State-based Simulation of Linear Course-of-value Iteration

Baltasar Trancón y Widemann
University of Bayreuth, Germany
11th CMCS, Tallinn, Estonia 2012-03-31 / -04-01

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion
(1) Introduction
- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion

Preliminaries

Notational Conventions

Functor $F: \mathcal{C} \rightarrow \mathcal{C}$
Initial F-algebra $\left(\mu F\right.$, in $\left._{F}: F \mu F \rightarrow \mu F\right)$
Final F-coalgebra $\left(\nu F\right.$, out $\left._{F}: \nu F \rightarrow F \nu F\right)$
Lambek's in $_{F}$, out $_{F}$ are isomorphisms

Ordinary (Co)Iteration, Categorically

Catamorphism

Every F-algebra $(A, \varphi: F A \rightarrow A$) induces a unique homomorphism $(\varphi)_{A}: \mu F \rightarrow A$ satisfying $(\varphi)_{A} \circ \mathrm{in}_{F}=\varphi \circ F(\varphi)_{A}$

Ordinary (Co)Iteration, Categorically

Catamorphism

Every F-algebra $(A, \varphi: F A \rightarrow A)$ induces a unique homomorphism $(\varphi)_{A}: \mu F \rightarrow A$ satisfying $(\varphi)_{A} \circ \mathrm{in}_{F}=\varphi \circ F(\varphi)_{A}$

Anamorphism

Every F-coalgebra $(B, \varphi: B \rightarrow F B)$ induces a unique homomorphism $\backslash(\varphi\rangle_{B}: B \rightarrow \nu F$
satisfying out ${ }_{F} \circ\left[(\varphi]_{B}=F\left[(\varphi]_{B} \circ \varphi\right.\right.$

Course-of-value Iteration, Categorically

Some More Functors

- Add a colouring C to F

$$
F_{C}^{\times}=C \times F(-)
$$

- Strange auxiliary definitions (see below for intuition)

$$
\begin{aligned}
F^{!} C & =\nu F_{C}^{\times} \quad F^{!}(h: C \rightarrow D)=\llbracket\left(\left(h \times \mathrm{id}_{F^{?} C}\right) \circ \text { out }_{F_{C}^{\times}} \rrbracket_{F_{D}^{\times}}\right. \\
F^{?} & =F F^{!}
\end{aligned}
$$

Course-of-value Iteration, Categorically

Some More Functors

- Add a colouring C to F

$$
F_{C}^{\times}=C \times F(-)
$$

- Strange auxiliary definitions (see below for intuition)

$$
\begin{aligned}
F^{!} C & =\nu F_{C}^{\times} \quad F^{!}(h: C \rightarrow D)=\llbracket\left(\left(h \times \mathrm{id}_{F^{?} C}\right) \circ \text { out }_{F_{C}^{\times}} \rrbracket_{F_{D}^{\times}}\right. \\
F^{?} & =F F^{!}
\end{aligned}
$$

Histomorphism (Uustalu and Vene 1999)

- Every $F^{\text {? }}$-algebra $\left(C, \varphi: F^{\text {? }} C \rightarrow C\right)$ induces a unique homomorphism $\{\mid \varphi\}_{F}: \mu F \rightarrow C$

$$
\text { satisfying }\{\mid \varphi\}_{F} \circ \mathrm{in}_{F}=\varphi \circ F\left[\left(\left\langle\{|\varphi|\}_{F}, \text { in }_{F}^{-1}\right\rangle\right]_{F_{C}^{\times}}\right.
$$

Course-of-value Iteration, Categorically

Some More Functors

- Add a colouring C to F

$$
F_{C}^{\times}=C \times F(-)
$$

- Strange auxiliary definitions (see below for intuition)

$$
\begin{aligned}
F^{!} C & =\nu F_{C}^{\times} \quad F^{!}(h: C \rightarrow D)=\llbracket\left(\left(h \times \mathrm{id}_{F^{?} C}\right) \circ \text { out }_{F_{C}^{\times}} \rrbracket_{F_{D}^{\times}}\right. \\
F^{?} & =F F^{!}
\end{aligned}
$$

Histomorphism (Uustalu and Vene 1999)

- Every $F^{\text {? }}$-algebra $\left(C, \varphi: F^{\text {? }} C \rightarrow C\right)$ induces a unique homomorphism $\{\mid \varphi\}_{F}: \mu F \rightarrow C$
satisfying $\{\mid \varphi\}_{F} \circ \mathrm{in}_{F}=\varphi \circ F\left[\left(\left\langle\{|\varphi|\}_{F}, \text { in }_{F}^{-1}\right\rangle\right]_{F_{C}^{\times}}\right.$ namely $\{\mid \varphi\}_{F}=\pi_{1} \circ$ out $_{F_{C}^{\times}} \circ\left(\text { out }_{F_{C}^{\times}}^{-1} \circ\left\langle\varphi, \text { id }_{F} \text { ? } C\right\rangle\right)_{F}$

All Those Functorial Data Structures Pictured

All Those Functorial Data Structures Pictured

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion

Special Case

Restriction to Simplest of Functors

- Peano functor

$$
F=N=1+(-): \text { Set } \rightarrow \text { Set }
$$

- Data structures simplify
- Ordinary iteration simplifies

Special Case

Restriction to Simplest of Functors

- Peano functor

$$
F=N=1+(-): \text { Set } \rightarrow \text { Set }
$$

- Data structures simplify

$$
\begin{array}{lrl}
\mu N & =\mathbb{N} & \\
\nu N=\mathbb{N}_{\infty} & N^{!} C=C^{+\infty} & N^{?} C \cong C^{\infty}
\end{array}
$$

Special Case

Restriction to Simplest of Functors

- Peano functor

$$
F=N=1+(-): \text { Set } \rightarrow \text { Set }
$$

- Data structures simplify

$$
\begin{aligned}
\mu N & =\mathbb{N} & & N C=1+C \\
\nu N & =\mathbb{N}_{\infty} & N^{!} C=C^{+\infty} & N^{?} C \cong C^{\infty}
\end{aligned}
$$

- Ordinary iteration simplifies

$$
\varphi=[z, s] \Longrightarrow(\varphi)_{N}(n)=s^{n}(z)
$$

- Applications beyond Fibonacci \& friends

Black-box components in software enginee ing
Empirics/statistics of dynamical systems

Special Case

Restriction to Simplest of Functors

- Peano functor

$$
F=N=1+(-): \text { Set } \rightarrow \text { Set }
$$

- Data structures simplify

$$
\begin{array}{lrl}
\mu N & =\mathbb{N} & \\
\nu N & =\mathbb{N}_{\infty} & N^{!} C=C^{+\infty}
\end{array} \quad N^{?} C \cong C^{\infty}
$$

- Ordinary iteration simplifies

$$
\varphi=[z, s] \Longrightarrow(\varphi)_{N}(n)=s^{n}(z)
$$

- Course-of-value iteration simplifies

$$
\{|\varphi|\}_{N}(n) \cong \varphi\left(\{|\varphi|\}_{N}(n-1), \ldots,\{\mid \varphi\}_{N}(0)\right)
$$

Special Case

Restriction to Simplest of Functors

- Peano functor

$$
F=N=1+(-): \text { Set } \rightarrow \text { Set }
$$

- Data structures simplify

$$
\begin{array}{lrl}
\mu N & =\mathbb{N} & \\
\nu N & =\mathbb{N}_{\infty} & N^{!} C=C^{+\infty}
\end{array} \quad N^{?} C \cong C^{\infty}
$$

- Ordinary iteration simplifies

$$
\varphi=[z, s] \Longrightarrow(\varphi)_{N}(n)=s^{n}(z)
$$

- Course-of-value iteration simplifies

$$
\{|\varphi|\}_{N}(n) \cong \varphi\left(\{|\varphi|\}_{N}(n-1), \ldots,\{|\varphi|\}_{N}(0)\right)
$$

- Applications beyond Fibonacci \& friends
- Black-box components in software engineering
- Empirics/statistics of dynamical systems

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases

(1) Introduction

- General Theory
- Special Case: Linear History

(2) Simulation

- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion

Ordinary N-iteration as Loop Program

```
procedure iter(z, s, n):
    1 var state := z;
    2 for i := 1 to n do
    3 state := s(state)
    4 end;
    5 return state.
```


Ordinary N-iteration as Loop Program

```
procedure iter(z, s, n):
    1 var state \(:=z\);
    2 for \(\mathrm{i}:=1\) to n do
    3 state \(:=\mathrm{s}(\) state)
    4 end;
    5 return state.
```


Evaluation

- Line 3 takes advantage of results needed only once
- valid for ordinary iteration
- invalid for course-of-value iteration
- COV iteration must remember more of input/output
- finitely much? how much? how organized?
- General theory desirable

Simulation Defined

Definition (State System, Factoring, Epi)

- A C-state system is a triple (S, σ, τ) with state space S abstraction $\sigma: N^{?} C \rightarrow S$ transition $\tau: C \times S \rightarrow S$
- (S, σ, τ) is called epi-state system iff σ is epi

Simulation Defined

Definition (State System, Factoring, Epi)

- A C-state system is a triple (S, σ, τ) with state space S abstraction $\sigma: N^{?} C \rightarrow S$
transition $\tau: C \times S \rightarrow S$
- State system (S, σ, τ) factors $\varphi: N^{?} C \rightarrow C$ iff there is $\widetilde{\varphi}: S \rightarrow C$ such that

Simulation Defined

Definition (State System, Factoring, Epi)

- A C-state system is a triple (S, σ, τ) with state space S abstraction $\sigma: N^{?} C \rightarrow S$
transition $\tau: C \times S \rightarrow S$
- State system (S, σ, τ) factors $\varphi: N^{?} C \rightarrow C$ iff there is $\tilde{\varphi}: S \rightarrow C$ such that

- (S, σ, τ) is called epi-state system iff σ is epi
- making $\widetilde{\varphi}$ unique

Simulation Proven

Theorem (State-Based Simulation)

A state system (S, σ, τ) that factors $\varphi: N^{?} \mathrm{C} \rightarrow C$ can simulate it.

$$
\{\varphi \mid\}_{N}=\pi_{1} \circ \underbrace{\left\langle\left\langle\pi_{1}, \tau\right\rangle \circ\left\langle\widetilde{\varphi}, \mathrm{id}_{s}\right\rangle \circ\left[\sigma \circ \iota_{1}, \pi_{2}\right]\right.}_{\rho}]_{N}
$$

Proof Idea.

Substitution into characteristic universal property.

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems
Objects (epi-)state systems factoring φ

Morphisms $h: S_{1} \rightarrow S_{2}$ such that

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems
Objects (epi-)state systems factoring φ

Morphisms $h: S_{1} \rightarrow S_{2}$ such that

- Simultaneous coslices σ and δ under C^{∞}
\square

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems

Objects (epi-)state systems factoring φ

Morphisms $h: S_{1} \rightarrow S_{2}$ such that

- Simultaneous coslices σ and δ under C^{∞}
- Initial object (C^{∞}, id, cons) - maximal, syntactic system
- history at face value, no abstraction
- state space too large in practice

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems

Objects (epi-)state systems factoring φ

Morphisms $h: S_{1} \rightarrow S_{2}$ such that

- Simultaneous coslices σ and δ under C^{∞}
- Initial object (C^{∞}, id, cons) - maximal, syntactic system
- history at face value, no abstraction
- state space too large in practice
- Final object (Coimg $(\varphi), \ldots$) - minimal, semantic system
- epi only! (general case open)
- answers question what must be remembered in theory
- quotient structure too hard in practice

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases
(3) Conclusion

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?} C \rightarrow C$ is k-regular iff there is $\widehat{\varphi}: C^{k} \rightarrow C$ and $h \in C^{k}$ such that

$$
\varphi=\widehat{\varphi} \circ \operatorname{take}(k) \circ \operatorname{append}(h)
$$

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?} C \rightarrow C$ is k-regular iff there is $\hat{\varphi}: C^{k} \rightarrow C$ and $h \in C^{k}$ such that

$$
\varphi=\widehat{\varphi} \circ \operatorname{take}(k) \circ \operatorname{append}(h)
$$

Theorem

A FIFO buffer of size k gives rise to a state system factoring any k-regular operation.

$$
\begin{aligned}
S & =C^{k} & \sigma & =\operatorname{take}(k) \circ \operatorname{append}(h) \\
\widetilde{\varphi} & =\widehat{\varphi} & \tau\left(c_{0},\left(c_{1}, \ldots, c_{k}\right)\right) & =\left(c_{0}, \ldots, c_{k-1}\right)
\end{aligned}
$$

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?} C \rightarrow C$ is k-regular iff there is $\hat{\varphi}: C^{k} \rightarrow C$ and $h \in C^{k}$ such that

$$
\varphi=\widehat{\varphi} \circ \operatorname{take}(k) \circ \operatorname{append}(h)
$$

Theorem

A FIFO buffer of size k gives rise to a state system factoring any k-regular operation.

$$
\begin{aligned}
S & =C^{k} & \sigma & =\operatorname{take}(k) \circ \operatorname{append}(h) \\
\widetilde{\varphi} & =\widehat{\varphi} & \tau\left(c_{0},\left(c_{1}, \ldots, c_{k}\right)\right) & =\left(c_{0}, \ldots, c_{k-1}\right)
\end{aligned}
$$

Example (Fibonacci)

$$
C=\mathbb{N} \quad k=2 \quad h=(1,-1) \quad \widehat{\varphi}(a, b)=a+b
$$

Simulation of $\{\mid \varphi\}_{N}=$ fib specifies standard linear algorithm!

(1) Introduction

- General Theory
- Special Case: Linear History
(2) Simulation
- Main Definitions
- Limit Cases
- Average Cases

(3) Conclusion

Summary

- Course-of-value (cov) iteration is a convenient, mostly conservative extension of ordinary iteration
- linear case: discrete system dynamics with path dependence
- Cov iteration (histomorphisms) remembers subarguments and the corresponding results
- conceptually infinitely much
- linear case: all past I/O
- generally difficult to compute in a loop
- State systems are, in a sense, homomorphic models of cov iteration
- reduce to ordinary iteration
- epi \Longrightarrow unique model operation
- category with axis initial \leftrightarrow final
- retrieve standard algorithms for average (regular) case

Bibliography

Uustalu, Tarmo and Varmo Vene (1999). "Primitive (co)recursion and course-of-value (co)iteration, categorically". In: Informatica 10.1, pp. 5-26.

No (Obvious) Final State System Without Epi

No (Obvious) Final State System Without Epi

$K \xrightarrow[\kappa_{2}]{\kappa_{1}} C^{\infty} \xrightarrow{\sigma} S$

No (Obvious) Final State System Without Epi

