State-based Simulation of Linear Course-of-value Iteration

Baltasar Trancón y Widemann

University of Bayreuth, Germany

11th CMCS, Tallinn, Estonia 2012-03-31 / -04-01

1 Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

3 Conclusion

1 Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

3 Conclusion

Preliminaries

Notational Conventions Functor $F : C \to C$ Initial F-algebra $(\mu F, in_F : F\mu F \to \mu F)$ Final F-coalgebra $(\nu F, out_F : \nu F \to F\nu F)$ Lambek's in_F, out_F are isomorphisms

Ordinary (Co)Iteration, Categorically

Catamorphism

Every *F*-algebra $(A, \varphi : FA \to A)$ induces a unique homomorphism $(\!\! \left\{ \varphi \right\}_A : \mu F \to A$ satisfying $(\!\! \left\{ \varphi \right\}_A \circ \operatorname{in}_F = \varphi \circ F(\!\! \left\{ \varphi \right\}_A)$

Anamorphism

Every *F*-coalgebra $(B, \varphi : B \to FB)$ induces a unique homomorphism $\llbracket \varphi \rrbracket_B : B \to \nu F$ satisfying $\operatorname{out}_F \circ \llbracket \varphi \rrbracket_B = F \llbracket \varphi \rrbracket_B \circ \varphi$

Ordinary (Co)Iteration, Categorically

Catamorphism

Every *F*-algebra $(A, \varphi : FA \to A)$ induces a unique homomorphism $(\!\! \left\{ \varphi \right\}_A : \mu F \to A$ satisfying $(\!\! \left\{ \varphi \right\}_A \circ \operatorname{in}_F = \varphi \circ F(\!\! \left\{ \varphi \right\}_A)$

Anamorphism

Every *F*-coalgebra $(B, \varphi : B \to FB)$ induces a unique homomorphism $\llbracket \varphi \rrbracket_B : B \to \nu F$ satisfying $\operatorname{out}_F \circ \llbracket \varphi \rrbracket_B = F\llbracket \varphi \rrbracket_B \circ \varphi$

Course-of-value Iteration, Categorically

Some More Functors

• Add a colouring C to F

$$F_C^{\times} = C \times F(-)$$

• Strange auxiliary definitions (see below for intuition) $F^!C = \nu F_C^{\times}$ $F^!(h: C \to D) = [(h \times id_{F^?C}) \circ out_{F_C^{\times}}]_{F_D^{\times}}$ $F^? = FF^!$

Histomorphism (Uustalu and Vene 1999)

• Every F?-algebra $(C, \varphi : F^{?}C \to C)$ induces a unique homomorphism $\{\varphi\}_{F} : \mu F \to C$ satisfying $\{\varphi\}_{F} \circ \operatorname{in}_{F} = \varphi \circ F[\langle\langle \{ |\varphi| \}_{F}, \operatorname{in}_{F}^{-1} \rangle]]_{F_{C}^{\times}}$ namely $\{ |\varphi| \}_{F} = \pi_{1} \circ \operatorname{out}_{F_{C}^{\times}} \circ (\operatorname{out}_{F_{C}^{\times}}^{-1} \circ \langle \varphi, \operatorname{id}_{F^{?}C} \rangle)]_{F}$

Course-of-value Iteration, Categorically

Some More Functors

• Add a colouring C to F

$$F_C^{\times} = C \times F(-)$$

• Strange auxiliary definitions (see below for intuition) $F^!C = \nu F_C^{\times}$ $F^!(h: C \to D) = [(h \times id_{F^?C}) \circ out_{F_C^{\times}}]_{F_D^{\times}}$ $F^? = FF^!$

Histomorphism (Uustalu and Vene 1999)

• Every F?-algebra $(C, \varphi : F^{?}C \to C)$ induces a unique homomorphism $\{|\varphi|\}_{F} : \mu F \to C$ satisfying $\{|\varphi|\}_{F} \circ in_{F} = \varphi \circ F[\langle\langle \{|\varphi|\}_{F}, in_{F}^{-1}\rangle]]_{F_{C}^{\times}}$ namely $\{|\varphi|\}_{F} = \pi_{1} \circ out_{F_{X}^{\times}} \circ (out_{F_{X}}^{-1} \circ \langle \varphi, id_{F_{X}}\rangle)$

Course-of-value Iteration, Categorically

Some More Functors

• Add a colouring C to F

$$F_C^{\times} = C \times F(-)$$

• Strange auxiliary definitions (see below for intuition) $F^!C = \nu F_C^{\times}$ $F^!(h: C \to D) = [(h \times id_{F^?C}) \circ out_{F_C^{\times}}]_{F_D^{\times}}$ $F^? = FF^!$

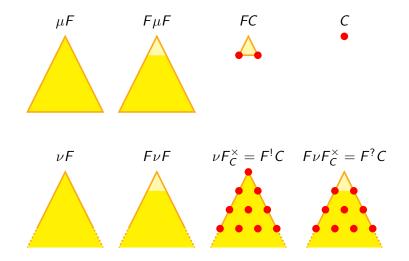
Histomorphism (Uustalu and Vene 1999)

• Every F?-algebra
$$(C, \varphi : F^? C \to C)$$
 induces a unique
homomorphism $\{ |\varphi| \}_F : \mu F \to C$
satisfying $\{ |\varphi| \}_F \circ in_F = \varphi \circ F[[\langle \{ |\varphi| \}_F, in_F^{-1} \rangle]]_{F_C^{\times}}$
namely $\{ |\varphi| \}_F = \pi_1 \circ out_{F_C^{\times}} \circ ([out_{F_C^{\times}}^{-1} \circ \langle \varphi, id_{F^?C} \rangle])_F$

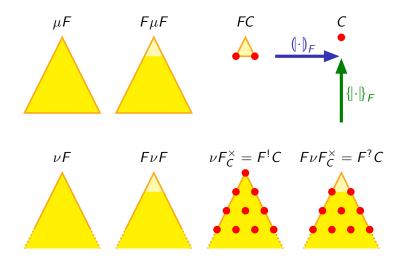
Introduction Simulation Conclusion

General Special

All Those Functorial Data Structures Pictured



All Those Functorial Data Structures Pictured



1 Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

3 Conclusion

Restriction to Simplest of Functors

• Peano functor

$$F = N = 1 + (-) : \mathbf{Set} \to \mathbf{Set}$$

- Data structures simplify
 - $\mu N = \mathbb{N} \qquad \qquad NC = 1 + 0$
 - $\nu N = \mathbb{N}_{\infty}$ $N^! C = C^{+\infty}$ $N^! C \cong C^{\infty}$
- Ordinary iteration simplifies

 $\varphi = [z, s] \implies (\varphi)_N(n) = s^n(z)$

Course-of-value iteration simplifies

$$\left\{\left|\varphi\right\}_{N}(n)\cong\varphi\left(\left\{\left|\varphi\right\}_{N}(n-1),\ldots,\left\{\left|\varphi\right|\right\}_{N}(0)\right)\right\}$$

- Applications beyond Fibonacci & friends
 - Black-box components in software engineering
 - Empirics/statistics of dynamical systems

Restriction to Simplest of Functors

• Peano functor

$${\sf F}={\sf N}=1+(-):{f Set} o{f Set}$$

• Data structures simplify

 $\mu N = \mathbb{N} \qquad \qquad NC = 1 + C$

$$\nu N = \mathbb{N}_{\infty} \qquad N^! C = C^{+\infty} \qquad N^? C \cong C^{\infty}$$

• Ordinary iteration simplifies

 $\varphi = [z, s] \implies (\varphi)_N(n) = s^n(z)$

Course-of-value iteration simplifies

$$\{\{\varphi\}\}_{N}(n) \cong \varphi \Big(\{\{\varphi\}\}_{N}(n-1), \dots, \{\{\varphi\}\}_{N}(0)\Big)$$

- Applications beyond Fibonacci & friends
 - Black-box components in software engineering
 - Empirics/statistics of dynamical systems

Restriction to Simplest of Functors

• Peano functor

$${\sf F}={\sf N}=1+(-):{f Set} o{f Set}$$

• Data structures simplify

$$\mu N = \mathbb{N} \qquad \qquad NC = 1 + C$$

$$\nu N = \mathbb{N}_{\infty}$$
 $N^! C = C^{+\infty}$ $N^? C \cong C^{\infty}$

Ordinary iteration simplifies

$$\varphi = [z, s] \implies (\varphi)_N(n) = s^n(z)$$

Course-of-value iteration simplifies

$$\left\{\left|\varphi\right\}_{N}(n)\cong\varphi\left(\left\{\left|\varphi\right\}_{N}(n-1),\ldots,\left\{\left|\varphi\right|\right\}_{N}(0)\right)\right\}$$

- Applications beyond Fibonacci & friends
 - Black-box components in software engineering
 - Empirics/statistics of dynamical systems

Restriction to Simplest of Functors

• Peano functor

$${\sf F}={\sf N}=1+(-):{f Set} o{f Set}$$

• Data structures simplify

$$\mu N = \mathbb{N} \qquad \qquad NC = 1 + C$$
$$\nu N = \mathbb{N}_{\infty} \qquad N^{!}C = C^{+\infty} \qquad N^{?}C \cong C^{\infty}$$

• Ordinary iteration simplifies

$$\varphi = [z, s] \implies (\varphi)_N(n) = s^n(z)$$

• Course-of-value iteration simplifies

$$\{\varphi\}_{N}(n) \cong \varphi \Big(\{\varphi\}_{N}(n-1), \ldots, \{\varphi\}_{N}(0)\Big)$$

- Applications beyond Fibonacci & friends
 - Black-box components in software engineering
 - Empirics/statistics of dynamical systems

Restriction to Simplest of Functors

• Peano functor

$${\sf F}={\sf N}=1+(-):{f Set} o{f Set}$$

• Data structures simplify

$$\mu N = \mathbb{N} \qquad \qquad NC = 1 + C$$
$$\nu N = \mathbb{N}_{\infty} \qquad N^! C = C^{+\infty} \qquad N^? C \cong C^{\infty}$$

• Ordinary iteration simplifies

$$\varphi = [z, s] \implies (\varphi)_N(n) = s^n(z)$$

• Course-of-value iteration simplifies

$$\{\varphi\}_{N}(n) \cong \varphi \Big(\{\varphi\}_{N}(n-1), \ldots, \{\varphi\}_{N}(0)\Big)$$

- Applications beyond Fibonacci & friends
 - Black-box components in software engineering
 - Empirics/statistics of dynamical systems

Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

3 Conclusion

Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

3 Conclusion

Ordinary *N*-iteration as Loop Program

```
procedure iter(z, s, n):
    1 var state := z;
    2 for i := 1 to n do
    3 state := s(state)
    4 end;
    5 return state.
```

Evaluation

- Line 3 takes advantage of results needed only once
 - valid for ordinary iteration
 - invalid for course-of-value iteration
- COV iteration must remember more of input/output
 - finitely much? how much? how organized?
- General theory desirable

Ordinary *N*-iteration as Loop Program

```
procedure iter(z, s, n):
    1 var state := z;
    2 for i := 1 to n do
    3 state := s(state)
    4 end;
    5 return state.
```

Evaluation

- Line 3 takes advantage of results needed only once
 - valid for ordinary iteration
 - invalid for course-of-value iteration
- COV iteration must remember more of input/output
 - finitely much? how much? how organized?
- General theory desirable

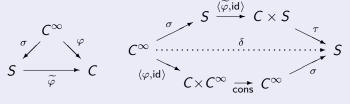
Simulation Defined

- A C-state system is a triple (S, σ, τ) with state space S abstraction σ : N[?]C → S transition τ : C × S → S
- State system (S, σ, τ) factors $\varphi : N^{?}C \to C$ iff there is $\widetilde{\varphi} : S \to C$ such that

• (S, σ, τ) is called **epi-state system** iff σ is epi - making $\tilde{\varphi}$ unique

Simulation Defined

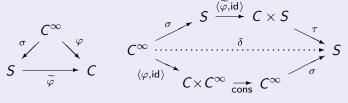
- A C-state system is a triple (S, σ, τ) with state space S
 abstraction σ : N[?]C → S
 transition τ : C × S → S
- State system (S, σ, τ) factors $\varphi : N^{?}C \to C$ iff there is $\widetilde{\varphi} : S \to C$ such that



• (S, σ, τ) is called **epi-state system** iff σ is epi - making $\widetilde{\varphi}$ unique

Simulation Defined

- A C-state system is a triple (S, σ, τ) with state space S
 abstraction σ : N[?]C → S
 transition τ : C × S → S
- State system (S, σ, τ) factors $\varphi : N^{?}C \to C$ iff there is $\widetilde{\varphi} : S \to C$ such that



• (S, σ, τ) is called **epi-state system** iff σ is epi - making $\tilde{\varphi}$ unique

Simulation Proven

Theorem (State-Based Simulation)

A state system (S, σ, τ) that factors $\varphi : N^{?}C \to C$ can simulate it. $\{|\varphi|\}_{N} = \pi_{1} \circ (\underbrace{\langle \pi_{1}, \tau \rangle \circ \langle \widetilde{\varphi}, \mathrm{id}_{S} \rangle \circ [\sigma \circ \iota_{1}, \pi_{2}]}_{\rho})_{N}$

Proof Idea.

Substitution into characteristic universal property.

Introduction

- General Theory
- Special Case: Linear History

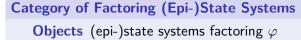
Simulation

 Main Definitions
 Limit Cases

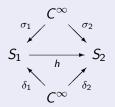
Average Cases

3 Conclusion

A Whole Category of State Systems



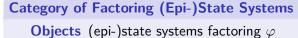
Morphisms $h: S_1 \rightarrow S_2$ such that



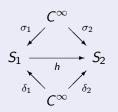
- Simultaneous coslices σ and δ under ${\it C}^\infty$
- Initial object (C^{∞} , id, cons) maximal, syntactic system
 - history at face value, no abstraction
 - state space too large in practice
- Final object (Coimg $(\varphi), \dots)$ minimal, semantic system
 - epi only! (general case open)
 - answers question what must be remembered in theory
 - quotient structure too hard in practice

Introduction Simulation Conclusion

A Whole Category of State Systems



Morphisms $h: S_1 \rightarrow S_2$ such that



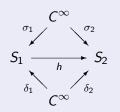
• Simultaneous coslices σ and δ under ${\it C}^\infty$

- ullet Initial object $(\mathit{C}^\infty,\mathsf{id},\mathsf{cons})$ maximal, syntactic system
 - history at face value, no abstraction
 - state space too large in practice
- Final object (Coimg $(\varphi), \dots)$ minimal, semantic system
 - epi only! (general case open)
 - answers question what must be remembered in theory
 - quotient structure too hard in practice

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems Objects (epi-)state systems factoring φ

Morphisms $h: S_1 \rightarrow S_2$ such that

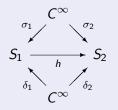


- Simultaneous coslices σ and δ under ${\it C}^\infty$
- Initial object (C^{∞} , id, cons) maximal, syntactic system
 - history at face value, no abstraction
 - state space too large in practice
- Final object (Coimg $(\varphi), \dots)$ minimal, semantic system
 - epi only! (general case open)
 - answers question what must be remembered in theory
 - quotient structure too hard in practice

A Whole Category of State Systems

Category of Factoring (Epi-)State Systems Objects (epi-)state systems factoring φ

Morphisms $h: S_1 \to S_2$ such that



- Simultaneous coslices σ and δ under \mathcal{C}^∞
- Initial object $(C^{\infty}, id, cons)$ maximal, syntactic system
 - history at face value, no abstraction
 - state space too large in practice
- Final object $(Coimg(\varphi), ...)$ minimal, semantic system
 - epi only! (general case open)
 - answers question what must be remembered in theory
 - quotient structure too hard in practice

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?}C \to C$ is k-regular iff there is $\widehat{\varphi}: C^{k} \to C$ and $h \in C^{k}$ such that

 $\varphi = \widehat{\varphi} \circ \mathsf{take}(k) \circ \mathsf{append}(h)$

Theorem

A FIFO buffer of size k gives rise to a state system factoring any k-regular operation.

 $S = C^{k} \qquad \sigma = \mathsf{take}(k) \circ \mathsf{append}(h)$ $\widetilde{\varphi} = \widehat{\varphi} \qquad \tau(c_{0}, (c_{1}, \dots, c_{k})) = (c_{0}, \dots, c_{k-1})$

Example (Fibonacci)

 $C = \mathbb{N}$ k = 2 h = (1, -1) $\widehat{\varphi}(a, b) = a + b$ Simulation of $\{|\varphi|\}_N = \text{fib specifies standard linear algorithm}!$

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?}C \to C$ is k-regular iff there is $\widehat{\varphi}: C^{k} \to C$ and $h \in C^{k}$ such that

$$arphi = \widehat{arphi} \circ \mathsf{take}(k) \circ \mathsf{append}(h)$$

Theorem

A FIFO buffer of size k gives rise to a state system factoring any k-regular operation.

$$S = C^k$$
 $\sigma = take(k) \circ append(h)$
 $\widetilde{\varphi} = \widehat{\varphi}$ $\tau(c_0, (c_1, \dots, c_k)) = (c_0, \dots, c_{k-1})$

Example (Fibonacci)

 $C = \mathbb{N}$ k = 2 h = (1, -1) $\widehat{\varphi}(a, b) = a + b$ Simulation of $\{ |\varphi| \}_N =$ fib specifies standard linear algorithm!

Universal Implementation for Bounded Memory

Definition (Regular Course-of-value Iteration)

Operation $\varphi: N^{?}C \to C$ is k-regular iff there is $\widehat{\varphi}: C^{k} \to C$ and $h \in C^{k}$ such that

$$arphi = \widehat{arphi} \circ \mathsf{take}(k) \circ \mathsf{append}(h)$$

Theorem

A FIFO buffer of size k gives rise to a state system factoring any k-regular operation.

$$S = C^k$$
 $\sigma = take(k) \circ append(h)$
 $\widetilde{\varphi} = \widehat{\varphi}$ $\tau(c_0, (c_1, \dots, c_k)) = (c_0, \dots, c_{k-1})$

Example (Fibonacci)

$$C = \mathbb{N}$$
 $k = 2$ $h = (1, -1)$ $\widehat{\varphi}(a, b) = a + b$

Simulation of $\{|\varphi|\}_N =$ fib specifies standard linear algorithm!

Introduction

- General Theory
- Special Case: Linear History

2 Simulation

- Main Definitions
- Limit Cases
- Average Cases

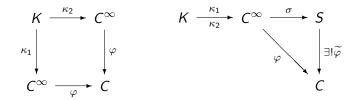
3 Conclusion

Summary

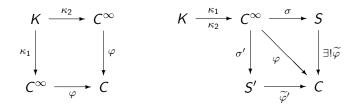
- Course-of-value (cov) iteration is a convenient, mostly conservative extension of ordinary iteration
 - linear case: discrete system dynamics with path dependence
- Cov iteration (histomorphisms) remembers subarguments *and* the corresponding results
 - conceptually infinitely much
 - linear case: all past I/O
 - generally difficult to compute in a loop
- State systems are, in a sense, homomorphic models of cov iteration
 - reduce to ordinary iteration
 - epi \Longrightarrow unique model operation
 - category with axis initial $\leftrightarrow \mathsf{final}$
 - retrieve standard algorithms for average (regular) case

Uustalu, Tarmo and Varmo Vene (1999). "Primitive (co)recursion and course-of-value (co)iteration, categorically". In: *Informatica* 10.1, pp. 5–26.

No (Obvious) Final State System Without Epi



No (Obvious) Final State System Without Epi



No (Obvious) Final State System Without Epi

