A coalgebraic classification of power series

Marcello Bonsangue (with Joost Winter and Jan Rutten)

Leiden Institute of Advanced Computer Science

Background

Kleene 1956:
Finite automata are regular expressions

$$
b^{*} a(a+b)^{*}
$$

A coalgebraic classification of power series

Background

Schützenberger 1961:

Languages are non commutative series and operations on regular expressions are rationals.
$\mathrm{L}=\{\varepsilon, \mathrm{ab}, \mathrm{aab}\}$
$1+a b+a a b$
Addition = union
Subtraction = take the coefficients from a field
Product = concatenation
Division = star

$$
a^{*}=1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}
$$

Background

Chomsky, Schützenberger 1963:
Algebraic system of equations have power series as solutions.

$$
S \rightarrow S S|a S b| b S a \quad\left\{\begin{array}{l}
x=x x+a y+b z \\
y=y b \\
z=z a
\end{array}\right.
$$

Background

Fliess1971:
Solutions of algebraic equations in one variable are algebraic streams.

$$
1-(\mathrm{X}+2) \sigma+4 \mathrm{X} \sigma^{2}=0
$$

Background

Rutten1999:

Streams and power series are solutions of behavioral differential equations.

$$
\begin{aligned}
& \mathbf{o}(\mathrm{x})=0 \\
& \mathrm{x}^{\prime}=\mathrm{x}+1
\end{aligned}
$$

$$
x=012234567 \ldots
$$

Starting point

Bonchi, Boreale, Milius, Rot, Rutten, Silva, Winter

Finite state power series

Moore automata

$$
X \rightarrow S \times X^{A}
$$

$$
\begin{aligned}
& x \xrightarrow{a} y \xrightarrow{b} x \rightarrow s \\
& x \xrightarrow{a} y \xrightarrow{a} y \xrightarrow{a} y \rightarrow t
\end{aligned}
$$

$$
S^{A^{*}}
$$

Moore automata, coalgebraically

Behavioral equation

$$
\begin{aligned}
& \mathbf{o}(\mathrm{x})=\mathbf{s} \\
& x_{a}=y
\end{aligned}
$$

$$
f(x)=\langle s, \phi>\quad \text { and } \quad \phi(a)=y
$$

(Formal) power series

Semirings

 (S,+,0, $\cdot, 1$)Power series

$$
A^{*} \rightarrow S=S\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$\sigma=\mathrm{s}_{0}+\mathrm{s}_{1} \mathrm{a}+\mathrm{s}_{2} \mathrm{~b}+\mathrm{s}_{3} \mathrm{a}^{2}+\mathrm{s}_{4} \mathrm{ab}+\mathrm{s}_{5} \mathrm{ba}+\ldots=\sum_{\mathrm{w} \in \mathrm{A}^{*}}(\sigma, \mathrm{w}) \mathrm{w}$

Polynomials

$$
\mathrm{A}^{*} \rightarrow_{\text {fs }} S=S\left\langle\mathrm{~A}^{*}\right\rangle
$$

Examples

$(B, \vee, 0, \wedge, 1)$
$\left(\mathrm{F}_{2},+, 0, \cdot, 1\right)$
(N, +, 0, $\cdot, 1$)
(R,+,0, $\cdot, 1$)
$\left(\mathrm{R}^{\infty}, \min , \infty,+, 0\right)$

Boolean semiring

Binary field (arithmetic modulo 2)

Natural numbers

Real numbers

Tropical semiring

Finite state power series

Finite

Behaviour of finite Moore automata

Example

Behavioral equations

$$
\begin{array}{ll}
\mathbf{o}(x)=0.2 & \mathbf{o}(y)=0.8 \\
x_{a}=y & y_{a}=y \\
x_{b}=x & y_{b}=x
\end{array}
$$

Real numbers

$$
[[x]](\varepsilon)=0.2 \quad[[x]](w b)=0.8 \quad[[x]](w a)=0.8
$$

$$
[[x]]=0.2+0.8 a+0.2 b+0.8 a^{2}+0.2 a b+0.8 b a+0.2 b^{2}+
$$

Properties of $S^{f s}\left\langle\left\langle\mathrm{~A}^{*}\right\rangle\right\rangle$

- Decidable bisimulation

Implemented in CIRC [B.,Caltais, Goriac, Lucanu, Rutten,Siva 10]

- Several algorithms for minimization

Partition-refinement [Bonchi et al.]
Brzozowski minimization: [Bonchi,B., Rutten, Silva 09] + Hansen

■ Complete axiomatization [Silva,B., Rutten 09]

Some closure properties of $S^{f s}\left\langle\left\langle\mathrm{~A}^{*}\right\rangle\right\rangle$

$$
\begin{array}{ll}
\mathbf{O}(x)=s_{1} & \mathbf{O}(y)=s_{2} \\
x_{a}=x_{1} & y_{a}=y_{1} \\
x_{b}=\ldots & y_{b}=\ldots
\end{array}
$$

Sum of x and y
$\mathbf{O}(\underline{x+y})=s_{1}+s_{2}$
$\underline{x}^{+y_{a}}=\underline{x}_{1}+\underline{y}_{1}$
$x^{x}+y_{b}=\ldots$

Product of x and y

$$
\begin{aligned}
& \mathbf{o}(\underline{x \otimes y})=s_{1} \cdot s_{2} \\
& \underline{x \otimes y_{a}}=\underline{x}_{1} \otimes y_{1} \\
& \underline{x \otimes y_{b}}=\ldots
\end{aligned}
$$

Rational power series

Weighted automata

TX $\quad \mathrm{t}::=\mathrm{x}|\mathrm{s} \cdot \mathrm{t}| \mathrm{t}+\mathrm{t}$

Distributive law induced by $\Sigma \mathrm{F} \rightarrow \mathrm{FT}$

$$
\begin{aligned}
& s_{1} \cdot\left(s_{2}, \phi\right) \longmapsto\left(\mathrm{s}_{1} \cdot \mathrm{~s}_{2}, \lambda \mathrm{a} \cdot \mathrm{~s}_{1} \cdot \phi(\mathrm{a})\right) \\
& \left(\mathrm{s}_{1}, \phi_{1}\right)+\left(\mathrm{s}_{2}, \phi_{2}\right) \longmapsto\left(\mathrm{s}_{1}+\mathrm{s}_{2}, \lambda \mathrm{a} \cdot \phi_{1}(\mathrm{a})+\phi_{2}(\mathrm{a})\right)
\end{aligned}
$$

Weighted automata, classically

$$
L(x) \in N\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$$
\left.\begin{array}{ll}
x \xrightarrow{1, a} x \xrightarrow{2, a} y \xrightarrow{4, b} x \rightarrow 1 \\
x \xrightarrow{2, a} x \xrightarrow{3, a} y \xrightarrow{4, b} x \rightarrow 1
\end{array}\right\rangle L(x)(a a b)=8+24=32, ~\left(\begin{array}{ll}
\\
x \xrightarrow{2, a} x \xrightarrow{4, b} y \rightarrow 1 & L(x)(a b)=8
\end{array}\right.
$$

Two examples ...

$$
\begin{array}{ll}
\mathbf{0}(\underline{s})=s & \mathbf{o}(\underline{a})=0 \\
\underline{s}_{a}=0 \cdot \underline{s} & \underline{a}_{a}=\underline{1} \\
\underline{s}_{b}=0 \cdot \underline{s} & \underline{a}_{b}=\underline{0} \\
\hline
\end{array}
$$

$$
s \in S, a \in A
$$

$$
[[\underline{s}]]=s+0 a+0 b+\ldots \quad[[\underline{a}]]=0+1 a+0 b+\ldots
$$

... and their Moore automata

TX

$$
\begin{array}{ll}
\mathbf{0}(\underline{s})=s & \mathbf{o}(\underline{a})=0 \\
\underline{s}_{a}=0 \cdot \underline{s} & \underline{a}_{a}=1 \\
\underline{s}_{b}=0 \cdot \underline{s} & \underline{a}_{b}=\underline{0} \\
\hline
\end{array}
$$

A larger example ...

$$
\begin{array}{ll}
\mathbf{o}(x)=1 & \mathbf{o}(\mathrm{y})=2 \\
\mathrm{x}_{\mathrm{a}}=\mathrm{x} & y_{\mathrm{a}}=2 \cdot y \\
\mathrm{x}_{\mathrm{b}}=2 \cdot x+3 \cdot y & y_{b}=0 \cdot y \\
\hline
\end{array}
$$

$[[x]]=1+1 a+8 b+8 a b+14 b a+\ldots$

... and its Moore automaton

$$
\begin{array}{ll}
\mathbf{o}(\mathrm{x})=1 & \mathbf{o}(\mathrm{y})=2 \\
\mathrm{x}_{\mathrm{a}}=\mathrm{x} & y_{a}=2 \cdot y \\
\mathrm{x}_{\mathrm{b}}=2 \cdot x+3 \cdot y & y_{b}=0 \cdot y \\
\hline
\end{array}
$$

Few equalities

- (TX, $+\underline{0}$) is a commutative monoid

$$
\begin{array}{ll}
\left(s_{1}+s_{2}\right) \cdot t \sim s_{1} \cdot t+s_{2} \cdot t & s \cdot\left(t_{1}+t_{2}\right) \sim s \cdot t_{1}+s \cdot t_{2} \\
0 \cdot t \sim \underline{0} & s \cdot \underline{0} \sim \underline{0} \\
1 \cdot t \sim t & \left(s_{1} \cdot s_{2}\right) \cdot t \sim s_{1} \cdot\left(s_{2} \cdot t\right)
\end{array}
$$

Rational power series

TX $\quad t::=x|s \cdot t| t+t$

Properties of $S^{\text {rat }}\left\langle\left\langle\mathrm{A}^{*}\right\rangle\right\rangle$

[Sakarovitch 03]
Decidable equivalence for many semirings [Ésik,Maletti 10]
\square Yes: Natural numbers, any subsemiring of a field
\square No: tropical semiring, regular languages
Complete axiomatization for many semirings
\square For regular languages [Krob 90][Kozen 94]
\square For proper semirings [Ésik, Kuich 12]
\square Adding equations to those of bisimulation [B.,Milius,Silva 12]
Several minimization algorithms
[Schützenberger 61], [Berstel,Reutenauer 88], [Sakarovitch 06],
[Mohri 09],[Bonchi,B.,Boreale, Rutten,Silva 11]

Context free power series

Context free behavioral equations

TX $\quad t::=x|s| t+t \mid t \cdot t$
SXTX

Distributive law induced by Σ (Fxid) $\rightarrow \mathrm{FT}$

```
\(\mathrm{s} \longmapsto(\mathrm{s}, \lambda \mathrm{a} .0, \mathrm{~s})\)
```

$\left(\mathrm{s}_{1}, \phi_{1}, v_{1}\right) \cdot\left(\mathrm{s}_{2}, \phi_{2}, v_{2}\right) \longmapsto\left(\mathrm{s}_{1} \cdot \mathrm{~s}_{2}, \lambda \mathrm{a} \cdot \phi_{1}(\mathrm{a}) \cdot v_{2}+\mathrm{s}_{1} \cdot \phi_{2}(\mathrm{a})\right)$

Example

Dyck language

$$
\begin{array}{lll}
0(x)=1 & \underline{o}(\underline{a})=0 & \underline{o}(\underline{b})=0 \\
x_{a}=x \cdot \underline{a} \cdot x & \underline{a}_{a}=1 & \underline{b}_{a}=0 \\
x_{b}=x \cdot \underline{b} \cdot x & \underline{a}_{b}=0 & \underline{b}_{b}=1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& a_{b} \\
& 1
\end{aligned}
$$

Context free power series

TX $\quad t::=x|s| t+t \mid t \cdot t$

$(\mathrm{TX},+, 0, \cdot, 1)$ is a semiring

- (TX, +, 0) is a commutative monoid
- (TX, $\cdot, 1$) is a monoid

Distributivity
$\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \cdot \mathrm{t}_{3} \sim \mathrm{t}_{1} \cdot \mathrm{t}_{3}+\mathrm{t}_{2} \cdot \mathrm{t}_{3} \quad \mathrm{t}_{1} \cdot\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right) \sim \mathrm{t}_{1} \cdot \mathrm{t}_{2}+\mathrm{t}_{1} \cdot \mathrm{t}_{3}$

Annihilation
$0 . t \sim 0$
$t \cdot 0 \sim 0$

A simple closure property

$$
\text { TX } \quad t::=x|s| t+t \mid t \cdot t
$$

S a field

Inverse of x (if $s \neq 0$)

$$
\begin{array}{ll}
\hline \mathbf{o}(x)=s & \mathbf{o}(\mathrm{y})=\ldots \\
x_{a}=t_{1} & y_{a}=\ldots \\
x_{b}=t_{2} & \ldots
\end{array}
$$

$$
\begin{aligned}
& \mathbf{O}\left(\frac{1}{x}\right)=s^{-1} \\
& \left(\frac{1}{x}\right)_{a}=-s^{-1} \cdot t_{1} \cdot \frac{1}{x} \\
& \left(\frac{1}{x}\right)_{b}=-s^{-1} \cdot t_{2} \cdot \frac{1}{x}
\end{aligned}
$$

Lemma: $\quad x \cdot \frac{1}{x}=1$

Part IV

Algebraic power series

S-algebraic systems

Finite

$$
x_{i}=p_{i} \quad p_{i} \in S\left\langle(A+X)^{*}\right\rangle \quad x_{i} \in X
$$

$$
\begin{aligned}
& x=2 a x b+b y \\
& y=b y+b
\end{aligned}
$$

Proper $=$ in each p_{i} occurs

1. no constant from S
2. no single variable from X

Every proper S-algebraic system has a solution in S $\left\langle\left\langle\mathrm{A}^{*}\right\rangle\right\rangle$

no solution in $\mathrm{N}\left\langle\left\langle\mathrm{A}^{*}\right\rangle\right\rangle$
two solutions, 0 and 1

S-algebraic power series
 $S^{A l g}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

$$
\sigma=s_{0}+\underbrace{\underbrace{}_{1} a+s_{2} b+\mathrm{s}_{3} \mathrm{a}^{2}+\mathrm{s}_{4} \mathrm{ab}+\mathrm{s}_{5} \mathrm{ba}+\ldots\rangle}_{\begin{array}{c}
\text { Strong solution of } a \\
\text { proper S-algebraic system }
\end{array}}
$$

$$
S^{A l g}\left\langle\left\langle A^{*}\right\rangle\right\rangle=S^{c t}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$$
\begin{aligned}
& x=2 a x b+b y \\
& y=b y+b
\end{aligned}
$$

$$
\begin{array}{|lll}
\hline \mathbf{o}(\underline{x})=s_{0} & \mathbf{o}(\underline{y})=0 & \mathbf{o}(\underline{b})=0 \\
\underline{x}_{a}=2 \cdot x \cdot \underline{b} & \underline{y}_{a}=0 & \underline{b}_{a}=0 \\
\underline{x}_{b}=y & \underline{y}_{b}=\underline{y}+1 & \underline{b}_{b}=1 \\
\hline
\end{array}
$$

Using Greibach normal form

$$
\begin{aligned}
& \underline{x}=a(y+2)+3 b \\
& \underline{y}=4 a(\underline{x}+1)
\end{aligned}
$$

$$
\begin{array}{ll}
\hline o(x)=1 & o(y)=2 \\
x_{a}=y & y_{a}=4 x \\
x_{b}=3 & y_{b}=0 \\
\hline
\end{array}
$$

$S^{c t}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is closed under reverse

Algebraic streams

Algebraic streams over F

$$
A=\{X\}
$$

F is a field

$$
\mathrm{F}\left\langle\left\langle\mathrm{~A}^{*}\right\rangle\right\rangle \cong \mathrm{N} \rightarrow \mathrm{~F} \quad \text { i.e. streams }
$$

A stream $\sigma \in F\left\langle A^{*}\right\rangle$ is algebraic if there are non-null polynomials $p_{i} \in F\left\langle A^{*}\right\rangle$ such that

$$
p_{0}+p_{1} \sigma+p_{2} \sigma^{2}+\ldots+p_{n} \sigma^{n}=0
$$

Algebraic streams are context free

Paper folding stream

$$
\sigma=11001110001111000 \ldots
$$

$1-\sigma+X \sigma^{2}=0$
$\longrightarrow-\sigma^{\prime}+\sigma^{2}=0 \quad$ Taking derivative
$\Longrightarrow \sigma^{\prime}=\sigma^{2}$

Behavioral equation

$$
\begin{aligned}
& \mathbf{o}(\sigma)=1 \\
& \sigma^{\prime}=\sigma \cdot \sigma
\end{aligned}
$$

Algebraic streams are context free

The Thue-Morse stream

$$
\left.\sigma=0 \begin{array}{llllllllllllllll}
& 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

$$
\mathrm{X}+\left(1+\mathrm{X}^{2}\right) \sigma+\left(1+\mathrm{X}+\mathrm{X}^{2}+\mathrm{X}^{3}\right) \sigma^{2}=0
$$

Behavioral equations

$$
\begin{array}{|lll}
\mathbf{O}(x)=0 & \mathbf{o}(y)=1 & \mathbf{o}(z)=1 \\
x^{\prime}=y & y^{\prime}=z & z^{\prime}=z+y+x \cdot x \cdot w
\end{array}
$$

F-algebraic $=F^{d t}\left\langle\left\{\{X\}^{*}\right\rangle\right\rangle$

In any field F and a singleton alphabet A, if a well behaved stream is algebraic then is context-free

[BRW 12]

For a perfect field F and a singleton alphabet A, a stream is algebraic
[Fliess 71]

Automatic streams

p-Automatic streams

The n-th term of the stream is the output of the state when the automata input is the digits of n in some fixed base p
[Allouche, Sallit 03]

Example: Thue-Morse again ...

F_{2}

Input	binary	output
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0

Input	binary	output
6	101	
7	111	
8	1000	
9	1001	1
10	1010	0
11	1011	

p-automatic are context free

For any prime number p, a stream is
p -automatic
if and only if
is algebraic over F_{p}
[Berstel,Retenauer 11]

FS behavioral equations

The big picture

Rat behavioral equations

Weighted CFG in GNF = CF behavioral equations

Algebraic over a field

- p prime

p -automatic streams
A coalgebraic classification of power series
4/3/2012
Slide 47

Why?

- Clarifying the definitions

■ Importance of weighted systems

■ Towards the understanding of treatable subsets of the final coalgebra

■ Algorithmically interesting

