Final coalgebras in categories with factorization systems

Giorgio Bacci

Dept. of Mathematics and Computer Science University of Udine, Italy

short contribution

31 March - 1 April 2012, Tallinn

We will explore properties of the final sequence and give

+ a minimization functor (constructively, still without a final coalgebra!)

+ characterizations of final coalgebras, given weakly final coalgebras

provided that the category admits a factorization system $(\mathcal{L}, \mathcal{R})$ with $\mathcal{R} \subseteq$ **Monic**

Final sequence

For an endofunctor $T: \mathcal{C} \to \mathcal{C}$ the final sequence is given as

... formally it is a limit preserving functor

$$F: \mathbf{Ord}^{op} \to \mathcal{C} \quad \text{such that} \quad \begin{cases} F(0) = 1 \\ F(\beta+1) = TF(\beta) \\ F(\beta+1 \to \gamma+1) = TF(\beta \to \gamma) \end{cases}$$

Final coalgebra from the final sequence

Theorem

(Adamek,Barr)

If the final sequence stabilizes at α then $F(\alpha+1 \rightarrow \alpha)^{-1}$ is a final *T*-coalgebra.

Corollary

(Adamek, Worrell)

If $F(\alpha+1 \rightarrow \alpha)$ is monic and T preserves monos, then T has final coalgebra, provided that C is well-powered.

+ a factorization system $(\mathcal{L}, \mathcal{R})$ with $\mathcal{R} \subseteq$ Monic + $F(\alpha+1 \rightarrow \alpha) \in \mathcal{R}$ for some $\alpha \in$ Ord + T preserves \mathcal{R} -morphisms

Minimization functor

$$M: T\text{-}\mathsf{Coalg}_{\mathcal{C}} \to T\text{-}\mathsf{Coalg}_{\mathcal{C}}$$

(*) We do not require the existence of a final *T*-coalgebra (ex. **Ord**^{op})

Reflective subcategory of minimized coalgebras

Factorization systems on ${\cal C}$ induces a reflective subcategory ${\cal R},$ provided that ${\cal C}$ has final object

[Borceux, Handbook 1, Prop.5.5.5]

Results for finitary **Set** endofunctors *T*

- + the final sequence for ${\it T}$ has monic arrow at $\omega{+}1\rightarrow\omega$
- + T is a quotient of some finitary polynomial endofunctor H_{Σ}

 $\epsilon \colon H_{\Sigma} \Rightarrow T$ with epic componets

${\mathcal C} \text{ is } {\mathcal R}\text{-well-powered}$ (each object has only a set of ${\mathcal R}\text{-subobjects}$)

$\ensuremath{\mathcal{R}}\xspace$ -union of minimized coalgebras is final

Under this further assumption the category $\mathcal M$ is small...

Thanks