with
weak point surjectivity.
In modal terms:

c |= �p ≡ ∀x .R(c , x)⇔ p(x).

One-person BK is (relational) Lawvere!

The force of the BK argument is that the (very) wps property propagates back
along belief chains.

In particular, this produces the ‘believes-assumes’ construction of BK, or the
generalized version believes∗-assumes.

There is also a kind of converse; see the paper in the Proceedings.
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Using coalgebra to build assumption-complete type spaces
We are given strategy sets Sa, Sb for Alice and Bob respectively. We want to find
sets of types Ta and Tb such that

Ta
∼= P(Ub), Tb

∼= P(Ua) (1)

where Ua = Sa × Ta and Ub = Sb × Tb are the sets of states for Alice and Bob.

Naively, P is powerset, but in fact it must be a restricted set of subsets
(extensions of predicates) defined in some more subtle way, or such a structure
would be impossible by mere cardinality considerations.

Thus a state for Alice is a pair (s, t) where s is a strategy from her strategy-set

and t is a type. Given an isomorphism α : Ta

∼=- P(Ub), we can define a
relation Ra : Ua +- Ub by:

Ra((s, t), (s ′, t ′)) ≡ (s ′, t ′) ∈ α(t).

Note that (s, t) assumes α(t). Because α is an isomorphism, the belief model
(Ua,Ub,Ra,Rb) is automatically assumption complete with respect to P(Ua) and
P(Ub).
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General Formulation
Suppose that we have a category C, which we assume to have finite products, and
a functor P : C → C. We are given objects Sa and Sb in C. Hence we can define
functors Fa,Fb : C → C:

Fa(Y ) = P(Sb × Y ), Fb(X ) = P(Sa × X ).

Intuitively, Fa provides one level of beliefs which Alice may hold about states
which combine strategies for Bob with ‘types’ from the ‘parameter space’ Y ; and
symmetrically for Fb.

Now we define a functor F : C × C → C × C on the product category:

F (X ,Y ) = (Fa(Y ),Fb(X )).

To ask for a pair of isomorphisms as in (1) is to ask for a fixpoint of the functor
F : an object of C × C (hence a pair of objects of C, (Ta,Tb)) such that

(Ta,Tb) ∼= F (Ta,Tb).
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Applying coalgebra

Standard results allow us to lift one-person to two- (or multi-)agent constructions.
Suppose we have endofunctors G1,G2 : C → C. We can define a functor

G : C × C → C × C :: G (X ,Y ) = (G1(Y ),G2(X )).

Note that this directly generalizes our definition of F from Fa and Fb.

We have G = (G1 × G2) ◦ twist. It is standard that if G1 and G2 satisfy continuity
or accessibility hypotheses which guarantee that they have final coalgebras, so will
G .

Note that the final sequence for G will have the form

(1, 1)← (G1(1),G2(1))← (G1(G2(1)),G2(G1(1))←

· · · ← ((G1 ◦ G2)k(1), (G2 ◦ G1)k(1))← · · ·

This ‘symmetric feedback’ is directly analogous to constructions which arise in
Geometry of Interaction and the Int construction. It is suggestive of a
compositional structure for interactive belief models.
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Three settings
We consider three specific settings where the general machinery we have described
can be applied to construct assumption complete models as final coalgebras.

Set, with P(X ) = Pκ(X ), the collection of all subsets of X of cardinality less
than κ, where κ is an inaccessible cardinal.
Note that the terminal sequence for this functor is always transfinite, as
analyzed in detail by Ben Worrell.
Stone spaces with the Vietoris powerspace construction.
In this case, the final coalgebra is reached after ω stages of the terminal
sequence.
Algebraic Lattices, with either the upper or lower powerdomain functor.

We must also consider the closure properties of these spaces under logical
constructions, as a measure of how expressive they are in defining predicates.

These models are all closed under conjunction, disjunction, existential and
universal quantification, and constructions corresponding to the assumes and
believes modalities (in the powerdomain cases, with some order-theoretic
saturation).
They are also closed under various forms of recursive definition.

They are not, of course, closed under negation!
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Final Remarks

Returning to wider horizons, let me raise a few questions which I personally find
challenging and fascinating:

Where are the boundaries between the reflexivity covered by coalgebra, and
that requiring self-application?

Can we get a clean categorical formulation of the Kleene recursion theorem
(the intensional one)? How can we use it?

Can we relate these ideas to Robert Rosen’s tantalising proposals about Life
Itself ?

Can we identify reflexivity as a fundamental phenomenon at the level of
biology and above?

Is there reflexivity in physics?

What is the scope of of interactive versions of logical and mathematical
phenomena which have previously only been studied in ‘one-person’ versions?
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