The Ball Monad and its Metric Trace Semantics

Frank Roumen Joint work with Bart Jacobs

> CMCS April 1st, 2012

Frank Roumen The Ball Monad and its Metric Trace Semantics

- Trace semantics in order-enriched Kleisli categories
- Definition of the ball monad
- Metric trace semantics for the ball monad

An example of a non-deterministic automaton:

This automaton recognizes the language

 $\{u \in \{a, b\}^* \mid u \text{ contains } bb \text{ as a subword}\}$

An example of a non-deterministic automaton:

This automaton recognizes the language

 $\{u \in \{a, b\}^* \mid u \text{ contains } bb \text{ as a subword}\}$

Non-deterministic automata are coalgebras of the form

$$X \to 2 \times \mathcal{P}(X)^A \cong \mathcal{P}(1 + A \times X)$$

in the category Sets.

Non-deterministic automata are coalgebras for the functor $F(X) = \mathcal{P}(1 + A \times X)$ on **Sets**.

This functor has no final coalgebra.

Can we nevertheless model the language recognized by the automaton via finality?

Non-deterministic automata are coalgebras for the functor $F(X) = \mathcal{P}(1 + A \times X)$ on **Sets**. This functor has no final coalgebra. Can we nevertheless model the language recognized by the automaton via finality?

A coalgebra $X \to \mathcal{P}(1 + A \times X)$ in **Sets** is the same as a coalgebra $X \to 1 + A \times X$ in **Rel**. We will cook for a final coalgebra in **Pel**

We will seek for a final coalgebra in **Rel**.

Theorem

The functor $1 + A \times X$ on **Rel** has final coalgebra A^* . For each coalgebra $X \to 1 + A \times X$ in **Rel**, this gives a relation $X \to A^*$, hence a map $X \to \mathcal{P}(A^*)$.

Observe that A^* is also the initial algebra for $1 + A \times X$.

We consider coalgebras of the form $X \rightarrow TFX$, where:

- *T* is a monad on **Sets**.
- F is a functor on **Sets**.

Non-deterministic automata form an example, with T = P and $F(X) = 1 + A \times X$.

Coalgebras of the form $X \to TFX$ are morphisms $X \to FX$ in the Kleisli category $\mathcal{K}\ell(T)$. We need to "lift" the functor $F : \mathbf{Sets} \to \mathbf{Sets}$ to a functor $\overline{F} : \mathcal{K}\ell(T) \to \mathcal{K}\ell(T)$.

A distributive law $\lambda : FT \Rightarrow TF$ induces a lifting of $F : \mathbf{Sets} \to \mathbf{Sets}$ to $\overline{F} : \mathcal{K}\ell(T) \to \mathcal{K}\ell(T)$:

On objects:
$$\overline{F}(X) = F(X)$$

On morphisms: $\overline{F}(X \xrightarrow{f} TY) = (FX \xrightarrow{Ff} FTY \xrightarrow{\lambda} TFY)$

Coalgebras for TF in **Sets** correspond to coalgebras for \overline{F} in $\mathcal{K}\ell(T)$.

Theorem

Suppose that:

- T(0) = 1, which implies that $\mathcal{K}\ell(T)$ has a zero object
- $\mathcal{K}\ell(T)$ is dcpo-enriched, in such a way that the zero maps are least elements in the Kleisli homsets
- The functor F has an initial algebra $FA \xrightarrow{\alpha} A$
- The functor \overline{F} is locally monotone:

$$f \leq g \Rightarrow \bar{F}(f) \leq \bar{F}(g)$$

Then $J(\alpha^{-1}): A \to FA$ is a final coalgebra for \overline{F} in $\mathcal{K}\ell(T)$.

Given a coalgebra $X \xrightarrow{c} FX$ in $\mathcal{K}\ell(T)$, we have to find a unique "trace map" tr_c making the diagram on the left commute. In other $\begin{array}{ccc} X \xrightarrow{\operatorname{tr}_{c}} A & \text{words, the operator} \\ \downarrow c & \downarrow J(\alpha^{-1}) & c; \bar{F}(-); J(\alpha) : \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, A) \\ FX \xrightarrow{\bar{F}(\operatorname{tr}_{c})} FA & \text{should have a unique fixed point. The fixed} \end{array}$ should have a unique fixed point. The fixed point exists by the dcpo fixed point theorem. It is unique since α is an initial algebra.

Dcpo	Complete metric space
Continuous function	Contraction
Dcpo fixed point theorem	Banach fixed point theorem

Does the trace semantics for dcpo-enriched Kleisli categories have an analogue for metric spaces?

Define the **ball monad** on objects as

$$\mathcal{B}(X) = \left\{ arphi : X
ightarrow \mathbb{C} \left| \sum_{x \in X} |arphi(x)| \leq 1
ight.
ight\}$$

An element $\varphi \in \mathcal{B}(X)$ can also be written as a formal sum $\sum_i c_i x_i$ with $c_i \in \mathbb{C}$ and $x_i \in X$. On morphisms,

$$\mathcal{B}(f)(\sum_i c_i x_i) = \sum_i c_i f(x_i)$$

Let **Cms** be the category of complete metric spaces and non-expansive maps. $f : X \rightarrow Y$ is non-expansive if

$$d_Y(f(x), f(x')) \le d_X(x, x')$$

for all $x, x' \in X$. The set $\mathcal{B}(Y)$ is a complete metric space with ℓ^1 metric

$$d(\varphi,\psi) = \sum_{y \in Y} |\varphi(y) - \psi(y)|$$

Hence the space of functions $\operatorname{Hom}_{\mathcal{K}\ell(\mathcal{B})}(X, Y) = X \to \mathcal{B}(Y)$ also forms a complete metric space with supremum metric. Pre- and post-composition are non-expansive, so $\mathcal{K}\ell(\mathcal{B})$ is enriched over **Cms**.

Theorem

Let F be a polynomial functor on **Sets** with initial algebra $FA \xrightarrow{\alpha} A$, and let $\lambda : FB \Rightarrow BF$ be a distributive law. Then $J(\alpha^{-1}) : A \to FA$ is a final coalgebra for $\overline{F} : \mathcal{K}\ell(\mathcal{B}) \to \mathcal{K}\ell(\mathcal{B})$.

We wish to prove that the map

$$\operatorname{iter}_{c} = c; \overline{F}(-); J(\alpha) : \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, A)$$

has a unique fixed point, using Banach's theorem. Unfortunately, iter_c is not a contraction. Therefore we modify the metric on Hom(X, A).

The initial algebra A can be obtained as a colimit:

Define $\# : A \to \mathbb{N}$ by $\#a = \max\{n \mid a \notin im(\kappa_n)\}$. Then define the metric on Hom(X, A) by

$$d(\varphi,\psi) = \sup_{x \in X} \sum_{a \in A} \frac{1}{2^{\#a}} \cdot |\varphi(x)(a) - \psi(x)(a)|$$

Apply Banach's fixed point theorem to find the unique fixed point.

- We have extended coalgebraic trace semantics to include the ball monad.
- This approach uses the fact that the Kleisli category of the ball monad is enriched over metric spaces, instead of partial orders.

Future research:

- Generalize this result to arbitrary metric-enriched Kleisli categories.
- Describe trace semantics for quantum computation.