Southampton

School of Electronics and Computer Science

RELATIONAL PRESHEAVES AS LABELLED TRANSITION SYSTEMS

Pawel Sobocinski CMCS `12, Tallinn, 01/04/12

MODELS FOR CONCURRENCY

(Winskel and Nielsen `93)

Category Theory ought to inform Concurrency Theory

- characterise (or improve) common constructions using universal properties (e.g. limits, colimits, adjoints)
- use universal properties to identify interesting constructions and get a quick "feel" for any particular model

PLAN

• Examples of algebraic structure on labels

- ExI: observability, weak bisimulation, tau-closure
- Ex2: operational accounts of wiring
- Ex3: Jensen's weak reactive systems, tile systems
- LTSs categorically
- Introduction to relational presheaves
- Adjoints to change of base

EXAMPLE I: OBSERVABILITY & WEAK BISIMULATION

- CCS, pi, ... have special transitions with tau-labels
- tau-labelled transitions are normally considered to be "silent" so unobservable
- equivalences should not distinguish systems that differ only by tau actions
 - one possibility: change the definition of bisimilarity to Milner's weak bisimilarity

EXAMPLE I: OBSERVABILITY & WEAK BISIMULATION

- CCS, pi, ... have special transitions with tau-labels
- tau-labelled transitions are normally considered to be "silent" so unobservable
- equivalences should not distinguish systems that differ only by tau actions

This is anathema in my religion: the Monotheistic Milner's weak Church of Bisimilarity

WEAK BISIMULATION

Another way: close LTS with the following two rules and consider bisimilarity

$$\begin{array}{ccc} P \xrightarrow{\tau} Q & Q \xrightarrow{a} R & R \xrightarrow{\tau} S \\ \hline P \xrightarrow{\tau} P & P & P \xrightarrow{a} S \end{array}$$

- isn't this kind of like making tau the identity of a monoid of actions?
- what is the mathematical status of this saturation?

EXAMPLE 2: OPERATIONAL THEORIES OF WIRING

(SICE`09, SCONCUR`I0; Bruni, Melgratti, Montanari CONCUR`II) inspired by RFC Walters' work on Span(Graph)

- Idea: explore process calculi that have symmetric monoidal categories as their algebras of processes (terms up to bisimilarity)
 - real syntax (no structural congruence)
 - bisimilarity is a congruence wrt operations
 - extremely close operational correspondences with various variants of Petri nets with boundaries
 - interesting algebra of underlying (symmetric monoidal, compact closed, etc.) categories of processes

$$\overline{k \ \frac{0}{0^{\prime}} k} \quad \overline{k \ \frac{1}{0^{\prime}} k+1} \quad \overline{k+1 \ \frac{0}{1^{\prime}} k}$$

$$\overline{k \ \frac{0}{0^{\prime}} k} \quad \overline{k \ \frac{1}{0^{\prime}} k+1} \quad \overline{k+1 \ \frac{0}{1^{\prime}} k}$$

$$\overline{k \ \frac{0}{1^{\prime}} k} \quad \overline{k \ \frac{1}{0^{\prime}} k} \quad \overline{k \ \frac{ab}{ba^{\prime}} X}$$

$$\overline{\Delta \ \frac{a}{aa^{\prime}} \Delta} \quad \overline{\Delta \ \frac{a}{aa^{\prime}} \Delta} \quad \overline{\Delta$$

$$\overline{k} \stackrel{0}{\xrightarrow{0}} k \quad \overline{k} \stackrel{1}{\xrightarrow{1}} k + 1 \quad \overline{k+1} \stackrel{0}{\xrightarrow{1}} k \quad \hline k - 1 \quad \overline{k} \quad \overline{k} \quad \overline{k} - 1 \quad \overline{k} \quad \overline{k} \quad \overline{k} - 1 \quad \overline{k} \quad \overline{k} \quad \overline{k} \quad \overline{k} - 1 \quad \overline{k} \quad \overline{$$

 $\frac{P \xrightarrow{\alpha}{\beta} P' \quad P' \xrightarrow{\alpha}{\beta'} Q}{P \xrightarrow{\alpha+\alpha'}{\beta+\beta'} Q}$

UNEXPECTED BEHAVIOUR

$$\Delta \xrightarrow{a}{aa} \Delta \quad \bigvee \xrightarrow{a(1-a)}{a} \lor \bigvee$$

$$\Delta; V \rightarrow \frown$$

UNEXPECTED BEHAVIOUR

$$\Delta \xrightarrow{a}{aa} \Delta \quad \bigvee \xrightarrow{a(1-a)}{a} \vee$$

$$\frac{P \xrightarrow{\alpha}{\beta} P' \quad P' \xrightarrow{\alpha'}{\beta'} Q}{P \xrightarrow{\alpha + \alpha'}{\beta + \beta'} Q}$$

$$\frac{\begin{array}{cccc} & V & \frac{1}{01} & V & V & \frac{1}{10} & V \\ \hline \Delta & \frac{1}{11} & \Delta & & V & \frac{2}{11} & V \\ \hline \Delta & V & \frac{1}{2} & \Delta & V \end{array}$$

transitions - $X \rightarrow Y$ for if M a multiset of transitions X + post(M) = Y + pre(M)

P/T NETS WITH BOUNDARIES

P/T NETS WITH BOUNDARIES

P/T NETS WITH BOUNDARIES

semantics:
 states - multisets of places (markings)
 transitions - X → Y & a = source(M), b = target(M)

minimal synchronisation

CORRESPONDENCE

- for each net N there is a term t_N such that { (N, t_N) | N a P/T net with boundaries} is a bisimulation
- there is an recursively defined translation from terms to nets such that { (t, [N_t]_≅) | is a bisimulation }
- induces an isomorphism of underlying process categories

EXAMPLE 3: OLE JENSEN'S WEAK EQUIVALENCE FOR REACTIVE SYSTEMS

Definition 3.18 (weak reaction) We say that reaction rules (p, p') and (q, q') are *compatible* if p' and q are consistent and equations (1) and (2) above hold.

For compatible rules (p, p') and (q, q') we their *composition* $(p, p') \cdot (q, q')$ is defined as the rule $(P \circ p, Q' \circ q')$, where (P, Q') is an IPO of (p', q).

We call a rule of the form (id_I, id_I) an *identity rule*.

For \mathcal{R} a set of rules we define its *weakening*, written $\mathcal{W}(\mathcal{R})$, as the result of adding all identity rules and then closing under composition of compatible rules. We extend \mathcal{W} to a functor that sends a reactive system (\mathbf{C}, \mathcal{R}) to ($\mathbf{C}, \mathcal{W}(\mathcal{R})$).

Define the *weak reaction relation* \Rightarrow in **C** as the reflection of reaction in $W(\mathbf{C})$; that is, $a \Rightarrow a'$ in **C** iff $a \rightarrow a'$ in $W(\mathbf{C})$.

EXAMPLE 3: OLE JENSEN'S WEAK EQUIVALENCE FOR REACTIVE SYSTEMS

Definition 3.18 (weak reaction) We say that reaction rules (p, p') and (q, q') are *compatible* if p' and q are consistent and equations (1) and (2) above hold.

For compatible rules (p, p') and (q, q') we their *composition* $(p, p') \cdot (q, q')$ is defined as the rule $(P \circ p, Q' \circ q')$, where (P, Q') is an IPO of (p', q).

We call a rule of the form (id_I, id_I) an *identity rule*.

For \mathcal{R} a set of rules we define its *weakening*, written $\mathcal{W}(\mathcal{R})$, as the result of adding all identity rules and then closing under composition of compatible rules. We extend \mathcal{W} to a functor that sends a reactive system (\mathbf{C}, \mathcal{R}) to ($\mathbf{C}, \mathcal{W}(\mathcal{R})$).

Define the *weak reaction relation* \Rightarrow in **C** as the reflection of reaction in $\mathcal{W}(\mathbf{C})$; that is, $a \Rightarrow a'$ in **C** iff $a \rightarrow a'$ in $\mathcal{W}(\mathbf{C})$.

Lemma 3.22 In a reactive system with all RPOs the following hold:

(1)
$$a \stackrel{id}{\Rightarrow} a$$
.

(2) If $a \xrightarrow{L} a'$ then $a \xrightarrow{L} a'$;

(3) If
$$a \stackrel{L_1}{\Longrightarrow} \cdots \stackrel{L_n}{\Longrightarrow} a'$$
 and $L = L_n \circ \cdots \circ L_1$ then $a \stackrel{L}{\Rightarrow} a'$;

(4) If $a \stackrel{L}{\Rightarrow} a'$ then $a \stackrel{L_1}{\longrightarrow} \cdots \stackrel{L_n}{\longrightarrow} a'$ for some L_1, \cdots, L_n such that $L = L_n \circ \cdots \circ L_1$.

LTS++

- Several LTSs have algebraic structure on the set of labels
 - labels are elements of a monoid
 - transitions are closed under:

$$\frac{P \xrightarrow{a} Q \quad Q \xrightarrow{b} R}{P \xrightarrow{\iota} P} \qquad \frac{P \xrightarrow{a} Q \quad Q \xrightarrow{b} R}{P \xrightarrow{a \star b} R}$$

- labels are arrows of a category (e.g. reactive systems), transitions are closed under identities and composition
- other examples: Span(Graph), tile systems, ...

PLAN

• Examples of algebraic structure on labels

• LTSs categorically

- presheaves and open maps
- coalgebra
- how to capture algebraic structure on labels?
- Introduction to relational presheaves
- Adjoints to change of base

PRESHEAVES

Winskel Nielsen '96 - Presheaves as transition systems

- presheaves can be thought of as transition systems via an elements construction
- indexing category can be thought of as a "category of paths"
- morphisms are functional simulations
- functional bisimulations are characterised as open maps wrt path category obtained via Yoneda

COALGEBRA

- LTS are coalgebras for the $P(A \times -)$ functor on **Set**
 - the labels are "wrapped up" inside the functor

...

- coalgebra morphisms are functional bisimulations
- Coalgebras are versatile with a mature theory and 100s of great papers
 - some constructions are notoriously tricky (e.g. weak bisimulation)

LABELS WITH STRUCTURE FROM COALGEBRATO?

 $X \to \mathcal{P}(A \times X)$ $X \to \mathcal{P}(X)^A$ $\overline{A \to \mathcal{P}(X)^X}$

LABELS WITH STRUCTURE FROM COALGEBRATO?

some kind of structure preserving $A \rightarrow \mathbf{Rel}$

PLAN

- Examples of algebraic structure on labels
- LTSs categorically
- Introduction to relational presheaves
 - relational presheaves and their morphisms
 - functional morphisms vs relational morphisms
 - quantaloids
 - examples, correspondence with simulations and bisimulations
- Adjoints to change of base

RELATIONAL PRESHEAVES

(Kimmo Rosenthal, The theory of quantaloids)

Relational presheaf C on = lax functor from C^{op} to Rel

$h\colon \mathbf{C}^{op} \to \mathbf{Rel}$

for each object *h* gives a set, for each arrow a relation

laxness means:

 $h(b); h(a) \subseteq h(a; b)$ $I_{h(x)} \subseteq h(I_x)$

RELATIONAL PRESHEAVES

• AKA:

- specification structures (Abramsky, Gay, Nagarajan)
 - generalised type theories
 - C = Set, Rel, category of domains, particular choices of functors
- relational variable sets (Ghilardi and Meloni)
 - models for propositional logic
- dynamic sets (Stell), relsets (Niefield), ...

RELATIONAL PRESHEAVES

• AKA:

- specification structures (Abramsky, Gay, Nagarajan)
 - generalised type theories
 - C = Set, Rel, category of domains, particular choices of functors
- relational variable sets (Ghilardi and Meloni)
 - models for propositional logic
- dynamic sets (Stell), relsets (Niefield), ...

in this talk **C** will be a monoid or a category (monoidoloid?)

EXAMPLE

Take C to be a 1-object category (monoid)

 $h: \mathbf{C}^{op} \to \mathbf{Rel}$ $* \longmapsto X + \text{lax functoriality}$ $m \longmapsto X \to X$

$$h(b); h(a) \subseteq h(a; b)$$
 $I_{h(x)} \subseteq h(I_x)$

so same thing as a transition system, with labels in M satisfying

$$\frac{x \xrightarrow{a} y \quad y \xrightarrow{b} z}{x \xrightarrow{\iota} x \quad x \quad x \xrightarrow{a \star b} z}$$

MORPHISMS OF RELATIONAL PRESHEAVES

Functional morphisms

 $\mathcal{R}(\mathbf{C})$

arrows - functional oplax natural transformations

$$\begin{array}{c} hC \xrightarrow{\varphi_C} h'C \\ hf \downarrow & \subseteq & \downarrow h'f \\ hD \xrightarrow{\varphi_D} h'D \end{array}$$

Relational morphisms $\mathcal{R}^*(\mathbf{C})$ arrows - oplax natural

transformations

MORPHISMS OF RELATIONAL PRESHEAVES

Functional morphisms

 $\mathcal{R}(\mathbf{C})$

arrows - functional oplax natural transformations

Relational morphisms $\mathcal{R}^*(\mathbf{C})$ arrows - oplax natural

transformations

MORPHISMS OF RELATIONAL PRESHEAVES

Functional morphisms

 $\mathcal{R}(\mathbf{C})$

arrows - functional oplax natural transformations

Relational morphisms $\mathcal{R}^*(\mathbf{C})$ arrows - oplax natural

transformations

$\mathcal{R}^*(\mathbf{C})$

EXAMPLE

 $\boldsymbol{\mathcal{Y}}$

x	arphi	x'

So functional simulations and ordinary simulations

RECAP

• For M a monoid we have

 $\mathcal{R}(M)$

 $\mathcal{R}^*(M)$

objects: labelled transition systems with monoidal structure on labels

arrows: functional simulations

arrows: simulations 2-cells: inclusions

for general C, relational presheaves can be considered LTSs via Grothendieck construction

QUANTALOIDS

- Are the categorification of quantales
 - quantale = complete lattice with monoidal structure that commutes with sup
 - quantaloid = locally small category in which homs are complete lattices and sups are preserved by composition in both directions
 - \cdot if ${f C}$ is locally small then ${\cal R}^*({f C})$ is a quantaloid
 - in our examples this essentially means that unions of simulations are simulations

FUNCTIONAL BISIMULATIONS

• Are maps, i.e. left adjoints in the 2-categorical sense

$$\begin{array}{ll} h,h' \in \mathcal{R}^{*}(\mathbf{C}) & \varphi \colon h \to h' \\ \psi \colon h' \to h \end{array}$$

$$\begin{array}{ll} I_{h} \subseteq \psi \varphi & \varphi \psi \subseteq I_{h'} \\ \text{total} & \text{one-valued} \end{array} \quad \text{i.e. phi is a function} \end{array}$$

FUNCTIONAL BISIMULATIONS

• Are maps, i.e. left adjoints in the 2-categorical sense

$$h, h' \in \mathcal{R}^{*}(\mathbf{C}) \qquad \begin{array}{l} \varphi \colon h \to h' \\ \psi \colon h' \to h \end{array}$$

$$I_{h} \subseteq \psi \varphi \qquad \qquad \varphi \psi \subseteq I_{h'} \\ \text{total} \qquad \text{one-valued} \qquad \text{i.e. phi is a function} \\ x \varphi y \land y \xrightarrow{a} y' \qquad \qquad y \psi x \\ \exists x'. x \xrightarrow{a} x' \land y' \psi x' \qquad \qquad x' \varphi y' \end{array}$$

ORDINARY LABELLED TRANSITION SYSTEMS

- Let A be a set of labels
- Labelled transition systems are exactly the ordinary functors

$A^* \to \mathbf{Rel}$

LTS(A) = full subcategory of $\mathcal{R}^*(A^*)$ objects - labelled transition systems arrows - simulations

ORDINARY LABELLED TRANSITION SYSTEMS

- Let A be a set of labels
- Labelled transition systems are exactly the ordinary functors

$A^* \to \mathbf{Rel}$

LTS(A) = full subcategory of $\mathcal{R}^*(A^*)$ objects - labelled transition systems arrows - simulations

Q. What are the other objects of $\mathcal{R}^*(A^*)$?

PLAN

- Examples of algebraic structure on labels
- LTSs categorically
- Introduction to relational presheaves

Adjoints to change of base

- Change of base
- Niefield's theorem
- extensions and applications

CHANGE OF BASE

• Suppose we have a functor $u : \mathbf{D} \to \mathbf{C}$ change of base (2-)functors $\mathcal{R}\mathbf{C} \xrightarrow{u^*} \mathcal{R}\mathbf{D} \qquad \mathcal{R}^*\mathbf{C} \xrightarrow{u^*} \mathcal{R}^*\mathbf{D} \qquad h \longmapsto h \circ u$

CHANGE OF BASE

• Suppose we have a functor $u : \mathbf{D} \to \mathbf{C}$ change of base (2-)functors $\mathcal{R}\mathbf{C} \xrightarrow{u^*} \mathcal{R}\mathbf{D} \qquad \mathcal{R}^*\mathbf{C} \xrightarrow{u^*} \mathcal{R}^*\mathbf{D} \qquad h \longmapsto h \circ u$

LTS Example: Given a function $f: A \rightarrow B$, $f^*: \mathcal{R}^*(B^*) \rightarrow \mathcal{R}^*(A^*)$ $x \xrightarrow{a} x'$ in f^*h

 $\begin{array}{ll} (B^*) \to \mathcal{R}^*(A^*) & \text{takes an LTS with labels in A to LTS} \\ with same statespace and transitions \\ x \xrightarrow{a} x' \text{ in } f^*h & \Leftrightarrow & x \xrightarrow{fa} x' \text{ in } h \end{array}$

ADJOINTS TO CHANGE OF BASE IN $\mathcal{R}(\mathbf{C})$.

(Niefield - Change of base for relational variable sets 2004)

• Given u : D→C

weakening of Giraud-Conduché FLP that characterises exponentiable objects of **Cat**/B

Facts:

left adjoint always exists right adjoint exists iff u satsifies WFLP

 Niefield's construction also satisfies universal property wrt the larger class of morphisms

LEFT ADJOINTS TO CHANGE OF BASE IN $\mathcal{R}^*(\mathbf{C})$. Σ_u $\mathcal{R}^*\mathbf{C} \perp \mathcal{R}^*\mathbf{D}$ • Left 2-adjoints always exist u^*

 Niefield's construction also satisfies universal property wrt the larger class of morphisms

$$\begin{array}{c} \left(\begin{array}{c} \left(T_{1} \right) \right) \\ \left(\begin{array}{c} \left(T_{1} \right) \right) \\ \left(\begin{array}{c} \left(T_{1} \right) \right) \\ \left(T_{1} \right) \\ \left(T$$

with help from Tom Hirschowitz

EXAMPLE

• Let A be a set of actions

$$u: A + \{\tau\} \to A^*$$
$$a \longmapsto a$$
$$\tau \longmapsto \epsilon$$

Induces a change of base functor

$$\mathcal{R}^*A^* \xrightarrow{u^*} \mathcal{R}^*(A + \{\tau\})^*$$

intuition: add tau transition for each epsilon transition

LEFT ADJOINT

LEFT ADJOINT

WEAK (BI)SIMULATIONS

 $\mathcal{R}^*(A + \{\tau\}) \xrightarrow{\Sigma_u} \mathcal{R}^*A^*$

to give a weak simulation from h to h' is to give an arrow

 $\varphi\colon \Sigma_u h \to \Sigma_u h'$

CONCLUSIONS AND FUTURE WORK

- What I tried to say
 - there are several interesting examples of LTSs that don't seem at home as coalgebras
 - relational presheaves are a natural mathematical universe for such examples
 - some common constructions can be characterised by universal properties