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Two equivalent definitions of weak bisimulation for LTS

Definition

Let Σ be a set of labels and let τ ∈ Σ be a silent transition label.
Let 〈A,Σ,→〉 be a labelled transition system. A relation
R ⊆ A× A is a weak bisimulation if it satisfies the following
condition. If (a, b) ∈ R then

a τ
∗
→ ◦ σ→ ◦ τ

∗
→ a′ if and only if b τ

∗
→ ◦ σ→ ◦ τ

∗
→ b′ and (a′, b′) ∈ R

for σ 6= τ,

a τ
∗
→ a′ if and only if b τ

∗
→ b′ and (a′, b′) ∈ R for σ = τ.
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R ⊆ A× A is a weak bisimulation if it satisfies the following
condition. If (a, b) ∈ R then

for σ 6= τ if a σ→ a′ then b τ
∗
→ ◦ σ→ ◦ τ

∗
→ b′ and (a′, b′) ∈ R,

for σ = τ if a τ→ a′ then b τ
∗
→ b′ and (a′, b′) ∈ R,

for σ 6= τ if b σ→ b′′ then a τ
∗
→ ◦ σ→ ◦ τ

∗
→ a′′ and (a′′, b′′) ∈ R,

for σ = τ if b τ→ b′′ then a τ
∗
→ a′′ and (a′′, b′′) ∈ R.
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Ordered functors

Let Pos be the category of all posets and monotonic mappings.
Note that there is a forgetful functor U : Pos→ Set assigning to
each poset (X ,¬) the underlying set X and to each monotonic
map f : (X ,¬)→ (Y ,¬) the map f : X → Y .

Definition

An ordered functor is a functor F : Set→ Pos.

This notion is nothing new!

To any ordered functor F we assign
the composition F̄ = U ◦ F . We identify the ordered functor
F : Set→ Pos with F̄ = U ◦ F : Set→ Set and write F to denote
both F and F̄ .
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Ordered functors

Example

The powerset endofunctor P : Set→ Set can be considered an ordered
functor P : Set→ Pos which assigns to any set X the poset (P(X ),⊆)

and to any map f : X → Y the order preserving map P(f ).

Example

Fix a nonempty Σ. Define GΣ : Set→ Set by:

GΣX := {µ : Σ× P(X )→ [0, 1]}

. For any set GΣX introduce the order ¬GΣX given on GΣX as follows:

µ1 ¬GΣX µ2 ⇐⇒ µ1(σ,X ′) ¬ µ2(σ,X ′) for (σ,X ′) ∈ Σ× P(X ).
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Ordered functors

Note that if we consider an ordered functor F : Set→ Pos then we
may introduce for any X ,Y ∈ Set an order on the set
Hom(X ,FY ) as follows. For f , g ∈ Hom(X ,FY ) put

f ¬ g def⇐⇒ f (x) ¬FY g(x) for any x ∈ X

Given f : X → Y , α : Y → FZ , g : Z → U and β : Y → FU an
inequality Fg ◦ α ¬ β ◦ f will be denoted by a diagram on the left
and an equality Fg ◦α = β ◦ f will be denoted by a diagram on the
right:

X

¬

f //

α

��

Y

β

��

X

=

f //

α

��

Y

β

��
FZ

Fg
// FU FZ

Fg
// FU
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Coalgebraic operators and coalgebraic saturators

Let C be full subcategory of the category of F -coalgebras and
homomorphisms between them which is closed under taking
inverse images of homomorphisms.

Definition

A coalgebraic operator s with respect to a class C is a functor
s : C→ SetF such that the following diagram commutes:

C
s //

U !!CC
CC

CC
CC

SetF

U
��

Set
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Coalgebraic operators and coalgebraic saturators

Let C be full subcategory of the category of F -coalgebras and
homomorphisms between them which is closed under taking
inverse images of homomorphisms.

Definition

A coalgebraic saturator s with respect to a class C is a coalgebraic
operator s : C→ SetF for which

A
¬α

��

f // B
sβ ⇐⇒

��

A
¬sα

��

f // B
sβ

��
FA

Ff
// FB FA

Ff
// FB
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Lemma

Let s : C→ SetF be an operator w.r.t. a full subcategory C of SetF
and additionally let s(C) ⊆ C. Then s is a saturator if and only if it
satisfies the following three properties:

α ¬ sα for any coalgebra 〈A, α〉 ∈ C (extensivity),

s ◦ s = s (idempotency),

if Ff ◦ α ¬ β ◦ f then Ff ◦ sα ¬ sβ ◦ f for any f : X → Y
(monotonicity):

A
¬α ��

f // B
β =⇒��

A
¬sα ��

f // B
sβ��

FA
Ff

// FB FA
Ff

// FB
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Coalgebraic saturators: examples

Example

Let τ ∈ Σ be a silent transition label. For a coalgebra structure
α : A→ P(Σ× A) we define its saturation sα : A→ P(Σ× A) as
follows. For an element a ∈ A put

sα(a) :=

α(a) ∪ {(τ, a′) | a τ
∗
→ a′} ∪ {(σ, a′) | a τ

∗
→ ◦ σ→ ◦ τ

∗
→ a′ for σ 6= τ}

s is a coalgebraic saturator with respect to the class of all
P(Σ× (−))-coalgebras.
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Two approaches to defining weak bisimulation

From now on we will assume that 〈A, α〉 and 〈B, β〉 are members
of C.

Definition

A relation R ⊆ A× B is said to be a saturated weak bisimulation
between 〈A, α〉 and 〈B, β〉 provided that there is a structure
γ : R → FR for which the following diagram commutes:

A
=sα ��

R
=γ ��

π1oo π2 // B
sβ��

FA FR
Fπ1
oo

Fπ2
// FB
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Two approaches to defining weak bisimulation

Definition

A relation R ⊆ A× B is called a weak bisimilation provided that
there is a structure γ1 : R → FR and a structure γ2 : R → FR for
which:

α ◦ π1 = Fπ1 ◦ γ1 and Fπ2 ◦ γ1 ¬ sβ ◦ π2,
β ◦ π2 = Fπ2 ◦ γ2 and Fπ1 ◦ γ2 ¬ sα ◦ π1.

A
=α

��

R
γ1

��

π1oo π2 //

¬
B
sβ

��

A
­sα

��

R
γ2

��

π1oo π2 //

=

B
β

��
FA FR
Fπ1
oo

Fπ2
// FB FA FR

Fπ1
oo

Fπ2
// FB
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Examples

Example

For LTS’s definition of a saturated weak bisimulation conicides
with the first definition presented at the beginning. The definition
of weak bisimulation from previous slide is exactly the 2nd
definition of weak bisimulation presented at the beginning of this
presentation.
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Weak bisimulation

Theorem

Let R ⊆ A× B be a standard bisimulation between 〈A, α〉 and
〈B, β〉. Then R is a weak bisimilation between 〈A, α〉 and 〈B, β〉.

Theorem

If a relation R ⊆ A× B is a weak bisimulation between 〈A, α〉 and
〈B, β〉 then R−1 = {(b, a) | (a, b) ∈ R} is a weak bisimulation
between 〈B, β〉 and 〈A, α〉.
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Weak bisimulation

Theorem

If all members of a family {Ri}i∈I of relations Ri ⊆ A× B are
weak bisimulations between 〈A, α〉 and 〈B, β〉 then

⋃
i∈I Ri is also

a weak bisimulation between 〈A, α〉 and 〈B, β〉.

Theorem

Let F : Set→ Set weakly preserve pullbacks and let 〈A, α〉, 〈B, β〉
and 〈C , δ〉 be F -coalgebras from the class C. Let R1 be a weak
bisimulation between 〈A, α〉 and 〈B, β〉 and R2 be a weak
bisimulation between 〈B, β〉 and 〈C , δ〉. Then

R1 ◦ R2 = {(a, c) | ∃b ∈ B s.t. (a, b) ∈ R1 and (b, c) ∈ R2}

is a weak bisimulation between 〈A, α〉 and 〈C , δ〉.
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Weak bisimulation

Corollary

If F : Set→ Set weakly preserves pullbacks then the greatest weak
bisimulation on a coalgebra 〈A, α〉 is an equivalence relation.
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Saturated weak bisimulation

Theorem

Let R ⊆ A× B be a standard bisimulation between 〈A, α〉 and
〈B, β〉. Then R is also a saturated weak bisimilation between
〈A, α〉 and 〈B, β〉.

Theorem

A saturated weak bisimulation between 〈A, α〉 and 〈B, β〉 is
defined as a standard bisimulation between saturated models
〈A, sα〉 and 〈B, sβ〉. Hence, any property true for standard
bisimulation is also true for a saturated weak bisimulation.
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Weak and saturated weak bisimulation

Theorem

Let F : Set→ Set weakly preserve kernel pairs and let R ⊆ A× A be an
equivalence relation which is a weak bisimulation on 〈A, α〉. Then R is a
saturated weak bisimulation on 〈A, α〉.

We say that two elements a, b ∈ A are weakly bisimilar, and write a ≈w b
if there is a weak bisimulation R ⊆ A× A on 〈A, α〉 for which (a, b) ∈ R.
We say that a and b are saturated weakly bisimilar, and write a ≈sw b, if
there is a saturated weak bisimulation R on 〈A, α〉 containing (a, b).

Corollary

Let F : Set→ Set be a functor weakly preserving pullbacks. Then the
relations ≈w and ≈sw are equivalence relations and

≈w ⊆ ≈sw .
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Saturated weak and weak bisimulation

Definition

We say that an ordered functor F : Set→ Pos preserves downsets
provided that for any f : X → Y and any ~x ∈ FX the following
equality holds:

Ff (~x ↓) = Ff ({~x ′ ∈ FX | ~x ′ ¬ ~x}) = Ff (~x) ↓= {~y ∈ FY | ~y ¬ Ff (~x)}.

Example

The powerset functor P preserves downsets.
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Saturated weak and weak bisimulation

Theorem

Let F : Set→ Set weakly preserve kernel pairs and preserve
downsets. Let R ⊆ A× A be an equivalence relation which is a
saturated weak bisimulation on 〈A, α〉. Then R is a weak
bisimulation on 〈A, α〉.
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Saturated weak bisimulation which is not weak bisimulation

Define a functor F : Set→ Set on sets by

FX = ({a} × X + {b} × X 2)/Θ + {⊥}

where Θ is the smallest equivalence relation on {a} × X + {b} × X 2 satisfying
for any x ∈ X :

(b, x , x) Θ (a, x).

We define F on morphisms in a natural way. For any set X introduce a partial
order ¬ on FX as the smallest partial order satisfying

⊥¬ (a, x)/Θ for any x ∈ X .

The order ¬ is well defined and makes the functor F an ordered functor. The

functor F does not preserve downsets.
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Saturated weak bisimulation which is not weak bisimulation

For any F -coalgebra 〈A, α〉 define an operator sα : A→ FA by

sα(x) =

{
α(x) if α(x) 6=⊥,
(a, x)/Θ otherwise.

The operator s : SetF → SetF is a coalgebraic saturator with
respect to the class of all F -coalgebras.

Now consider a set A = {x , y} and define a structure α : A→ FA
by α(x) =⊥ and α(y) = (b, x , y)/Θ. We see that x ≈sw y , but x
and y are not weakly bisimilar.
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Weak and saturated weak bisimulation

Corollary

Let F : Set→ Set weakly preserve pullbacks and preserve
downsets. Then for any F -coalgebra 〈A, α〉 ∈ C the relations ≈w
and ≈sw are equivalence relations and

≈w = ≈sw .
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Fully probabilistic processes

A fully probabilistic process [Baier, Hermanns] is a tuple (A,Σ,P), where A is a
set of states, Σ is an non-empty set called alphabet and P : A×Σ× A→ [0, 1]
is a function such that for any a ∈ A the sum

∑
(σ,a′)∈Σ×A P(a, σ, a′) = 1.

Any
fully probabilistic process (A,Σ,P) can be view as GΣ-coalgebra

α(a) : Σ× P(A)→ [0, 1]; (σ,A′) 7→ P(a, σ,A′).

Let FPP be the class of all fully probabilistic processes and homomorphisms

between them in the category of all GΣ-coalgebras.

Remark

There are some problems with FPPs! Namely, the very natural
operator is not a saturator...

We can put them only into one part of the setting.
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Terminal object in Setw
F

Let SetwF denote the category of all F -coalgebras as objects and all
maps f : A→ B between 〈A, α〉 and 〈B, β〉 for which the relation
{(a, f (a) | a ∈ A} is a weak bisimulation between 〈A, α〉 and 〈B, β〉
as morphisms.

Theorem

Let F weakly preserve pullbacks. If 〈T , τ〉 is the terminal object in
SetF then the greatest subcoalgebra 〈Ts , τs〉 of 〈T , τ〉 closed under
saturation, i.e. sτs = τs is the terminal object in SetwF .
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Weak coinduction principle

Weak coinduction principle

Let F weakly preserve pullbacks. Let 〈A, α〉 be any F -coalgebra
and let J−Kwα denote the unique weak homomorphism from 〈A, α〉
to 〈Ts , τs〉. For two elements a, b ∈ A we have

a ≈w b ⇐⇒ JaKwα = JbKwα
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How to define a saturation?

Let F : Set→ csLAT. Let T be a subfunctor of F which is a
partially ordered monad with the unit η : Id =⇒ T and product
µ : T 2 =⇒ T . Consider two natural transformations

λ1 : TF =⇒ F and λ2 : FT =⇒ F .

Example

For the LTS functor P(Σ× Id) and the invisible transition τ ∈ Σ
consider T = P({τ} × Id). It is a partially ordered monad since
T ≈ P and

λ1X : TFX → FX ; (τ,S ′) 7→ S ′,

λ2X : FTX → FX ; (σ, {τ} × S ′)) 7→ (σ, S ′)
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How to define a saturation?

Finally consider a reductor r : SetF → SetF which is an coalgebraic operator
satisfying:

for any F -coalgebra 〈A, α〉 the coalgebra 〈A, rα〉 is a T -coalgebra,

rα ¬ α
r ◦ r = r

if Ff ◦α ¬ β ◦ f then Ff ◦ rα ¬ rβ ◦ f for any f : X → Y (monotonicity):

A
¬α ��

f // B
β =⇒��

A
¬rα ��

f // B
rβ��

FA
Ff

// FB FA
Ff

// FB

Example

For LTS coalgebra 〈A, α〉 and a ∈ A consider rα(a) := {(τ, a′) | (τ, a′) ∈ α(a)}.
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The saturation algebra

For any α, α′ : A→ FA define the following operations:

α + α′ = α ∨ α′,
α . α′ := λ1A ◦ Tα ◦ rα′,
α / α′ := λ2A ◦ F rα ◦ α′,
0 :=⊥,
1 := ηA,

α∗ := min{β | β = 1 + β / α + α . β}.

We get a saturation algebra

(Hom(A,FA),+, /, ., r, (−)∗, 0, 1).
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Thank you for your attention!
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