
Stream automata are coalgebras

Vincenzo Ciancia

Joint work with Yde Venema

Institute for Logic, Language and Computation

University of Amsterdam

Tallin - March 31, 2012

1



Motivation

Deterministic finite automata are a prime example of coalgebras:

(X , f : X → XC × 2)

Standard definitions for bisimilarity, partition refinement and
universal model (three views of the same problem!).

Coalgebraic bisimilarity in DFAs obviously corresponds to language
equivalence (look at the derivatives!).

[Rutten, CONCUR 98] the equivalence classes of the Myhill-Nerode
theorem precisely correspond to the elements of the final coalgebra.

2



Stream automata

Stream automata, e.g. {Büchi, Muller, parity}-automata, accept
languages of infinite words (ω-regular languges).

Closure properties and decision procedures are well-established.

However, procedures and proofs are complex and quite ad-hoc, and
there is no universal model.

3



Question:

Can we describe ω-regular languages as elements of the final
coalgebra for some functor?

or

Can we describe stream automata as coalgebras, in such a
way that bisimilarity coincides with language equivalence?

4



In this work:

Automata over infinite words are coalgebras.

A two-sorted setting is required (just like in Wilke algebras, that
provide an algebraic approach).

Closure properties are easy.

There is an universal model.

5



Canonical representatives of language equivalence classes,
minimization, decidability of language equivalence

for free!

6



Part I

Stream automata are coalgebras

7



Deterministic Muller automata

Def: A DMA is a structure (Q, δ : Q → QC ,M⊆ P(Q)).

where: Q finite set of states, δ deterministic transition function,
M set of sets of states (Muller sets).

An infinite word (stream) α is in L(q) iff.

Inf (x , q) ∈M

(the set of states traversed infinitely often is a Muller set)

8



Example:

x and y accept the same language:

x y

b

a

a

b

M = {{x}, {y}} L(x) = L(y) = (C ∗)(aω ∪ bω)

9



No minimal model:

x and y can not be collapsed: the only possible system with one
state is the following and it accepts a different language.

xa,b

M = {x} L(x) = Cω

10



Lasso and looping languages

For L a set of streams, define:

• Loop(L) = {u ∈ C+|uω ∈ L}

• Lasso(L) = {(s, l) ∈ C ∗ × C+|s lω ∈ L}

11



Example:

x y

b

a

a

b

Lasso(x) = Lasso(y) = {(s, l)|s ∈ C ∗, l ∈ a∗ ∪ b∗}

Loop(x) = Loop(y) = a+ ∪ b+

L(x) obviously determines Loop(x) and Lasso(x).

12



Lasso(L) determines L

Fact: If L and L′ are ω-regular, Lasso(L) = Lasso(L′)⇒ L = L′.

If two ω-regular languages are different, there
is a distinguishing lasso!

13



DMAs are coalgebras - the easy way

Coalgebras of the Set functor T(X ) = XC × S , where S = P(C+)

deterministic labelled transition systems with
observations on states

The DMA (Q, δ,M) is mapped to the coalgebra (Q, f ) where

f : Q → QC × P(C+)

f (q) = (δ(q), Loop(q))

14



Bisimilarity is language equivalence

We are now allowed to collapse x and y :

x y

a+ ∪ b+ a+ ∪ b+

b

a

a

b z

a+ ∪ b+

a,b

15



This looks quite simple!

Characterise precisely the ω-regular languages.

(or: don’t worry, we can make it more complicated!)

16



Part II

Finite, circular and coherent coalgebras

Ingredients:

• Loop(x) is regular (and of non-empty words).

• Regular languages of non-empty words are coalgebras.

• Two-sorted coalgebras and dependent bisimilarity.

17



Loop(x) is regular

Proposition

The language Loop(x) ⊆ C+ is regular.

It is accepted by a parallel automaton that consumes symbols in
every state simultaneously, accumulating the set of traversed
states.

The accepting states are defined from the Muller sets M (see the
paper for the details of the construction).

18



Regular languages of non-empty words

DFAs are coalgebras of the functor T(X ) = XC × 2. But Loop(x)
is a language of non-empty words!.

Define the functor D(X ) = (X × 2)C .

Proposition

Finite D-coalgebras are in one-to-one correspondence with DFAs
accepting non-empty words.

19



In the final D-coalgebra, all the regular languages of non-empty
words are represented as points whose generated sub-coalgebra is
finite.

The “derivative” operation computes the standard derivative,
minus the empty word.

20



“Dependent” coalgebras

Notice that:

• We can characterise equality of languages such as Loop(x)
using morphisms of D-coalgebras.

• We just saw how to represent DMAs as coalgebras whose
bisimilarity depends upon equality of Loop(x) for each x .

We define a kind of two-sorted coalgebras that combine these two
features.

21



Two-sorted sets

Set2 is the category of functors from the discrete category 2
(having two objects and just identity arrows) into Set.

Set2 is the category of pairs of sets

X = (X1,X2)

and pairs of functions

f : X → Y = (f1 : X1 → Y1, f2 : X2 → Y2).

Two-sorted sets and “sort-wise” functions!

22



The functor Ω

Consider the functor Ω : Set2 → Set2

Ω(X ) = (XC
1 × X2, D(X2))

which is the same as

Ω(X ) = (XC
1 × X2, (X2 × 2)C )

h : X → Y ⇒ Ωh = (hC
1 × h2, (h2 × 2)C )

23



Ω-coalgebras

An Ω-coalgebra f : X → Ω(X ) is a pair f = (f1, f2) with

f1 : X1 → XC
1 × X2 f2 : X2 → (X2 × 2)C

f1 = 〈f 1
1 : X1 → XC

1 , f
2
1 : X1 → X2〉

f 1
1 is a (−)C coalgebra f2 is a D-coalgebra

f 2
1 maps each state in X1 to a state in X2

24



An arrow h : X → Y in Set2 is a coalgebra morphism from (X , f )
to (Y , g) iff. the following diagram commutes

X1

f 11
��

h1 // Y1

g1
1

��
XC
1

hC1 // Y C
1

X2

f2
��

h2 // Y2

g2
��

DX2
Dh2 // DY2

X1

f 21
��

h1 // Y1

g2
1

��
X2

h2 // Y2

h1 is a morphism of (−)C -coalgebras

h2 is a morphism of D-coalgebras

the maps from X1 to X2 and Y1 to Y2 commute with h1

and h2

25



Dependent bisimilarity

x , y ∈ X1 are identified by a morphism, or “bisimilar” iff.:

1. LD(f 2
1 (x)) = LD(f 2

1 (y)) (these are DFAs of non-empty
words!);

2. For all c ∈ C , f 1
1 xc and f 1

1 yc are bisimilar in turn.

26



From DMAs to Ω-coalgebras

A DMA (Q, δ,M) is mapped to an Ω-coalgebra (X , f )

X1 = Q f1 = 〈δ, λx .initial state of Loop(x)〉

(X , f2) is the disjoint union of the D-coalgebras for
Loop(x ∈ Q)

Theorem

x , y ∈ Q are bisimilar in the coalgebraic sense if and only if they
accept the same stream language.

27



x y

x0 y0

x1

x2

y1

y2

b

a

a

b

a b

a

b

a

b b

a

28



Circularity and coherence

A coalgebra accpets lassos (s, l) by following s in the first sort, and
then accepting l in the second.

Not all coalgebras accept Lasso(L) for some ω-regular L

the “good coalgebras” are invariant under

(s, l) ≡ (s ′, l ′) ⇐⇒ s lω = s ′ (l ′)ω

We single out two properties that guarantee the above: circularity
and coherence.

29



Circular:

∀x ∈ X1.∀k > 0.∀u ∈ C+.u ∈ Loop(x) ⇐⇒ uk ∈ Loop(x)

Coherent:

∀x ∈ X1.Loop(x) = {cu | uc ∈ Loop(f 1
1 (x)(c))}

30



Theorem

Each finite, circular and coherent Ω-coalgebras is the image of
some DMA.

Proposition

Circularity and coherence are preserved by morphisms.

Corollary

The points in the final coalgebra that generate a finite, circular and
coherent are in one-to-one correspondence with the ω-regular
languages.

31



This coalgebra is neither circular nor coherent.

x y

a ∪ b+ a+

b

a

a

b

(ε, a) ∈ Lasso(x) (ε, aaa) /∈ Lasso(x)

(a, bb) ∈ Lasso(y) (ab, b) /∈ Lasso(y)

32



So what?

33



Boolean operations

Recall union, intersection and complementation of DFAs.

Construct a product automaton (unary product for the
complement) and define accepting states using the boolean
operation in question.

A very similar definition works for Ω-coalgebras. Proposition: the
class of circular and coherent coalgebras is closed under boolean
operations.

Simple proof of closure of ω-regular languages under boolean
operations.

34



Minimal models

Coalgebraic partition refinement uses the terminal sequence to
compute the image in the final coalgebra of the model.

The final Ω-coalgebra exists; it’s the set of languages of lassos over
the alphabet. So we have minimal models (not present in DMAs)

On finite-state systems, partition refinement terminates in finite
steps.

Simple proof of decidability of language equivalence.

35



So what?

36



Future work

Remarkably simple: Ehrenfeucht-Parikh-Rozenberg block
cancellation property for lasso languages.

Doable: Myhill-Nerode theorem for lasso languages (we get a
dependently typed congruence). Deriving the ω-regular language
from the equivalence classes.

- - - - - - - - - - - - up to here: consequence of the framework - - - - - - - - - - - -

Difficult: Coinductive definition of the ω-regular language!

More topics: Modal fixpoint logics on streams; nominal ω-regular
languages

37



The end.

38


	Stream automata are coalgebras
	Finite, circular and coherent coalgebras

