Local completeness for

program correctness and incorrectness

Roberto
(Verona)

Roberta Francesca
(Pisa) (Padova)

Roberto (Pisa)

CALCO 2023

Motivation and Main Result

What is the contribution about?
A logic to prove the absence as well as the presence of bugs

how seemingly opposite concepts may actually be complementary, interconnected, and interdependent

Over- vs Under-approximations

An Axiomatic Basis for Computer Programming
C. A. R. Hoare

The Queen's University of Belfast,* Northern Ireland
Over- vs Under-approximations
In this paper an attempt is made to explore the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the elucidation of sets of axioms and rules of inference which can be used in proofs of the properties of computer

An Axiomatic Basis for Computer Programming
C. A. R. Hoare

The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the elucidation of sets of axioms and rules of inference volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer programs. Examples are given of such axioms and rules, and programs. Examples are given of such axioms and rules, and

Over- vs Under-approximations

An Axiomatic Basis for Computer Programming
C. A. R. Hoare

The Queen's University of Belfast,* Northern Ireland

Over- vs Under-approximations

In this paper an attempt is made to explore the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the elucidation of sets of axioms and rules of inference volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and

Incorrectness Logic

An Axiomatic Basis for Computer Programming
C. A. R. Hoare

The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical foundations of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics. This involves the elucidation of sets of axioms and rules of inference which can be used in proofs of the properties of computer programs. Examples are given of such axioms and rules, and

Incorrectness Logic

PETER W. O'HEARN, Facebook and University College London, UK
Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would like to have correctness, you might find yourself spending most of your time reasoning about incorrectness. This includes informal reasoning that people do while looking at or thinking about their code, as well as that supported by automated testing and static analysis tools. This paper describes a simple logic for program incorrectness which is, in a sense, the other side of the coin to Hoare's logic of correctness.

Over- vs Under-approximations

(3)
$\boldsymbol{\otimes}$ incorrectness
率

An Axiomatic Basis for Computer Programming
C. A. R. Hoare

The Queen's University of Belfast,* Northern Ireland

Over- vs Under-approximations

Incorrectness Logic

PETER W. O'HEARN, Facebook and University College London, UK
Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would like to have correctness, you might find yourself spending most of your time reasoning about incorrectness. This includes informal reasoning that people do while looking at or thinking about their code, as well as that supported by automated testing and static analysis tools. This paper describes a simple logic for program incorrectness which is, in a sense, the other side of the coin to Hoare's logic of correctness.

The idea

$\boldsymbol{*}$

CALCO 2023

ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot ${ }^{*}$ and Radhia Cousot ${ }^{*}$
Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

ABSTRACT INTERPRETATION : - A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot ${ }^{*}$ and Radhia Cousot ${ }^{*}$

The idea

Locally Complete Abstraction
$A(Q) \subseteq$ Spec
\Leftrightarrow
$\llbracket \subset \rrbracket P \subseteq$ Spec \Leftrightarrow
$Q \subseteq$ Spec

CALCO 2023

ABSTRACT INTERPRETATION : - A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot ${ }^{*}$ and Radhia Cousot**

The idea

Locally Complete Abstraction

$$
A(Q) \subseteq \text { Spec }
$$

$$
\Leftrightarrow
$$

$$
\llbracket \subsetneq \rrbracket P \subseteq S p e c
$$

$$
\Leftrightarrow
$$

$$
Q \subseteq \text { Spec }
$$

The idea
Locally Complete Abstraction

$$
\begin{aligned}
A(Q) & \subseteq S p e c \\
& \Leftrightarrow
\end{aligned}
$$

$\llbracket c \rrbracket P \subseteq$ Spec
\Leftrightarrow
$Q \subseteq$ Spec
$\boldsymbol{*}$

Completeness in
 Abstract Interpretation

Abstract Interpretation (Mathematically)

A concrete complete lattice
 An abstract complete lattice

A Galois connection $c \leq \gamma(a) \Leftrightarrow \alpha(c) \leq a$
A Galois insertion $\quad i d=\alpha \circ \gamma: A \rightarrow A \quad$ (γ is injective)
Closure operator $\quad A=\gamma \circ \alpha: C \rightarrow C$ (A is idempotent)

Abstract Interpretation (by example)

An abstract complete lattice

Abstract Interpretation (as closure)

Abstract Interpretation (as closure)

Abstract Interpretation (as closure)

Soundness (by construction)

$$
\alpha \circ f \leq f^{\sharp} \circ \alpha
$$

Abstract interpretation computes over-approximations! (ok to prove absence of bugs)

Best correct approximation (bsa)
$\mathrm{A} \stackrel{f^{A}}{ } \mathrm{~A} \quad f^{A} \leq f^{\#}$

As much precise as possible!

Completeness (maximal precision)

$$
\begin{gathered}
f^{A} \circ \alpha \\
\leq \Omega \leq \\
\alpha \circ f=f^{\sharp} \circ \alpha
\end{gathered}
$$

It must be the boa!
in terms of closures, requires:
$A f=A f A$

Program Analysis with Abstract Interpretation

Regular commands

$$
\begin{aligned}
& \operatorname{Reg} \ni \mathrm{r}::=\mathrm{e}|\mathrm{r} ; \mathrm{r}| \mathrm{r} \oplus \mathrm{r} \mid \mathrm{r}^{*} \\
& \mathrm{AExp} \ni \mathrm{a}::=\mathrm{v} \in \mathbb{Z}|x \in \operatorname{Var}| \mathrm{a}+\mathrm{a}|\mathrm{a}-\mathrm{a}| \mathrm{a} * \mathrm{a} \\
& \mathrm{BExp} \ni \mathrm{~b}::=\mathbf{t t}|\mathbf{f f}| \mathrm{a}=\mathrm{a}|\mathrm{a}<\mathrm{a}| \mathrm{a} \leq \mathrm{a}|\mathrm{~b} \wedge \mathrm{~b}| \neg \mathrm{b} \\
& \operatorname{Exp} \ni \mathrm{e}::=\mathbf{s k i p}|x:=\mathrm{a}| \mathrm{b} ?
\end{aligned}
$$

if (b) then c_{1} else $c_{2} \triangleq\left(b ? ; c_{1}\right) \oplus\left(\neg b ? ; c_{2}\right)$ while (b) do $\mathrm{c} \triangleq(\mathrm{b} ? ; \mathrm{c})^{*} ; \neg \mathrm{b}$?

Collecting semantics

$$
\llbracket \mathrm{e} \rrbracket c \triangleq(\overline{\mathrm{e}} \overline{) c}
$$

$$
\begin{aligned}
(\text { skip }) S & \triangleq S \quad\{\mathrm{a}\}: \Sigma \rightarrow \mathbb{Z} \\
(x:=\mathrm{a}) S & \triangleq\{\sigma[x \mapsto\{\mathrm{a}\} \sigma] \mid \sigma \in S\} \\
(\mathrm{b} ?) S & \triangleq\{\sigma \in S \mid\{\mathrm{b}\} \sigma=\mathbf{t t}\}
\end{aligned}
$$

$\{b\}: \Sigma \rightarrow\{\mathbf{t t}, \mathbf{f f}\}$
$\llbracket \mathrm{r}_{1} \oplus \mathrm{r}_{2} \rrbracket c \triangleq \llbracket \mathrm{r}_{1} \rrbracket c \vee \llbracket \mathrm{r}_{2} \rrbracket c$

$$
\llbracket r^{*} \rrbracket c \triangleq \bigvee\left\{\llbracket r \rrbracket^{n} c \mid n \in \mathbb{N}\right\}
$$

Abstract semantics

$$
\begin{aligned}
\llbracket \llbracket \rrbracket_{A}^{\sharp} a & \triangleq \llbracket \mathrm{e} \rrbracket^{A} a=(\alpha \circ \llbracket \mathrm{e} \rrbracket \circ \gamma) a \\
\llbracket \mathrm{r}_{1} ; \mathrm{r}_{2} \rrbracket_{A}^{\sharp} a & \triangleq \llbracket \mathrm{r}_{2} \rrbracket_{A}^{\sharp}\left(\llbracket \mathrm{r}_{1} \rrbracket_{A}^{\sharp} a\right) \\
\llbracket \mathrm{r}_{1} \oplus \mathrm{r}_{2} \rrbracket_{A}^{\sharp} a & \triangleq \llbracket \mathrm{r}_{1} \rrbracket_{A}^{\sharp} a \vee_{A} \llbracket \mathrm{r}_{2} \rrbracket_{A}^{\sharp} a \\
\llbracket r^{*} \rrbracket_{A}^{\sharp} a & \triangleq \bigvee_{A}\left\{\left(\llbracket r \rrbracket_{A}^{\sharp}\right)^{n} a \mid n \in \mathbb{N}\right\}
\end{aligned} \quad \text { Just a composition of boas! }
$$

An example of program analysis: Intervals domain

$$
[-\infty,+\infty]
$$

An example of program analysis

$$
c=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis

$$
c=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis
Abstract (ex. Intervals)
over-approximations are good for proving correctness but not for bug finding!
$\mathrm{c}=$ if $(x<0)$ then $x:=-x$

An example of program analysis

Abstract (ex. Intervals)

$$
A(P)=[-7,0]
$$

$P \subseteq A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

over-approximations are
good for proving correctness but not for bug finding!

An example of program analysis
Abstract (ex. Intervals)

$$
A(P)=[-7,0]
$$

$$
[0,7]=A(\llbracket c \rrbracket P)
$$

$$
P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P)
$$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis
Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis
Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis
Abstract (ex. Intervals)

$P \subseteq A(P)$
$\llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

An example of program analysis
Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

$$
\begin{aligned}
& \text { concrete } \\
& P=\{-7,0\}
\end{aligned}
$$

over-approximations are good for proving correctness but not for bug finding!

An example of program analysis
Abstract (ex. Intervals)

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

$$
P=\{-7,7\}\langle(x<0) \stackrel{\{-7\}}{\longrightarrow} \underset{\{7\}}{\longrightarrow}
$$

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

$$
P=\{-7,7\}\langle\underset{\{7\}}{\langle x<0\rangle} \xrightarrow{x:=-x}
$$

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness vs Incompleteness

Abstract (ex. Intervals)

$P \subseteq A(P) \quad \llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness vs Incompleteness

Abstract (ex. Intervals)

$$
[0,7]=\llbracket c \rrbracket^{\sharp} A(P)
$$

$$
[7,7]=A(\llbracket c \rrbracket P)
$$

\neq Incomplete analysis!
$\llbracket c \rrbracket P \subseteq A(\llbracket c \rrbracket P) \subseteq \llbracket c \rrbracket^{\sharp} A(P)$

$$
\mathrm{c}=\text { if }(x<0) \text { then } x:=-x
$$

Concrete

Completeness + Turing Equivalence $=$ Trivial domains

$$
A=I d \vee A=\lambda S . T
$$

Th. Only trivial abstractions are complete for Turing equivalent programming languages

Th. Completeness depends only on the basic expressions allowed in the syntax (guards and assignments)
e.g. Int is (nontrivial and) complete for any assignment

Sources of Incompleteness and Local Completeness

Guards are hard to handle

Th. A domain can be complete only for guards that are expressible in it
e.g. Int cannot be complete for $x=0$ (because ($x \neq 0$) is not expressible in Int)

What if we add the abstract point $x \neq 0$?
After Moore closure: intervals with or without holes in zero The domain $\mathrm{Int}_{\neq 0}$ is no longer complete for sums!

Necessary and sufficient conditions for guard completeness

Th. A domain is complete for $b ? /-b$? iff it contains any union of abstract points below $b /-b$

$$
\neg b
$$

$$
a_{1} \vee a_{2}
$$

b

$$
a_{1}
$$

a_{2}

Necessary and sufficient conditions for guard completeness

Th. A domain is complete for b ?/- b ? iff it contains any union of abstract points below $b /-b$
e.g. Int is not complete for $x \leqslant 0 / x>0$
(because $x<-2$ is expressible and below $x \leqslant 0$
$x>2$ is expressible and below $x>0$
but ($x<-2$ or $x>2$) is not expressible in Int)

Local Completeness
We must abandon the ambition of being complete for every program and for every input!

Local completeness is about a given program and a given input Global completeness

$$
\begin{aligned}
A f & =A f A \\
\forall c \cdot A f(c) & =A f A(c)
\end{aligned}
$$

Local completeness at c

$$
\begin{aligned}
& A f(c)=A f A(c) \\
& \mathbb{C}_{c}^{A}(f) \quad \begin{array}{c}
\text { CAlico } 2023 \\
\text { FPS } \times \times \times 1 \times
\end{array}
\end{aligned}
$$

Locally Complete Analysis

Th. Verification
under-approx + local completeness + spec expressible

$$
Q \leq \llbracket c \rrbracket P \wedge \llbracket c \rrbracket^{\sharp} A(P)=A(Q) \wedge S=A(S) \Rightarrow(\llbracket c \rrbracket P \leq S \Leftrightarrow Q \leq S)
$$

$$
\begin{aligned}
& Q \leq \llbracket c \rrbracket P \quad \Rightarrow \quad A(Q) \leq A(\llbracket c \rrbracket P) \leq \llbracket c \rrbracket^{\sharp} A(P) \\
& \wedge \llbracket c \rrbracket^{\sharp} A(P)=A(Q) \quad \Rightarrow \quad A(\llbracket c \rrbracket P)=\llbracket c \rrbracket^{\sharp} A(P) \\
& \wedge S=A(S) \Rightarrow \quad \llbracket c \rrbracket P \leq S \quad \Leftrightarrow \quad A(\llbracket c \rrbracket P) \leq A(S)=S \\
& \\
& \\
&
\end{aligned}
$$

Local Completeness Logic (LL)

The Rules of LCL

Local completeness proof obligations

$$
\begin{gathered}
\frac{\mathbb{C}_{P}^{A}(\mathrm{e})}{\left.\vdash_{A}[P] \mathrm{e}[\llbracket \mathrm{e}] P\right]} \text { (transfer) } \\
\frac{\vdash_{A}[P] \mathrm{r}_{1}[R] \quad \vdash_{A}[R] \mathrm{r}_{2}[Q]}{\vdash_{A}[P] \mathrm{r}_{1} ; \mathrm{r}_{2}[Q]} \text { (seq) } \\
\frac{\vdash_{A}[P] \mathrm{r}[R] \quad \vdash_{A}[P \vee R] \mathrm{r}^{*}[Q]}{\vdash_{A}[P] \mathrm{r}^{*}[Q]} \text { (rec) }
\end{gathered}
$$

Th. Logical Soundness

$$
\vdash_{A}[P] \subset[Q] \Rightarrow Q \leq \llbracket c \rrbracket P \leq \llbracket c \rrbracket^{\sharp} A(P)=A(Q)
$$

Key (consequence) rule

$$
\begin{aligned}
& \frac{P^{\prime} \leq P \leq A\left(P^{\prime}\right) \quad \vdash_{A}\left[P^{\prime}\right] \mathrm{r}\left[Q^{\prime}\right] \quad Q \leq Q^{\prime} \leq A(Q)}{\vdash_{A}[P] \mathrm{r}[Q]} \text { (relax) } \\
& \frac{\vdash_{A}[P] \mathrm{r}_{1}\left[Q_{1}\right] \vdash_{A}[P] \mathrm{r}_{2}\left[Q_{2}\right]}{\vdash_{A}[P] \mathrm{r}_{1} \oplus \mathrm{r}_{2}\left[Q_{1} \vee Q_{2}\right]} \text { (join) } \\
& \frac{\vdash_{A}[P] \mathrm{r}[Q] \quad Q \leq A(P)}{\vdash_{A}[P] \mathrm{r}^{*}[P \vee Q]} \text { (iterate) }
\end{aligned}
$$ abstract interpretation

The Proof System (compositional reasoning!)

Proof obligations: local completeness for basic expressions (all the other rules preserve local completeness)
$\frac{A(\llbracket \mathrm{e} \rrbracket P)=A(\llbracket \mathrm{e} \rrbracket A(P))}{\vdash_{A}[P] \mathrm{e}[\llbracket \mathrm{e} \rrbracket P]}$ (transfer)
$\frac{\text { locally complete! }}{\vdash_{\text {Int }}[\{-7,7\}] x:=x+1[\{-6,8\}]}$ (transfer)
assignments
$\frac{\text { not locally complete! }}{\vdash_{\text {Int }}[\{-7,7\}] \times<0 \text { ? [\{-7\}] }}$ (transfer)

The Proof System (compositional reasoning!)

Proof obligations: local completeness for basic expressions (all the other rules preserve local completeness)

The key new consequence rule

$$
\begin{array}{lll}
P^{\prime} \leq P \leq A\left(P^{\prime}\right) & \vdash_{A}\left[P^{\prime}\right] \subset\left[Q^{\prime}\right] & Q \leq Q^{\prime} \leq A(Q) \\
\vdash_{A}[P] \subset[Q] &
\end{array}
$$

The key new consequence rule

$$
\begin{array}{lll}
P^{\prime} \leq P \leq A\left(P^{\prime}\right) & \vdash_{A}\left[P^{\prime}\right] \text { с }\left[Q^{\prime}\right] & Q \leq Q^{\prime} \leq A(Q) \\
\hline \vdash_{A}[P] \subset[Q] & \tag{relax}
\end{array}
$$

we can weaken the precondition... and strengthen the postcondition as far as we preserve

Fixpoint acceleration

$$
\frac{\vdash_{A}[P] \mathrm{r}[Q] \quad Q \leq A(P)}{\vdash_{A}[P] \mathrm{r}^{*}[P \vee Q]} \text { (iterate) }
$$

$$
\begin{gathered}
\frac{\mathbb{C}_{P}^{\operatorname{Sign}}(\llbracket x \leq 0 ? \rrbracket)}{\vdash_{\operatorname{Sign}}[P] x \leq 0 ?[\{-10,-1\}]} \quad(\text { transfer }) \\
\vdash_{\operatorname{Sign}}[P] x \leq 0 ? ; x:=x * 10[\{-100,-10\}] \quad\{-100,-10\} \subseteq \operatorname{Sign} \\
\vdash_{\{-10,-1\}}[\llbracket x:=x * 10 \rrbracket) \\
(\text { Sign }(P)=\mathbb{Z} \neq 0,-10] x:=x * 10[\{-100,-10\}]
\end{gathered} \quad(\text { transfer })
$$

$\vdash_{\mathrm{Sign}}[P](x \leq 0 ? ; x:=x * 10)^{*}[\{-100,-10,-1,100\}]$

$$
P \triangleq\{-10,-1,100\}
$$

Main results
Th. Verification
any provable triple eitcorrectness + bug finding!

Th. Logical Completeness
if the abstraction is complete for every basic expressions in the program, then any valid triple is provable

Th. Intrinsic Incompleteness
for any Turing complete language and any non-trivial abstraction, there are valid triples that cannot be proved

Combine Abstract Domains

Proof obligations and domain refinement
Suppose $\vdash_{A_{1}}[P] \mathrm{r}_{1}[R]$ and $\vdash_{A_{2}}[R] \mathrm{r}_{2}[Q]$
Can we conclude $\vdash_{A}[P] r_{1} ; r_{2}[Q]$ for some A ?
The reduced product domain $A=A_{1} \sqcap A_{2}$ may not work

Idea: combine more abstract domains in the same derivation

The rule refine

take a more precise domain preserve abstractions of pre-conditions

$$
\begin{gathered}
A^{\prime} \leq A \quad A^{\prime}(P)=A(P) \quad \vdash_{A^{\prime}}[P] \text { с }[Q] \\
\vdash_{A}[P] \subset[Q]
\end{gathered}
$$

Th. Logical Soundness $\vdash_{A}[P]$ с $[Q] \Rightarrow Q \leq \llbracket \subset \rrbracket P \leq A(Q)$

> extensional analysis: cannot guarantee that $\llbracket c \rrbracket^{\sharp} A(P)=A(Q)$

Example

$$
\begin{aligned}
& \mathrm{r}_{1} \triangleq \mathrm{y}:=2 * \mathrm{y}+1 ; \mathrm{y}:=\operatorname{abs}(\mathrm{y}) \\
& \mathrm{r}_{2} \triangleq \mathrm{x}:=\mathrm{y} ; \quad \operatorname{while}(\mathrm{x}>1)\{\mathrm{y}:=\mathrm{y}-1 ; \mathrm{x}:=\mathrm{x}-1\}
\end{aligned}
$$

$\frac{\frac{\vdash_{\operatorname{lnt} \neq 0}[P] r_{1}[S]}{\vdash_{\operatorname{lnt}}[P] r_{1}[S]} \text { (refine) } \quad \frac{\vdash_{\text {Oct }}[S] r_{2}[Q]}{\vdash_{\operatorname{lnt}}[S] r_{2}[Q]} \text { (refine) }}{\vdash_{\operatorname{lnt}}[P] r_{1} ; r_{2}[Q]}$ (seq)

$$
P \triangleq(y \in[-100 ; 100]) \quad S \triangleq(y \in\{1 ; 201\}) \quad Q \triangleq(x=y=1)
$$

$$
\llbracket r_{1} ; r_{2} \rrbracket_{\text {Int }}^{\#} \text { computes } x=1 \wedge 0 \leq y \leq 100
$$

Abstract Interpretation Repair
(A $1 R$)

Proof obligations and domain refinement What if a derivation fails?
e.g. a local completeness proof obligation $\mathbb{C}_{R}^{A}(e)$ fails Idea: Refine the domain and restart the analysis

Add new element

$$
+u
$$

Moore closure
\perp

$$
A_{u}(c)= \begin{cases}u \wedge A(c) & \text { if } c \leq u \\ A(c) & \text { OWiSe } \\ \text { CALCO 2023 } \\ \text { MFRS XXXIX }\end{cases}
$$

Refinement (as closure)

$8(\{1,2,3,4,5\})$
\{1,2,3,4,5\}
LessMoreThan3

$$
\{1,2,3,4\} \quad\{1,2,3,5\} \quad\{1,2,4,5\} \quad\{1,3,4,5\} \quad\{2,3,4,5\}
$$

```
{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}
```

 \(\{1,2\}\{1,3\} \quad\{1,4\} \quad\{1,5\} \quad\{2,3\} \quad\{2,4\} \quad\{2,5\} \quad\{3,4\} \quad\{3,5\} \quad\{4,5\}\)
 $\{1\} \quad\{2\} \quad\{3\} \quad\{4\} \quad\{5\}$

Pointed shell

Which refinement when $\mathbb{C}_{c}^{A}(f)$ fails?
Idea: add the most abstract over-approximation of c that yields local completeness
(the most concrete would be c itself)

$$
\max \left(\left\{x \in C \mid x \leq A(c), \mathbb{C}_{c}^{A_{x}}(f)\right\}\right)=\{u\}
$$

In the case of $\mathbb{C}_{P}^{A}(b$?) we set:

$$
u \triangleq(A(P \cap \mathrm{~b}) \cap \mathrm{b}) \cup(A(P \cap \neg \mathrm{~b}) \cap \neg \mathrm{b})
$$

A (forward) repair strategy
Given A, P, c try to find Q such that $\vdash_{A}[P] \mathrm{r}[Q]$
If a local completeness proof obligation fails, refine A with u_{1} and retry
If a local completeness proof obligation fails, refine $A_{u_{1}}$ with u_{2} and retry
If a local completeness proof obligation fails, refine $A_{\left\{u_{1}, u_{2}\right\}}$ with u_{3} and retry

Until $\vdash_{A_{N}}[P] r[Q]$ for some $N=\left\{u_{1}, \ldots, u_{n}\right\}$ and Q

A (forward) repair strategy

1 Function fRepair $_{A}(N, P, r)$
2 found := false; do given A, N, P, r try to find Q such that $\vdash_{A_{N}}[P] r[Q]$ out := $\operatorname{find}_{A}(N, P, r)$; switch out do
case Q do found $:=$ true; $/ /$ underapprox. case $\langle R, \mathrm{e}\rangle$ do $N:=\operatorname{refine}_{A}(N, R, \mathrm{e}) ; / /$ incompl.
while (\neg found);

Slogan

AIR is to program verification what CEGAR is for model checking
(we have shown that CEGAR is an instance of AIR)

Concluding Remarks

What else?

AIR with backward repair or how to find the most abstract domain refinement for proving correctness

Difficulties in swapping the roles of overand under-approximations

LCL enhancements
(local variables, rewrite strategy languages)

- What next?

Expressiveness hierarchy of (locally) complete domains?

Handling pointers and memory errors with ideas from separation logic

Theoretical foundations for scalable bugcatching and security tools ∞

References

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras ©, Dusko Pavlovic: Abstract extensionality: on the properties of incomplete abstract interpretations. Proc. ACM Program. Lang. 4(POPL): 28:1-28:28 (2020)

 LICS2O21Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
A Logic for Locally Complete Abstract Interpretations. LICS 2021: 1-13

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
A Correctness and Incorrectness Program Logic. J. ACM 70(2): 15:1-15:45 (2023)

ETAPS

Flavio Ascari, Roberto Bruni, Roberta Gori:
Limits and difficulties in the design of under-approximation abstract domains. FoSSaCS 2022: 21-39

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
Abstract interpretation repair. PLDI 2022: 426-441

Roberto Bruni, Roberta Gori, Nicolas Manini:
Deciding Program Properties via Complete Abstractions on Bounded Domains. SAS 2022: 175-200

Flavio Ascari, Roberto Bruni, Roberta Gori:

Logics for Extensional, Locally Complete Analysis via Domain Refinements.
ESOP 2023: 1-27

Thanks for the kind invitation and for the attention!

