Lax Extensions of Coalgebra Functors

Johannes Marti and Yde Venema

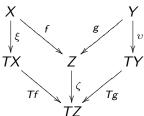
ILLC, University of Amsterdam

April 1, 2012

The Setting

We work with set based coalgebras.

Two states of coalgebras $\xi: X \to TX$ and $\upsilon: Y \to TY$ are behaviorally equivalent if there exists coalgebra morphisms that identify them.



Bisimilarity

A relation lifting L for T maps $R: X \rightarrow Y$ to $LR: TX \rightarrow TY$.

R is an *L-bisimulation* between $\xi: X \to TX$ and $\upsilon: Y \to TY$ if

$$(x, y) \in R$$
 implies $(\xi(x), v(y)) \in LR$.

Two states are *L-bisimilar* if an *L-bisimulation* connects them.

L captures behavioral equivalence if L-bisimilarity and behavioral equivalence coincide.

We assume that $L(R^{\circ}) = (LR)^{\circ}$

Example: Barr extension

The Barr extension \overline{T} of T maps $R: X \rightarrow Y$ to

$$\overline{T}R = \{ (T\pi_X(\rho), T\pi_Y(\rho)) \mid \rho \in TR \}$$

where $\pi_X : R \to X$ and $\pi_Y : R \to Y$ are projections.

 $\overline{\mathcal{T}}$ captures behavioral equivalence if \mathcal{T} preserves weak-pullbacks

Functors that do not preserve weak-pullbacks

The neighborhood functor $\mathcal{N}=\breve{\mathcal{P}}\breve{\mathcal{P}}$ where $\breve{\mathcal{P}}$ is the contravariant powerset functor.

The monotone neighborhood functor $\mathcal M$ is $\mathcal N$ restricted to upsets.

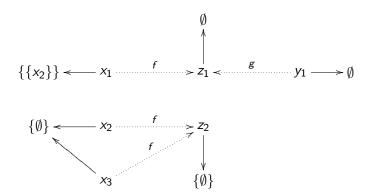
The restricted powerset functor $\mathcal{P}_n X = \{U \subseteq X \mid |U| < n\}$.

There are relation liftings $\widetilde{\mathcal{M}}$ for \mathcal{M} and $\widetilde{\mathcal{P}_n}$ for \mathcal{P}_n that capture behavioral equivalence.

Result

No relation lifting for ${\mathcal N}$ captures behavioral equivalence.

Proof:



Lax Extensions

L is a lax extension of T if for all compatible R, R', S and f:

- 1. $R' \subseteq R$ implies $LR' \subseteq LR$,
- 2. LR; $LS \subseteq L(R; S)$,
- 3. $Tf \subseteq Lf$.

A lax extension L preserves diagonals if it satisfies Tf = Lf.

Lax extension that preserves diagonals capture behavioral equivalence.

Theorem

A finitary functor T has a lax extension that preserves diagonals iff it has a separating set of monotone predicate liftings.

A predicate lifting λ for T is a natural transformation:

$$\lambda: T \Rightarrow \breve{\mathcal{P}} \breve{\mathcal{P}} = \mathcal{N}.$$

If λ is monotone its domain can be restricted:

$$\lambda: T \Rightarrow \mathcal{M}.$$

A set $\Lambda = \{\lambda : T \Rightarrow \mathcal{N} \mid \lambda \in \Lambda\}$ of predicate liftings is separating if $\{\lambda_X : TX \Rightarrow \mathcal{N}X \mid \lambda \in \Lambda\}$ is jointly injective for every set X.

Proof of Theorem

A finitary functor $\mathcal T$ has a lax extension that preserves diagonals iff it has a separating set of monotone predicate liftings.

Left-to-right uses the Moss liftings introduced by Kurz and Leal.

Right-to-left: For a set $\Lambda = \{\lambda : T \Rightarrow \mathcal{N} \mid \lambda \in \Lambda\}$ the initial lift $\widetilde{\mathcal{M}}^{\Lambda}$ of $\widetilde{\mathcal{M}}$ along Λ is defined on $R : X \to Y$ as:

$$(\xi, v) \in \widetilde{\mathcal{M}}^{\Lambda}R$$
 iff $(\lambda_{x}(\xi), \lambda_{Y}(v)) \in \widetilde{\mathcal{M}}R$ for all $\lambda \in \Lambda$.