RELATIONAL PRESHEAVES AS
 $$
\begin{aligned} & \text { LABELLEDTRANSITION } \\ & \text { SYSTEMS } \end{aligned}
$$

Pawel Sobocinski
CMCS `I2,Tallinn, 0 I/04/I2

- Category Theory ought to inform Concurrency Theory
- characterise (or improve) common constructions using universal properties (e.g. limits, colimits, adjoints)
- use universal properties to identify interesting constructions and get a quick "feel" for any particular model

PLAN

- Examples of algebraic structure on labels
- Exl: observability, weak bisimulation, tau-closure
- Ex2: operational accounts of wiring
- Ex3: Jensen's weak reactive systems, tile systems
- LTSs categorically
- Introduction to relational presheaves
- Adjoints to change of base

EXAMPLE I: OBSERVABILITY \& WEAK BISIMULATION

- CCS, pi, ... have special transitions with tau-labels
- tau-labelled transitions are normally considered to be "silent" so unobservable
- equivalences should not distinguish systems that differ only by tau actions
- one possibility: change the definition of bisimilarity to Milner's weak bisimilarity

EXAMPLE I: OBSERVABILITY \& WEAK BISIMULATION

- CCS, pi, ... have special transitions with tau-labels
- tau-labelled transitions are normally considered to be "silent" so unobservable
- equivalences should not distinguish systems that differ only by tau actions

This is anathema in my religion: the Monotheistic Milner's weak Church of Bisimilarity

WEAK BISIMULATION

Another way: close LTS with the following two rules and consider bisimilarity

$$
\frac{P \xrightarrow{\tau} Q \quad Q \xrightarrow{a} R \quad R \xrightarrow{\tau} S}{P \xrightarrow{a} S}
$$

- isn't this kind of like making tau the identity of a monoid of actions?
- what is the mathematical status of this saturation?

EXAMPLE 2: OPERATIONALTHEORIES OF WIRING

(S ICE`09, S CONCUR`I0; Bruni, Melgratti, Montanari CONCUR`II) inspired by RFC Walters' work on Span(Graph)

- Idea: explore process calculi that have symmetric monoidal categories as their algebras of processes (terms up to bisimilarity)
- real syntax (no structural congruence)
- bisimilarity is a congruence wrt operations
- extremely close operational correspondences with various variants of Petri nets with boundaries
- interesting algebra of underlying (symmetric monoidal, compact closed, etc.) categories of processes

$$
\overline{k \stackrel{0}{0} k} \quad \overline{k \frac{1}{0} k+1} \quad \overline{k+1 \frac{0}{1} k}
$$

$$
\overline{\mathrm{I} \stackrel{a}{a} \mathrm{I}} \quad \overline{\mathrm{X} \frac{a b}{b a} \mathrm{X}}
$$

$$
\frac{P \stackrel{\alpha}{\beta} P^{\prime} \quad P^{\prime} \frac{\alpha^{\prime}}{\beta^{\prime}} Q}{P \frac{\alpha+\alpha^{\prime}}{\beta+\beta^{\prime}} Q}
$$

$$
\begin{align*}
& \overline{k \stackrel{0}{0} k} \overline{k \stackrel{1}{0} k+1} \quad \overline{k+1} \frac{0}{\frac{0}{1} k} \tag{k}\\
& \overline{1 \frac{a}{a} \rightarrow 1} \quad \overline{\mathrm{X} \frac{a b}{b a} \mathrm{X}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{P \stackrel{\alpha}{\beta} P^{\prime} \quad P^{\prime} \xrightarrow[\beta^{\prime}]{\alpha^{\prime}} Q}{P \frac{\alpha+\alpha^{\prime}}{\beta+\beta^{\prime}} Q}
\end{aligned}
$$

UNEXPECTED BEHAVIOUR

UNEXPECTED BEHAVIOUR

$$
\overline{\Delta \underset{a a}{a} \Delta} \quad \overline{\vee \frac{a(1-a)}{a} \mathrm{~V}}
$$

$\Delta ; \mathrm{V}$

$\frac{P \frac{\alpha}{\beta^{\prime}} P^{\prime} \quad P^{\prime} \frac{\alpha^{\prime}}{\beta^{\prime}} Q}{P \frac{\alpha+\alpha^{\prime}}{\beta+\beta^{\prime}} Q}$

$$
V \frac{1}{\partial r} \vee \vee \frac{1}{10} \vee
$$

semantics:
states - multisets of places (markings)
transitions - $\mathbf{X} \rightarrow \mathbf{Y}$ for if M a multiset of transitions

$$
\mathbf{X}+\operatorname{post}(\mathbf{M})=\mathbf{Y}+\operatorname{pre}(\mathbf{M})
$$

P/T NETS WITH BOUNDARIES

P/T NETS WITH BOUNDARIES

PIT NETS WITH BOUNDARIES

semantics:
states - multisets of places (markings)
transitions - $\mathbf{X} \frac{\mathbf{a}}{\mathbf{b}} \mathbf{Y}$ for if \mathbf{M} a multiset of transitions
$\mathbf{X} \rightarrow \mathbf{Y} \& \mathbf{a}=\operatorname{source}(\mathbf{M}), \mathbf{b}=\operatorname{target}(\mathbf{M})$

COMPOSITION

COMPOSITION

COMPOSITION

COMPOSITION

COMPOSITION

COMPOSITION

CORRESPONDENCE

- for each net N there is a term t_{N} such that $\left\{\left(\mathrm{N}, \mathrm{t}_{\mathrm{N}}\right) \mid \mathrm{N}\right.$ a P/T net with boundaries\} is a bisimulation
- there is an recursively defined translation from terms to nets such that $\left\{\left(\mathrm{t},\left[\mathrm{N} _\mathrm{t}\right] \cong\right) \mid\right.$ is a bisimulation $\}$
- induces an isomorphism of underlying process categories

EXAMPLE 3: OLE JENSEN'S WEAK EQUIVALENCE FOR REACTIVE SYSTEMS

Definition 3.18 (weak reaction) We say that reaction rules $\left(p, p^{\prime}\right)$ and $\left(q, q^{\prime}\right)$ are compatible if p^{\prime} and q are consistent and equations (1) and (2) above hold.

For compatible rules $\left(p, p^{\prime}\right)$ and $\left(q, q^{\prime}\right)$ we their composition $\left(p, p^{\prime}\right) \cdot\left(q, q^{\prime}\right)$ is defined as the rule $\left(P \circ p, Q^{\prime} \circ q^{\prime}\right)$, where $\left(P, Q^{\prime}\right)$ is an IPO of $\left(p^{\prime}, q\right)$.

We call a rule of the form $\left(i d_{I}, i d_{I}\right)$ an identity rule.
For \mathcal{R} a set of rules we define its weakening, written $\mathcal{W}(\mathcal{R})$, as the result of adding all identity rules and then closing under composition of compatible rules. We extend \mathcal{W} to a functor that sends a reactive system $(\mathbf{C}, \mathcal{R})$ to (C, $\mathcal{W}(\mathcal{R})$).

Define the weak reaction relation \Rightarrow in \mathbf{C} as the reflection of reaction in $\mathcal{W}(\mathbf{C})$; that is, $a \Rightarrow a^{\prime}$ in \mathbf{C} iff $a \rightarrow a^{\prime}$ in $\mathcal{W}(\mathbf{C})$.

EXAMPLE 3: OLE JENSEN'S WEAK EQUIVALENCE FOR REACTIVE SYSTEMS

Definition 3.18 (weak reaction) We say that reaction rules $\left(p, p^{\prime}\right)$ and $\left(q, q^{\prime}\right)$ are compatible if p^{\prime} and q are consistent and equations (1) and (2) above hold.

For compatible rules $\left(p, p^{\prime}\right)$ and $\left(q, q^{\prime}\right)$ we their composition $\left(p, p^{\prime}\right) \cdot\left(q, q^{\prime}\right)$ is defined as the rule $\left(P \circ p, Q^{\prime} \circ q^{\prime}\right)$, where $\left(P, Q^{\prime}\right)$ is an IPO of $\left(p^{\prime}, q\right)$.

We call a rule of the form $\left(i d_{I}, i d_{I}\right)$ an identity rule.
For \mathcal{R} a set of rules we define its weakening, written $\mathcal{W}(\mathcal{R})$, as the result of adding all identity rules and then closing under composition of compatible rules. We extend \mathcal{W} to a functor that sends a reactive system $(\mathbf{C}, \mathcal{R})$ to (C, $\mathcal{W}(\mathcal{R})$).

Define the weak reaction relation \Rightarrow in \mathbf{C} as the reflection of reaction in $\mathcal{W}(\mathbf{C})$; that is, $a \Rightarrow a^{\prime}$ in \mathbf{C} iff $a \rightarrow a^{\prime}$ in $\mathcal{W}(\mathbf{C})$.

Lemma 3.22 In a reactive system with all RPOs the following hold:
(1) $a \stackrel{i d}{\Rightarrow} a$.
(2) If $a \xrightarrow{L} a^{\prime}$ then $a \stackrel{L}{\Rightarrow} a^{\prime}$;
(3) If $a \stackrel{L_{1}}{\Longrightarrow} \cdots \stackrel{L_{n}}{\Longrightarrow} a^{\prime}$ and $L=L_{n} \circ \cdots \circ L_{1}$ then $a \stackrel{L}{\Rightarrow} a^{\prime}$;
(4) If $a \stackrel{L}{\Rightarrow} a^{\prime}$ then $a \xrightarrow{L_{1}} \cdots \xrightarrow{L_{n}} a^{\prime}$ for some L_{1}, \cdots, L_{n} such that $L=$ $L_{n} \circ \cdots \circ L_{1}$.

LTS++

- Several LTSs have algebraic structure on the set of labels
- labels are elements of a monoid
- transitions are closed under:

$$
\overline{P \xrightarrow{\iota} P} \quad \xrightarrow[{\xrightarrow{a} Q \quad Q \xrightarrow{b}} R]{P \xrightarrow{a \star b} R}
$$

- labels are arrows of a category (e.g. reactive systems), transitions are closed under identities and composition
- other examples: Span(Graph), tile systems, ...

PLAN

- Examples of algebraic structure on labels
- LTSs categorically
- presheaves and open maps
- coalgebra
- how to capture algebraic structure on labels?
- Introduction to relational presheaves
- Adjoints to change of base

PRESHEAVES

Winskel Nielsen `96-Presheaves as transition systems

- presheaves can be thought of as transition systems via an elements construction
- indexing category can be thought of as a "category of paths"
- morphisms are functional simulations
- functional bisimulations are characterised as open maps wrt path category obtained via Yoneda

COALGEBRA

- LTS are coalgebras for the $P(A \times-)$ functor on Set
- the labels are "wrapped up" inside the functor
- coalgebra morphisms are functional bisimulations
...
- Coalgebras are versatile with a mature theory and IO0s of great papers
- some constructions are notoriously tricky (e.g. weak bisimulation)

LABELS WITH STRUCTURE FROM COALGEBRA TO?

$$
\frac{X \rightarrow \mathcal{P}(A \times X)}{\frac{X \rightarrow \mathcal{P}(X)^{A}}{A \rightarrow \mathcal{P}(X)^{X}}}
$$

LABELS WITH STRUCTURE FROM COALGEBRA TO?

$$
\frac{X \rightarrow \mathcal{P}(A \times X)}{\frac{X \rightarrow \mathcal{P}(X)^{A}}{A \rightarrow \mathcal{P}(X)^{X}}}
$$

some kind of
structure preserving
$A \rightarrow$ Rel
??

PLAN

- Examples of algebraic structure on labels
- LTSs categorically
- Introduction to relational presheaves
- relational presheaves and their morphisms
- functional morphisms vs relational morphisms
- quantaloids
- examples, correspondence with simulations and bisimulations
- Adjoints to change of base

RELATIONAL PRESHEAVES

(Kimmo Rosenthal, The theory of quantaloids)

Relational presheaf \mathbf{C} on $=$ lax functor from $\mathbf{C}{ }^{\circ p}$ to Rel

$h: \mathbf{C}^{o p} \rightarrow \mathbf{R e l}$

for each object h gives a set, for each arrow a relation
laxness means:

$$
h(b) ; h(a) \subseteq h(a ; b) \quad I_{h(x)} \subseteq h\left(I_{x}\right)
$$

RELATIONAL PRESHEAVES

- AKA:
- specification structures (Abramsky, Gay, Nagarajan)
- generalised type theories
- $\mathbf{C}=\mathbf{S e t}$, Rel, category of domains, particular choices of functors
- relational variable sets (Ghilardi and Meloni)
- models for propositional logic
- dynamic sets (Stell), relsets (Niefield), ...

RELATIONAL PRESHEAVES

- AKA:
- specification structures (Abramsky, Gay, Nagarajan)
- generalised type theories
- $\mathbf{C}=\mathbf{S e t}$, Rel, category of domains, particular choices of functors
- relational variable sets (Ghilardi and Meloni)
- models for propositional logic
- dynamic sets (Stell), relsets (Niefield), ...

in this talk \mathbf{C} will be a monoid or

 a category (monoidoloid?)
EXAMPLE

- Take \mathbf{C} to be a I-object category (monoid)

$$
\begin{aligned}
& h: \mathbf{C}^{o p} \rightarrow \text { Rel } \\
& * \longmapsto X \\
& m \longmapsto X \longrightarrow X \\
& h(b) ; h(a) \subseteq h(a ; b) \quad+\text { lax functoriality } \\
& \\
& \\
& h(x) \subseteq h\left(I_{x}\right)
\end{aligned}
$$

so same thing as a transition system, with labels in M satisfying
$x \xrightarrow{a} y \quad y \xrightarrow{b} z$
$x \xrightarrow{\iota} x$

$$
x \xrightarrow{a \star b} z
$$

MORPHISMS OF RELATIONAL

 PRESHEAVESFunctional morphisms

$\mathcal{R}(\mathbf{C})$

arrows - functional oplax natural transformations

$$
\begin{array}{ccc}
h C & \xrightarrow{\varphi_{C}} h^{\prime} C \\
h f \downarrow & & h^{\prime} \\
\downarrow & h^{\prime} f \\
h D \xrightarrow[\varphi_{D}]{\longrightarrow} & h^{\prime} D
\end{array}
$$

Relational morphisms

$$
\mathcal{R}^{*}(\mathbf{C})
$$

arrows - oplax natural transformations

$$
\begin{gathered}
h C \xrightarrow{\varphi_{C}} h^{\prime} C \\
h f \underset{\downarrow}{\subseteq} \quad{ }_{h^{\prime} f} \\
\downarrow D \xrightarrow[\varphi_{D}]{\dagger} h^{\prime} D
\end{gathered}
$$

MORPHISMS OF RELATIONAL

 PRESHEAVESFunctional morphisms

$\mathcal{R}(\mathbf{C})$

arrows - functional oplax natural transformations

$$
\begin{array}{cc}
h C & \xrightarrow{\varphi_{C}} h^{\prime} C \\
h f \nmid & \\
\downarrow & h^{\prime} f \\
h D & { }_{\varphi_{D}} \\
h^{\prime} D
\end{array}
$$

Relational morphisms

$$
\mathcal{R}^{*}(\mathbf{C})
$$

arrows - oplax natural transformations

$$
\begin{aligned}
& h C \xrightarrow{\varphi_{C}} h^{\prime} C \\
& { }_{h f} \downarrow \subseteq \downarrow_{h^{\prime} f} \\
& h D \xrightarrow[\varphi_{D}^{\prime}]{\stackrel{\rightarrow}{\prime}} h^{\prime} D
\end{aligned}
$$

MORPHISMS OF RELATIONAL

 PRESHEAVESFunctional morphisms

$$
\mathcal{R}(\mathbf{C})
$$

arrows - functional oplax natural transformations

$$
\begin{gathered}
h C \xrightarrow{\varphi_{C}} h^{\prime} C \\
h f \nmid \\
\downarrow \\
h D \xrightarrow[\varphi_{D}]{\subseteq} \quad h^{\prime} D \\
h^{\prime} f
\end{gathered}
$$

Relational morphisms

$$
\mathcal{R}^{*}(\mathbf{C})
$$

arrows - oplax natural transformations

$$
\begin{aligned}
& h C \xrightarrow{\varphi_{C}} h^{\prime} C \\
& h f \downarrow \quad \subseteq \quad \downarrow_{h^{\prime} f} \\
& h D \xrightarrow[\varphi_{D}]{\rightarrow} h^{\prime} D
\end{aligned}
$$

$\mathcal{R}^{*}(\mathbf{C})$

EXAMPLE

$$
\begin{aligned}
& X \xrightarrow{\varphi} X^{\prime}
\end{aligned}
$$

$\mathcal{R}^{*}(\mathbf{C})$
EXAMPLE
y

x
φ
x^{\prime}
$\mathcal{R}^{*}(\mathbf{C})$
EXAMPLE

$\mathcal{R}^{*}(\mathbf{C})$

EXAMPLE

So functional simulations and ordinary simulations

RECAP

- For M a monoid we have

$$
\mathcal{R}(M) \quad \mathcal{R}^{*}(M)
$$

objects: labelled transition systems with monoidal structure on labels
arrows: functional simulations
arrows: simulations
2-cells: inclusions
for general C, relational presheaves can be considered LTSs via Grothendieck construction

QUANTALOIDS

- Are the categorification of quantales
- quantale = complete lattice with monoidal structure that commutes with sup
- quantaloid = locally small category in which homs are complete lattices and sups are preserved by composition in both directions
- if \mathbf{C} is locally small then $\mathcal{R}^{*}(\mathbf{C})$ is a quantaloid
- in our examples this essentially means that unions of simulations are simulations

FUNCTIONAL BISIMULATIONS

- Are maps, i.e. left adjoints in the 2-categorical sense

$$
\begin{array}{ll}
h, h^{\prime} \in \mathcal{R}^{*}(\mathbf{C}) \quad & \varphi: h \rightarrow h^{\prime} \\
& \psi: h^{\prime} \rightarrow h
\end{array}
$$

$I_{h} \subseteq \psi \varphi \quad \varphi \psi \subseteq I_{h^{\prime}}$
total
one-valued
i.e. phi is a function

FUNCTIONAL BISIMULATIONS

- Are maps, i.e. left adjoints in the 2-categorical sense

$$
h, h^{\prime} \in \mathcal{R}^{*}(\mathbf{C}) \quad \begin{aligned}
& \varphi: h \rightarrow h^{\prime} \\
& \\
& \psi: h^{\prime} \rightarrow h
\end{aligned}
$$

$I_{h} \subseteq \psi \varphi \quad \quad \varphi \psi \subseteq I_{h^{\prime}} \quad$ i.e. phi is a function

$$
\begin{aligned}
& x \varphi y \wedge y \xrightarrow{a} y^{\prime} \\
& \quad \exists x^{\prime} . x \xrightarrow{a} x^{\prime} \wedge y^{\prime} \psi x^{\prime}>x^{\prime} \varphi y^{\prime}
\end{aligned}
$$

ORDINARY LABELLED TRANSITION SYSTEMS

- Let A be a set of labels
- Labelled transition systems are exactly the ordinary functors

$A^{*} \rightarrow$ Rel

$$
\begin{aligned}
& L T S(A)=\text { full subcategory of } \mathcal{R}^{*}\left(A^{*}\right) \\
& \text { objects - labelled transition systems } \\
& \text { arrows - simulations }
\end{aligned}
$$

ORDINARY LABELLED TRANSITION SYSTEMS

- Let A be a set of labels
- Labelled transition systems are exactly the ordinary functors

$A^{*} \rightarrow$ Rel

$$
\begin{aligned}
& L T S(A)=\text { full subcategory of } \mathcal{R}^{*}\left(A^{*}\right) \\
& \text { objects - labelled transition systems } \\
& \text { arrows - simulations }
\end{aligned}
$$

Q. What are the other objects of $\mathcal{R}^{*}\left(A^{*}\right)$?

PLAN

- Examples of algebraic structure on labels
- LTSs categorically
- Introduction to relational presheaves
- Adjoints to change of base
- Change of base
- Niefield's theorem
- extensions and applications

CHANGE OF BASE

- Suppose we have a functor u: $\boldsymbol{D} \rightarrow \mathbf{C}$ change of base (2-)functors $\mathcal{R} \mathbf{C} \xrightarrow{u^{*}} \mathcal{R} \mathbf{D} \quad \mathcal{R}^{*} \mathbf{C} \xrightarrow{u^{*}} \mathcal{R}^{*} \mathbf{D} \quad h \longmapsto h \circ u$

CHANGE OF BASE

- Suppose we have a functor u: $\mathbf{D} \rightarrow \mathbf{C}$ change of base (2-)functors $\mathcal{R} \mathbf{C} \xrightarrow{u^{*}} \mathcal{R} \mathbf{D} \quad \mathcal{R}^{*} \mathbf{C} \xrightarrow{u^{*}} \mathcal{R}^{*} \mathbf{D} \quad h \longmapsto h \circ u$

LTS Example:

Given a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$,
$f^{*}: \mathcal{R}^{*}\left(B^{*}\right) \rightarrow \mathcal{R}^{*}\left(A^{*}\right) \begin{aligned} & \text { takes an LTS with labels in } \mathrm{A} \text { to LTS } \\ & \text { with same statespace and transitions }\end{aligned}$

$$
x \xrightarrow{a} x^{\prime} \text { in } f^{*} h \quad \Leftrightarrow \quad x \xrightarrow{f a} x^{\prime} \text { in } h
$$

ADJOINTSTO CHANGE OF BASE IN $\mathcal{R}(\mathbf{C})$.

(Niefield - Change of base for relational variable sets 2004)

- Given u : D $\rightarrow \mathbf{C}$

Facts:
weakening of Giraud-Conduché FLP that characterises exponentiable objects of Cat/B
left adjoint always exists right adjoint exists iff u satsifies WFLP

- Niefield's construction also satisfies universal property wrt the larger class of morphisms

LEFT ADJOINTSTO CHANGE

OF BASE IN $\mathcal{R}^{*}(\mathbf{C})$.

- Left 2-adjoints always exist
- Niefield's construction also satisfies universal property wrt the larger class of morphisms
Proof:

with help from
Tom Hirschowitz

EXAMPLE

- Let A be a set of actions

$$
\begin{aligned}
u: A+\{\tau\} & \rightarrow A^{*} \\
a & \longmapsto a \\
\tau & \longmapsto \epsilon
\end{aligned}
$$

Induces a change of base functor
intuition: add tau
$\mathcal{R}^{*} A^{*} \xrightarrow{u^{*}} \mathcal{R}^{*}(A+\{\tau\})^{*}$
transition for each
epsilon
transition
LEFT ADJOINT

- 2-adjunction

$$
\mathcal{R}^{*}\left(A+\{\tau\} \underset{u^{*}}{\stackrel{*}{\gtrless}} \mathcal{R}^{*} A^{*}\right.
$$

In terms of LTSs, Σ_{u} works by closing wrt:

$$
\begin{aligned}
& P \xrightarrow{\tau} Q \quad Q \xrightarrow{a} R \quad R \xrightarrow{\tau} S \\
& P \xrightarrow{a} S \\
& \text { and then renaming tau to epsilon }
\end{aligned}
$$

LEFT ADJOINT

- 2-adjunction

$$
\mathcal{R}^{*}(A+\{\tau\})_{u^{*}}^{\leftarrow} \quad \perp \quad \mathcal{R}^{*} A^{*}
$$

In terms of LTSs, Σ_{u} works by closing wrt:

$$
\frac{}{P \xrightarrow[\rightarrow]{\tau} P} \quad \xrightarrow{P \xrightarrow{\tau} Q \quad Q \xrightarrow{a} R \quad R \xrightarrow{\tau} S} \text { and then renaming tau to epsilon } S
$$

Q. what does the right adjoint look like? (it exists if we restrict to functional morphisms)

WEAK (BI)SIMULATIONS

$$
\mathcal{R}^{*}(A+\{\tau\}) \xrightarrow{\Sigma_{u}} \mathcal{R}^{*} A^{*}
$$

- to give a weak simulation from h to h ' is to give an arrow

$$
\varphi: \Sigma_{u} h \rightarrow \Sigma_{u} h^{\prime}
$$

- What I tried to say
- there are several interesting examples of LTSs that don't seem at home as coalgebras
- relational presheaves are a natural mathematical universe for such examples
- some common constructions can be characterised by universal properties

