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MODELS FOR 
CONCURRENCY

• Category Theory ought to inform Concurrency Theory
• characterise (or improve) common constructions using universal 

properties (e.g. limits, colimits, adjoints)
• use universal properties to identify interesting constructions and get 

a quick “feel” for any particular model

(Winskel and Nielsen `93)



PLAN

• Examples of algebraic structure on labels
• Ex1: observability, weak bisimulation, tau-closure
• Ex2: operational accounts of wiring
• Ex3: Jensen’s weak reactive systems, tile systems

• LTSs categorically
• Introduction to relational presheaves
• Adjoints to change of base



EXAMPLE 1: OBSERVABILITY & WEAK 
BISIMULATION

• CCS, pi, ... have special transitions with tau-labels
• tau-labelled transitions are normally considered to be “silent” 

so unobservable 
• equivalences should not distinguish systems that differ only by 

tau actions
• one possibility: change the definition of bisimilarity to 

Milner’s weak bisimilarity



EXAMPLE 1: OBSERVABILITY & WEAK 
BISIMULATION

• CCS, pi, ... have special transitions with tau-labels
• tau-labelled transitions are normally considered to be “silent” 

so unobservable 
• equivalences should not distinguish systems that differ only by 

tau actions
• one possibility: change the definition of bisimilarity to 

Milner’s weak bisimilarity
This is anathema in my religion: the Monotheistic

Church of Bisimilarity



WEAK BISIMULATION

• isn’t this kind of like making tau the identity of a monoid of 
actions?

• what is the mathematical status of this saturation?

Another way: close LTS with the following two rules and consider bisimilarity

P
⌧�! P

P
⌧�! Q Q

a�! R R
⌧�! S

P
a�! S



EXAMPLE 2: OPERATIONAL THEORIES 
OF WIRING

• Idea: explore process calculi that have symmetric monoidal categories as 
their algebras of processes (terms up to bisimilarity)
• real syntax (no structural congruence)
• bisimilarity is a congruence wrt operations
• extremely close operational correspondences with various variants of 

Petri nets with boundaries
• interesting algebra of underlying (symmetric monoidal, compact closed, 

etc.) categories of processes

(S ICE`09, S CONCUR`10; Bruni, Melgratti, Montanari CONCUR`11)

inspired by RFC Walters’ work on Span(Graph)
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UNEXPECTED BEHAVIOUR
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semantics:  
states - multisets of places (markings)
transitions - X → Y for if M a multiset of transitions

X + post(M) = Y + pre(M)
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P/T NETS WITH BOUNDARIES
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semantics:  
states - multisets of places (markings)
transitions - X → Y for if M a multiset of transitions
X → Y & a = source(M), b = target(M)

a
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CORRESPONDENCE

• for each net N there is a term tN such that { (N, tN) | N a P/T 
net with boundaries} is a bisimulation

• there is an recursively defined translation from terms to nets 
such that { (t, [N_t]≅) | is a bisimulation }

• induces an isomorphism of underlying process categories



EXAMPLE 3: OLE JENSEN’S WEAK 
EQUIVALENCE FOR REACTIVE SYSTEMS

3.6 Weak bisimilarity 35

Definition 3.18 (weak reaction) We say that reaction rules (p, p′) and (q, q′)
are compatible if p′ and q are consistent and equations (1) and (2) above hold.

For compatible rules (p, p′) and (q, q′) we their composition (p, p′) · (q, q′) is
defined as the rule (P ◦ p, Q′ ◦ q′), where (P, Q′) is an IPO of (p′, q).

We call a rule of the form (idI , idI) an identity rule.
For R a set of rules we define its weakening, written W(R), as the result

of adding all identity rules and then closing under composition of compati-
ble rules. We extend W to a functor that sends a reactive system (C,R) to
(C,W(R)).

Define the weak reaction relation =⇒ in C as the reflection of reaction in W(C);
that is, a =⇒ a′ in C iff a −→ a′ in W(C). !

With this definition weak reaction indeed corresponds to sequences of ordinary
reaction steps:

Lemma 3.19 In a reactive system with all RPOs it holds that a =⇒ a′ iff a −→∗ a′.

Proof (sketch) The proof hinges on showing that rule composition is associa-
tive:

(p, p′) ·
(
(q, q′) · (r, r′)

)
=

(
(p, p′) · (q, q′)

)
· (r, r′) .

This requires showing that the diagram on the left below, with both inner
squares IPOs, can be transformed to the diagram on the right, also with both
inner squares IPOs.

a

p p′ q q′ r r′

a′ a

p p′ q q′ r r′

a′

For this, one merely needs to fill in the long rectangle by an RPO; the compo-
sition properties of IPOs (Proposition 3.10) then ensure that the squares on the
right are IPOs. !

We take weak standard transitions a
L
=⇒ a′ to be the (ordinary) standard tran-

sitions of the weakened system:

Definition 3.20 (weak transitions) In a reactive system C we define the weak
standard transition system in C as the reflection of the standard transition system

in W(C); that is, a
L
=⇒ a′ in C iff a

L
−→ a′ in W(C). !

When the reactive system concerned is understood we denote its weak stan-
dard transition system by WST, and we shall continue to use the notation
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36 3 Reactive Systems and Behavioural Congruence

a
L
=⇒ a′ for its transitions. We shall refer to the associated bisimilarity ∼WST

as weak standard bisimilarity and normally write it as ≈.
Since the weak standard transitions in C are exactly the standard transi-

tions in W(C), and W is the identity on structure, the congruence property
(Theorem 3.17) for strong standard bisimilarity carries over immediately to
weak bisimilarity:

Corollary 3.21 (congruence) In a reactive system with all RPOs weak standard
bisimilarity is a congruence; that is, if a ≈ b then C ◦ a ≈ C ◦ b. !

The following lemma records the basic properties of the weak transition
relation.

Lemma 3.22 In a reactive system with all RPOs the following hold:

(1) a
id
=⇒ a.

(2) If a
L
−→ a′ then a

L
=⇒ a′;

(3) If a
L1=⇒ · · ·

Ln=⇒ a′ and L = Ln ◦ · · · ◦ L1 then a
L
=⇒ a′;

(4) If a
L
=⇒ a′ then a

L1−→ · · ·
Ln−→ a′ for some L1, · · · , Ln such that L =

Ln ◦ · · · ◦ L1.

Proof (sketch) Each property is an immediate consequence of the construction
of the weakened rule set W(R): (1) holds because W(R) contains all iden-
tity rules; (2) holds because W(R) contains every rule in R; (3) holds because
W(R) is closed under rule composition; (4) holds because every rule in W(R)
is the composition of a sequence of rules from R. !

The properties established in the lemma can be summarized by saying that
a weak standard transition arises as a (possibly empty) sequence of standard
transitions, and that the labels of these transitions are composed to form the
label of the weak transition. Taking the composition of the labels does the job
of abstracting away silent transitions, because silent transitions have identity
labels. In fact it does more, because labels formed in this way may have more
than one decomposition into non-identity labels; this potentially allows greater
freedom in constructing matching transitions than under the usual definition
in process calculi. As we shall see in Part II, the greater freedom turns out not
to make any difference in the π-calculus. It does in some systems, however;
a simple example is given below.

First, we establish that our notions of weak and strong bisimilarity have the
same relationship as they do in process calculi, namely that strongly bisimilar
agents are also weakly bisimilar, and that standard transitions are adequate
for the weak standard transitions. As mentioned earlier, the latter property
validates the familiar proof technique for weak bisimilarity, where only the
“strong” transitions of an agent are matched (with weak transitions) by the
other agent.



LTS++

• Several LTSs have algebraic structure on the set of labels
• labels are elements of a monoid
• transitions are closed under:

• labels are arrows of a category (e.g. reactive systems), 
transitions are closed under identities and composition

• other examples: Span(Graph), tile systems, ...

P
◆�! P

P
a�! Q Q

b�! R

P
a?b��! R



PLAN

• Examples of algebraic structure on labels
• LTSs categorically

• presheaves and open maps
• coalgebra
• how to capture algebraic structure on labels?

• Introduction to relational presheaves
• Adjoints to change of base



PRESHEAVES

• presheaves can be thought of as transition systems via an 
elements construction

• indexing category can be thought of as a “category of paths”
• morphisms are functional simulations
• functional bisimulations are characterised as open maps wrt 

path category obtained via Yoneda

Winskel Nielsen `96 - Presheaves as transition systems



COALGEBRA

• LTS are coalgebras for the P(A×-) functor on Set
• the labels are “wrapped up” inside the functor
• coalgebra morphisms are functional bisimulations
• ...

• Coalgebras are versatile with a mature theory and 100s of 
great papers
• some constructions are notoriously tricky (e.g. weak 

bisimulation)



LABELS WITH STRUCTURE
FROM COALGEBRA TO?

X ! P(A⇥X)

X ! P(X)A

A ! P(X)X



LABELS WITH STRUCTURE
FROM COALGEBRA TO?

X ! P(A⇥X)

X ! P(X)A

A ! P(X)X
A ! Rel

structure preserving
some kind of 

??



PLAN

• Examples of algebraic structure on labels
• LTSs categorically
• Introduction to relational presheaves

• relational presheaves and their morphisms
• functional morphisms vs relational morphisms

• quantaloids
• examples, correspondence with simulations and bisimulations

• Adjoints to change of base



RELATIONAL PRESHEAVES
(Kimmo Rosenthal, The theory of quantaloids)

h(b);h(a) ✓ h(a; b) I
h(x) ✓ h(I

x

)

h : Cop ! Rel

for each object h gives a set,
for each arrow a relation

laxness means:

Relational presheaf C on  = lax functor from Cop to Rel



RELATIONAL PRESHEAVES
• AKA:

• specification structures (Abramsky, Gay, Nagarajan)
• generalised type theories
• C = Set, Rel, category of domains, particular choices of 

functors
• relational variable sets (Ghilardi and Meloni)

• models for propositional logic
• dynamic sets (Stell), relsets (Niefield), ...



RELATIONAL PRESHEAVES
• AKA:

• specification structures (Abramsky, Gay, Nagarajan)
• generalised type theories
• C = Set, Rel, category of domains, particular choices of 

functors
• relational variable sets (Ghilardi and Meloni)

• models for propositional logic
• dynamic sets (Stell), relsets (Niefield), ...

in this talk C will be a monoid or
a category (monoidoloid?)



EXAMPLE
• Take C to be a 1-object category (monoid)

h : Cop ! Rel
⇤ 7�! X
m 7�! X � // X

so same thing as a transition system, with 
labels in M satisfying 

+ lax functoriality

x

◆�! x

x

a�! y y

b�! z

x

a?b��! z

h(b);h(a) ✓ h(a; b) I
h(x) ✓ h(I

x

)



MORPHISMS OF RELATIONAL 
PRESHEAVES

arrows - functional oplax 
natural transformations

hC
'C //

hf_

✏✏

h0C

h0f_

✏✏
hD

✓

'D

// h0D

R(C)

hC
'C� //

hf_

✏✏

h0C

h0f_

✏✏
hD

✓

'D

� // h0D

R⇤(C)

arrows - oplax natural 
transformations

Functional morphisms Relational morphisms
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EXAMPLE

X
'� //

hm_

✏✏

X 0

h0m_

✏✏
X

✓

'
� // X 0

R⇤(C)



EXAMPLE

X
'� //

hm_

✏✏

X 0

h0m_

✏✏
X

✓

'
� // X 0

m

OO

x

x

0'

y

R⇤(C)



EXAMPLE

X
'� //

hm_

✏✏

X 0

h0m_

✏✏
X

✓

'
� // X 0

y0'

m

OO

m

OO

x

x

0'

y

R⇤(C)



EXAMPLE

X
'� //

hm_

✏✏

X 0

h0m_

✏✏
X

✓

'
� // X 0

y0'

m

OO

m

OO

x

x

0'

y

So functional simulations and ordinary simulations

R⇤(C)



RECAP
• For M a monoid we have

R(M)

objects: labelled transition
systems with monoidal structure on labels

R⇤(M)

arrows: functional simulations
arrows: simulations
2-cells: inclusions

for general C, relational presheaves 
can be considered LTSs via Grothendieck construction



QUANTALOIDS

• Are the categorification of quantales
• quantale = complete lattice with monoidal structure that 

commutes with sup
• quantaloid = locally small category in which homs are 

complete lattices and sups are preserved by composition in 
both directions

• if     is locally small then               is a quantaloid
• in our examples this essentially means that unions of 

simulations are simulations

R⇤(C)C



FUNCTIONAL BISIMULATIONS

• Are maps, i.e. left adjoints in the 2-categorical sense

h, h0 2 R⇤(C) ' : h ! h0

 : h0 ! h

' ✓ Ih0Ih ✓  '

total one-valued
i.e. phi is a function



FUNCTIONAL BISIMULATIONS

• Are maps, i.e. left adjoints in the 2-categorical sense

h, h0 2 R⇤(C) ' : h ! h0

 : h0 ! h

' ✓ Ih0Ih ✓  '

total one-valued

x'y ^ y

a�! y

0
y x

9x0
. x

a�! x

0 ^ y

0
 x

0
x

0
'y

0

i.e. phi is a function



ORDINARY LABELLED 
TRANSITION SYSTEMS

• Let A be a set of labels
• Labelled transition systems are exactly the ordinary functors 

A⇤ ! Rel
LTS(A) = full subcategory of  R⇤(A⇤)

objects - labelled transition systems
arrows - simulations



ORDINARY LABELLED 
TRANSITION SYSTEMS

• Let A be a set of labels
• Labelled transition systems are exactly the ordinary functors 

A⇤ ! Rel
LTS(A) = full subcategory of  R⇤(A⇤)

objects - labelled transition systems
arrows - simulations

Q. What are the other objects of              ?R⇤(A⇤)



PLAN

• Examples of algebraic structure on labels
• LTSs categorically
• Introduction to relational presheaves
• Adjoints to change of base

• Change of base
• Niefield’s theorem
• extensions and applications



CHANGE OF BASE

• Suppose we have a functor u : D→C
change of base (2-)functors
RC

u⇤
�! RD h 7�! h � uR⇤C

u⇤
�! R⇤D



CHANGE OF BASE

• Suppose we have a functor u : D→C
change of base (2-)functors
RC

u⇤
�! RD h 7�! h � u

LTS Example: 
Given a function f: A →B, 
f⇤ : R⇤(B⇤) ! R⇤(A⇤) takes an LTS with labels in A to LTS

with same statespace and transitions

x

a�! x

0 in f

⇤
h , x

fa�! x

0 in h

R⇤C
u⇤
�! R⇤D



ADJOINTS TO CHANGE OF 
BASE IN           .

• Given u : D→C

R(C)
(Niefield - Change of base for relational variable sets 2004)

RC u⇤ // RD

⌃u

~~

⇧u

``

?

?

Facts:
left adjoint always exists
right adjoint exists iff u satsifies WFLP

weakening of Giraud-Conduché
FLP that characterises 

exponentiable
objects of Cat/B 

D

u

✏✏
C

uD

a ""EE
EE

uf // uD00

C 0 b

;;wwww

D

v !!

f // D00

D0
w

<<



LEFT ADJOINTS TO CHANGE 
OF BASE IN            .

• Left 2-adjoints always exist
• Niefield’s construction also satisfies universal property wrt the larger class 

of morphisms

R⇤(C)

R⇤C

u⇤

77? R⇤D

⌃u

ww



LEFT ADJOINTS TO CHANGE 
OF BASE IN            .

• Left 2-adjoints always exist
• Niefield’s construction also satisfies universal property wrt the larger class 

of morphisms

R⇤(C)

R⇤C

u⇤

77? R⇤D

⌃u

ww

with help from
Tom Hirschowitz

Proof:



EXAMPLE

• Let A be a set of actions

a 7�! a
⌧ 7�! ✏

Induces a change of base functor

intuition: add tau
transition for each 

epsilon
transition

u : A+ {⌧} ! A⇤

R⇤A⇤ u⇤
�! R⇤(A+ {⌧})⇤



LEFT ADJOINT
• 2-adjunction

R⇤(A+ {⌧})⇤
⌃u

**
? R⇤A⇤

u⇤

kk

In terms of LTSs, Σu works by closing wrt:
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⌧�! S

P
a�! S

and then renaming tau to epsilon
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Q. what does the right adjoint look like? (it 
exists if we restrict to functional morphisms)



WEAK (BI)SIMULATIONS

• to give a weak simulation from h to h’ is to give an arrow

R⇤(A+ {⌧}) ⌃u��! R⇤A⇤

' : ⌃uh ! ⌃uh
0



CONCLUSIONS AND FUTURE 
WORK

• What I tried to say
• there are several interesting examples of LTSs that don’t 

seem at home as coalgebras
• relational presheaves are a natural mathematical universe for 

such examples
• some common constructions can be characterised by 

universal properties


