

Internal Modals for Coalgebraic Modal Logics

Toby Wilkinson

Electronics and Computer Science University of Southampton, SO17 1BJ, United Kingdom stw08r@ecs.soton.ac.uk

CMCS March 31 - April 1, 2012

Research supported by an EPSRC Doctoral Training Account.

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Outline	2			

2 Models and Internal Models

3 Applications

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Outline	2			

2 Models and Internal Models

3 Applications

Applications

Future and Related Work

The big picture - Kurz, Abramsky...

- **2** P and S are contravariant functors defining a dual adjunction.
- **③** *L* and *T* covariant endofunctors.
- **4** δ a natural transformation.

The base level - bivalent examples

- $\mathbb{A}:$ sets of formulae, probably with additional structure
 - e.g. MSL, DL, BA...
- $\mathbb{X}:$ sets of states or processes, possibly with additional structure

e.g. Set, Top, Stone, Meas...

P: maps a state space X to a collection of subsets of X (with the structure of an \mathbb{A} object)

e.g. the powerset, the open sets, the clopen sets, the measurable sets...

- S: maps an algebra of formulae A to a collection of logically consistent subsets of A (with the structure of an X object)
 - e.g. filters, prime filters, ultrafilters...

The dual adjunction between the contravariant functors P and S gives the base level semantics:

1 for every A in A and X in
$$\mathbb{X}$$

$$(\textbf{valuations}) \ \{f \colon A \to P(X)\} \cong \{f^\flat \colon X \to S(A)\} \ (\textbf{theory maps})$$

aturality means

$$x \in f(a) \Leftrightarrow a \in f^{\flat}(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this context we call the dual adjunction a logical connection.

But where are the dynamics?

The systems we have so far are static.

We add dynamics using **coalgebras** for the functor $\mathcal{T}: \mathbb{X} \to \mathbb{X}$

 $X \xrightarrow{\gamma} T(X)$

The morphisms are the commuting squares

and this gives a category CoAlg(T).

Adding the modalities

Now we need to add modalities to our languages to represent the dynamics.

We do this using **algebras** for the functor $L \colon \mathbb{A} \to \mathbb{A}$

 $L(A) \xrightarrow{\alpha} A$

The morphisms are the commuting squares

and this gives a category Alg(L).

We have to be a little bit careful though!

Suppose we want to add \Box to objects in **BA** to give us the **modal** algebras.

Naively we would take $L = id_{\mathbb{A}}$ and $\alpha = \Box : A \to A$, but this makes \Box a **BA** homomorphism i.e.

$$\Box (a \land b) = \Box a \land \Box b \qquad \checkmark$$
$$\Box (a \lor b) = \Box a \lor \Box b \qquad \checkmark$$

We only want \Box to preserve \land , so make it a morphism in **MSL**!

Do this using the adjunction $F \dashv U$: **MSL** \rightarrow **BA**, where U is the forgetful functor, and F is the free construction.

Semantics for the modalities

The semantics of the modalities are given by a natural transformation $\delta: LP \Rightarrow PT$.

Using this we can define a functor \tilde{P} : $\mathbf{CoAlg}(T) \rightarrow \mathbf{Alg}(L)$ given by

$$X \xrightarrow{\gamma} T(X) \longrightarrow LP(X) \xrightarrow{\delta_X} PT(X) \xrightarrow{P(\gamma)} P(X)$$

Valuations are then *L*-algebra morphisms

$$(A, \alpha) \xrightarrow{f} \tilde{P}(X, \gamma)$$

A valuation is thus a square

So it is a valuation in the base language constrained to interact correctly with the modalities.

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Observ	ation			

The collection of all valuations for an L-algebra (A, $\alpha)$ forms the comma category $~~\sim$

 $((A, \alpha) \downarrow \tilde{P})$

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Outline	2			

3 Applications

A result from Pavlovic, Mislove, and Worrell

Using the logical connection a valuation

$$(A, \alpha) \xrightarrow{f} \tilde{P}(X, \gamma)$$

can be redrawn as

where δ^* : $TS \Rightarrow SL$ is the dual or transpose of δ .

Models for an L-algebra

Define the category $Mod(A, \alpha)$ of models for the *L*-algebra (A, α) by:

- The objects are pairs ((X, γ), f: X → S(A)) such that the previous diagram commutes. Call f a theory map.
- ② The morphisms are *T*-coalgebra morphisms such that if $g: ((X_1, \gamma_1), f_1) \rightarrow ((X_2, \gamma_2), f_2)$ then $f_1 = f_2 \circ g$.

The logical connection means that $\mathbf{Mod}(A, \alpha)$ is dually isomorphic to the comma category $((A, \alpha) \downarrow \tilde{P})$.

Observations

- If (A, α) is the initial *L*-algebra then for every *T*-coalgebra there is a unique theory map making it a model.
- For a general (A, α) there may be some T-coalgebras for which no theory maps exist that make them into models.

An idea from Kripke semantics

Kripke semantics has the concept of a **canonical model** - a model constructed from the syntax of the language itself.

We can generalise this by considering models with f injective

Internal models for an *L*-algebra

Given a class M of monomorphisms in \mathbb{X} , we define the category $\mathbf{IntMod}_M(A, \alpha)$ to be the full subcategory of $\mathbf{Mod}(A, \alpha)$ where the theory maps are in M, and write

$$G: \mathbf{IntMod}_{\mathcal{M}}(\mathcal{A}, \alpha) \to \mathbf{Mod}(\mathcal{A}, \alpha)$$

for the corresponding inclusion functor.

The objects of $IntMod_M(A, \alpha)$ we call internal models of (A, α) .

The parameterisation by M allows a restriction to say embeddings in **Meas**, as these are preserved by the Giry functor, which will be useful later.

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Outline	e			

1 The Framework

2 Models and Internal Models

3 Applications

Applications

An adjoint functor theorem

When is there a functor \tilde{S} : $Alg(L) \rightarrow CoAlg(T)$ such that it forms a dual adjunction with \tilde{P} ?

Recall the proof of The Freyd Adjoint Functor Theorem - we need to construct initial objects in the comma categories $((A, \alpha) \downarrow \tilde{P})$ - but this is the same as final objects in $Mod(A, \alpha)!$

Sufficient conditions are that for all *L*-algebras (A, α) the following hold:

- for all X in Mod(A, α) there exists a g: X → G(I) for some object I in IntMod_M(A, α),
- **IntMod**_M(A, α) has a final object.

For two models X_1, X_2 in $Mod(A, \alpha)$, and $x_1 \in X_1, x_2 \in X_2$, we say x_1 and x_2 are **behaviourally equivalent** if there exists in $Mod(A, \alpha)$ a cospan

$$X_1 \xrightarrow{f_1} X_3 \xleftarrow{f_2} X_2$$

such that $f_1(x_1) = f_2(x_2)$.

We say (A, α) is **expressive**, if for all models in **Mod** (A, α) , states have the same theories if and only if they are behaviourally equivalent.

Sufficient conditions for expressivity

If we choose M to be some subclass of the class of monos in X with injective underlying functions, then sufficient conditions for expressiveness are:

- for all X in Mod(A, α) there exists a g: X → G(I) for some object I in IntMod_M(A, α),
- **2** for every pair I_1, I_2 in **IntMod**_M(A, α) there is a cospan

$$I_1 \xrightarrow{f_1} I_3 \xleftarrow{f_2} I_2$$

in $IntMod_M(A, \alpha)$.

These are weaker requirements than for the adjoint functor theorem.

A characterisation of expressivity

Given:

- **(**) some mild assumptions about the structure of $Mod(A, \alpha)$,
- 2 X has binary coproducts,
- the class *M* of monomorphisms is precisely the class of morphisms with injective underlying functions,

then (A, α) is expressive for $Mod(A, \alpha)$ if and only if:

- for all X in Mod(A, α) there exists a g: X → G(I) for some object I in IntMod_M(A, α),
- **2** for every pair I_1, I_2 in **IntMod**_M (A, α) there is a cospan

$$I_1 \xrightarrow{f_1} I_3 \xleftarrow{f_2} I_2$$

in IntMod_M(A, α).

Applications

Future and Related Work

Factorisation systems in the base category

Suppose that a class *E* of morphisms in X exists such that X has a factorisation system (E, M).

Also suppose (Klin, Jacobs and Sokolova)

$$m \in M \Rightarrow \delta^*_A \circ T(m) \in M$$

then the following hold:

- condition 1 of the previous theorems,
- ② the forgetful functor U: IntMod_M(A, α) → X detects small colimits.

If \mathbb{X} has a factorisation system (E, M), and

$$m \in M \Rightarrow \delta^*_A \circ T(m) \in M$$

then

- **1** X has binary coproducts \Rightarrow (A, α) is expressive,
- ② X is *M*-wellpowered and has small coproducts ⇒ IntMod_{*M*}(*A*, α) has a final object,

If this last result holds for all (A, α) , then there is a dual adjunction between $\operatorname{Alg}(L)$ and $\operatorname{CoAlg}(T)$.

Take:

- **1** T to be $\mathcal{P}_f \colon \mathbf{Set} \to \mathbf{Set}$ the finite powerset functor,
- **2** L to add an operator \Box to the objects of **BA**,
- **③** the factorisation system (Surjective, Injective) in **Set**,
- **③** the obvious choice for δ (given by the predicate lifting in **MSL**),

then there is a dual adjunction between modal algebras and image-finite transition systems.

This then yields corresponding expressivity results for all modal algebras - not just the initial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Take:

- T to be the Giry functor on **Meas**,
- ② *L* to add a countable set of modalities L_r for $r \in \mathbb{Q} \cap [0, 1]$ to the objects of **MSL** (where $L_r \phi$ means ϕ is true with probability at least *r*),
- **③** the factorisation system (Surjective, Embeddings) in **Meas**,
- the obvious choice for δ (given by the predicate liftings in **Pos**),

then there is a dual adjunction between probabilistic modal algebras and Markov processes.

Again this yields corresponding expressivity results for all probabilistic modal algebras - not just the initial.

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Outiir	ne			

1 The Framework

2 Models and Internal Models

3 Applications

As noted earlier, all the examples in this talk are bivalent.

This is because the logical connection arises from a two element **dualising object**.

In recent work Kurz and Velebil have looked at logical connections in an enriched setting with a more general notion of dualising object.

I am currently investigating whether my expressivity results can be extended to such enriched logical connections.

The idea that internal models might be a fruitful thing to study follows from the work in:

Jacobs, B., Sokolova, A.: Exemplaric Expressivity of Modal Logics. Journal of Logic and Computation 20(5) (2010) 1041–1068

Klin, B.: Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Computer Science 173 (2007) 177–201

Outline	The Framework	Models and Internal Models	Applications	Future and Related Work
Questio	ons			

Any questions?

