
Local completeness for

program correctness and incorrectness

Roberta
(Pisa)

Roberto
(Verona)

Francesco
(Padova)

Roberto
(Pisa)

Motivation and Main Result

Over- and Under-
approximations in
program analysis

What is the contribution about?

A logic to prove the absence
as well as the presence of bugs

or

how seemingly opposite concepts may actually be
complementary, interconnected, and interdependent

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n

C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll
th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n

C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll
th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

?correctness

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n

C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll
th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓
<latexit sha1_base64="dWFNhYuyH5NaVq3ShOUKpzBPTDg=">AAACpXicjVFLb9NAEN6YVymvtBy5rIgQnCK7qoALUiUuvSClUpNWsq1ovJ6EVXfXZnc2EK3cn8IV/hL/ho2bA30cmNOnbx7fzDdVq6SjNP0zSO7df/Dw0c7j3SdPnz1/Mdzbn7nGW4FT0ajGnlfgUEmDU5Kk8Ly1CLpSeFZdfN7kz1ZonWzMKa1bLDUsjVxIARSp+XA/n5SXhQb66hZBdJf5STkfjtJx2ge/DbItGLFtTOZ7g1DUjfAaDQkFzuVZ2lIZwJIUCrvdwjtsQVzAEvMIDWh0ZeiX7/gb74Aa3qLlUvGexH87Amjn1rqKlf2aN3Mb8q5c7mnxsQzStJ7QiI0QSYW9kBNWRleQ19IiEWw2Ry4NF2CBCK3kIEQkfbTpmqAjDXZt63iUwe+i0RpMHc/HBX7rQm+kRRWKyktVR8SLVbTBSjDLqF00UZWHT113V7+Xq/8eUVyVxznxXdnN59wGs4Nx9n58cHI4OjrePm6HvWKv2TuWsQ/siB2zCZsywX6wn+wX+528Tb4kp8nsqjQZbHtesmuRzP8CNw/Wcg==</latexit>

[P] c [Q]
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

10

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might !nd yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

CCS Concepts: • Theory of computation→ Programming logic.

Additional Key Words and Phrases: Proofs, Bugs, Static Analysis

ACM Reference Format:
Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),
32 pages. https://doi.org/10.1145/3371078

1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for !nding bugs in software.

We explore our hypothesis by de!ning incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on speci!cations of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a speci!cation form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the !nal states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a di"erent but equivalent de!nition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite e"ective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the

Author’s address: Peter W. O’Hearn, Facebook and University College London, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART10
https://doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

?correctness

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n

C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll
th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓
<latexit sha1_base64="dWFNhYuyH5NaVq3ShOUKpzBPTDg=">AAACpXicjVFLb9NAEN6YVymvtBy5rIgQnCK7qoALUiUuvSClUpNWsq1ovJ6EVXfXZnc2EK3cn8IV/hL/ho2bA30cmNOnbx7fzDdVq6SjNP0zSO7df/Dw0c7j3SdPnz1/Mdzbn7nGW4FT0ajGnlfgUEmDU5Kk8Ly1CLpSeFZdfN7kz1ZonWzMKa1bLDUsjVxIARSp+XA/n5SXhQb66hZBdJf5STkfjtJx2ge/DbItGLFtTOZ7g1DUjfAaDQkFzuVZ2lIZwJIUCrvdwjtsQVzAEvMIDWh0ZeiX7/gb74Aa3qLlUvGexH87Amjn1rqKlf2aN3Mb8q5c7mnxsQzStJ7QiI0QSYW9kBNWRleQ19IiEWw2Ry4NF2CBCK3kIEQkfbTpmqAjDXZt63iUwe+i0RpMHc/HBX7rQm+kRRWKyktVR8SLVbTBSjDLqF00UZWHT113V7+Xq/8eUVyVxznxXdnN59wGs4Nx9n58cHI4OjrePm6HvWKv2TuWsQ/siB2zCZsywX6wn+wX+528Tb4kp8nsqjQZbHtesmuRzP8CNw/Wcg==</latexit>

[P] c [Q]
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

10

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might !nd yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

CCS Concepts: • Theory of computation→ Programming logic.

Additional Key Words and Phrases: Proofs, Bugs, Static Analysis

ACM Reference Format:
Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),
32 pages. https://doi.org/10.1145/3371078

1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for !nding bugs in software.

We explore our hypothesis by de!ning incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on speci!cations of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a speci!cation form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the !nal states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a di"erent but equivalent de!nition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite e"ective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the

Author’s address: Peter W. O’Hearn, Facebook and University College London, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART10
https://doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

?

?correctness

incorrectness

Over- vs Under-approximations

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n

C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll
th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓
<latexit sha1_base64="dWFNhYuyH5NaVq3ShOUKpzBPTDg=">AAACpXicjVFLb9NAEN6YVymvtBy5rIgQnCK7qoALUiUuvSClUpNWsq1ovJ6EVXfXZnc2EK3cn8IV/hL/ho2bA30cmNOnbx7fzDdVq6SjNP0zSO7df/Dw0c7j3SdPnz1/Mdzbn7nGW4FT0ajGnlfgUEmDU5Kk8Ly1CLpSeFZdfN7kz1ZonWzMKa1bLDUsjVxIARSp+XA/n5SXhQb66hZBdJf5STkfjtJx2ge/DbItGLFtTOZ7g1DUjfAaDQkFzuVZ2lIZwJIUCrvdwjtsQVzAEvMIDWh0ZeiX7/gb74Aa3qLlUvGexH87Amjn1rqKlf2aN3Mb8q5c7mnxsQzStJ7QiI0QSYW9kBNWRleQ19IiEWw2Ry4NF2CBCK3kIEQkfbTpmqAjDXZt63iUwe+i0RpMHc/HBX7rQm+kRRWKyktVR8SLVbTBSjDLqF00UZWHT113V7+Xq/8eUVyVxznxXdnN59wGs4Nx9n58cHI4OjrePm6HvWKv2TuWsQ/siB2zCZsywX6wn+wX+528Tb4kp8nsqjQZbHtesmuRzP8CNw/Wcg==</latexit>

[P] c [Q]
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

10

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might !nd yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

CCS Concepts: • Theory of computation→ Programming logic.

Additional Key Words and Phrases: Proofs, Bugs, Static Analysis

ACM Reference Format:
Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),
32 pages. https://doi.org/10.1145/3371078

1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for !nding bugs in software.

We explore our hypothesis by de!ning incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on speci!cations of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a speci!cation form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the !nal states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a di"erent but equivalent de!nition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite e"ective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the

Author’s address: Peter W. O’Hearn, Facebook and University College London, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART10
https://doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

?

?

“Correctness and incorrectness are two
sides of the same coin” Peter O’Hearn

correctness

incorrectness

Q ⊆ [["]]P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q] <latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

The idea

[["]]P ⊆ A(Q)
Q ⊆ [["]]P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

ABSTRACT INTERPRETATION : ‘A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d’Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con–
sists in using that denotation to describe compu–
tations in another universe of abstract objects,
so that the results of abstract execution give
some information on the actual computations. An
intuitive example (which we borrow from Sintzoff
172]) is the rule of signs. The text ‘1515* 17
may be understood to denote computations on the
abstract universe {(+), (-), (~)} where the se-
mantics of arithmetic operators is defined by the
rule of signs. The abstract execution -1515* 17
=> -(+) * (+) e> (–) * (+) => (–), proves that

–1515 * 17 is a negative number. Abstract interpre–
tation is concerned by a particular underlying
structure of the usual universe of computations
(the sign, in our example). It gives a summary of
some facets of the actual executions of a program.
In general this summary is simple to obtain but
inaccurate (e.g. –1515+17 => –(+)+(+) ‘>
(-)+(+) => (f)). Despite its fundamentally in-
complete results abstract interpretation allows
the programmer or the compiler to answer ques–
tions which,do not need full knowled~e of program
executions or which tolerate an imprecise answer,
(e.g. partial correctness proofs of programs ignO-
ring the termination problems, type checking, pro-
gram optimizations which are not carried in the
absence of certainty about their feasibility, . . .).

2. &unmary

Section 3 describes the syntax and mathematical
semantics of a simple flowchart language, Scott
and Strachey[71]. This mathematical semantics is
used in section 4 to built a more abstract model of
the semantics of programs, in that it ignores the
sequencing of control flow. This model is taken to
be the most concrete of the abstract interpretatiOns
of programs. Section 5 gives the formal definition
of the abstract interpretations of a program.

*

**

Attach= de Recherche au C.N.R.S., Laboratoire
Associ6 no 7.

This work was supported by IRIA–SESORI under
grants 75-035 and 75-160.

Abstract program properties are modeled by a com–
plete semilattice, Birkhoff[611. Elementary Pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate
a system of recursive equations with a program. The
program global properties are then defined as one
of the extreme fixpoints of that system, Tarski [55].
The abstraction process is defined in section 6. It
is shown that the program properties obtained by
an abstract interpretation of a program are consis–
tent with those obtained by a more refined inter–
pretation of that program. In particular, an ab–
stract interpretation may be shown to be consistent
with the formal semantics of the language. Levels
of abstraction are formalized by showing that con-
sistent abstract interpretations form a lattice
(section 7). Section 8 gives a constructive defi–
nition of abstract properties of programs based on
constructive definitions of fixpoints. It shows
that various classical algorithms such as Kildall
[731, Wegbreit[751 compute program properties as
limits of finite Kleene[52]’s sequences. Section
9 introduces finite fixpoint approximation methods
to be used when Kleene’ssequences are infinite,
Cousot[761. They are shown to be consistent with
the abstraction process. Practical examples illus–
trate the various sections. The conclusion points
out that abstract interpretation of programs is a
unified approach to apparently unrelated program
analysis techniques.

3’. Syntax and Semantics of programs

We will use finite flowcharts as a language inde–
pendent representation of progrems.

3.1 Syntax of a Progrwn

A program is built from a set “Nodes”. Each node
has successor and predecessor nodes :

n–succ, n–pred : Nodes+ 2Nodesl (men-succ(n))

<=>(ne n-pred(m))

Hereafter, we note ISl the cardinality of a set S.
~Jhen]Sl = 1 so that S = {~we sometimes use S to
denote x.

The node subsets “Entries”’, “Assignments’!, “Tests”,
“Junctions” and “Exits” partition the set Nodes.

– An entry node (n c Entries) has no predecess...
and one successor, ((n-nred(n) = @)”and “-’-
(In-succ(n)l = l)).

238

<latexit sha1_base64="etWVOJShfgJM4aU7P1p/OvRSKOI=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESGFJrIBAWWAhjKRyENKrOh82SSnnM/W3RoRWfkFWqjoEC2/Q8G/YBsXkDDVaGZXOzteKIVB2/60lpZXVtfWCxvFza3tnd3S3n7LBJHm0OSBDHTHYwakUNBEgRI6oQbmexLa3uQ29dsPoI0I1D1OQ3B9NlJiKDjDVLquNE76pbJdtTPQReLkpExy1Pulr94g4JEPCrlkxnQdO0Q3ZhoFlzAr9iIDIeMTNoJuQhXzwbhxlnVGjyPDMKAhaCokzUT4vREz35ip7yWTPsOxmfdS8T+vG+Hwyo2FCiMExdNDKCRkhwzXIikB6EBoQGRpcqBCUc40QwQtKOM8EaOklWLShzP//SJpnVadi+pZ47xcu8mbKZBDckQqxCGXpEbuSJ00CSdj8kSeyYv1aL1ab9b7z+iSle8ckD+wPr4BoDCSEg==</latexit>

A(Q)

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]
<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q] <latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

The idea

[["]]P ⊆ A(Q)
Q ⊆ [["]]P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

ABSTRACT INTERPRETATION : ‘A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d’Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con–
sists in using that denotation to describe compu–
tations in another universe of abstract objects,
so that the results of abstract execution give
some information on the actual computations. An
intuitive example (which we borrow from Sintzoff
172]) is the rule of signs. The text ‘1515* 17
may be understood to denote computations on the
abstract universe {(+), (-), (~)} where the se-
mantics of arithmetic operators is defined by the
rule of signs. The abstract execution -1515* 17
=> -(+) * (+) e> (–) * (+) => (–), proves that

–1515 * 17 is a negative number. Abstract interpre–
tation is concerned by a particular underlying
structure of the usual universe of computations
(the sign, in our example). It gives a summary of
some facets of the actual executions of a program.
In general this summary is simple to obtain but
inaccurate (e.g. –1515+17 => –(+)+(+) ‘>
(-)+(+) => (f)). Despite its fundamentally in-
complete results abstract interpretation allows
the programmer or the compiler to answer ques–
tions which,do not need full knowled~e of program
executions or which tolerate an imprecise answer,
(e.g. partial correctness proofs of programs ignO-
ring the termination problems, type checking, pro-
gram optimizations which are not carried in the
absence of certainty about their feasibility, . . .).

2. &unmary

Section 3 describes the syntax and mathematical
semantics of a simple flowchart language, Scott
and Strachey[71]. This mathematical semantics is
used in section 4 to built a more abstract model of
the semantics of programs, in that it ignores the
sequencing of control flow. This model is taken to
be the most concrete of the abstract interpretatiOns
of programs. Section 5 gives the formal definition
of the abstract interpretations of a program.

*

**

Attach= de Recherche au C.N.R.S., Laboratoire
Associ6 no 7.

This work was supported by IRIA–SESORI under
grants 75-035 and 75-160.

Abstract program properties are modeled by a com–
plete semilattice, Birkhoff[611. Elementary Pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate
a system of recursive equations with a program. The
program global properties are then defined as one
of the extreme fixpoints of that system, Tarski [55].
The abstraction process is defined in section 6. It
is shown that the program properties obtained by
an abstract interpretation of a program are consis–
tent with those obtained by a more refined inter–
pretation of that program. In particular, an ab–
stract interpretation may be shown to be consistent
with the formal semantics of the language. Levels
of abstraction are formalized by showing that con-
sistent abstract interpretations form a lattice
(section 7). Section 8 gives a constructive defi–
nition of abstract properties of programs based on
constructive definitions of fixpoints. It shows
that various classical algorithms such as Kildall
[731, Wegbreit[751 compute program properties as
limits of finite Kleene[52]’s sequences. Section
9 introduces finite fixpoint approximation methods
to be used when Kleene’ssequences are infinite,
Cousot[761. They are shown to be consistent with
the abstraction process. Practical examples illus–
trate the various sections. The conclusion points
out that abstract interpretation of programs is a
unified approach to apparently unrelated program
analysis techniques.

3’. Syntax and Semantics of programs

We will use finite flowcharts as a language inde–
pendent representation of progrems.

3.1 Syntax of a Progrwn

A program is built from a set “Nodes”. Each node
has successor and predecessor nodes :

n–succ, n–pred : Nodes+ 2Nodesl (men-succ(n))

<=>(ne n-pred(m))

Hereafter, we note ISl the cardinality of a set S.
~Jhen]Sl = 1 so that S = {~we sometimes use S to
denote x.

The node subsets “Entries”’, “Assignments’!, “Tests”,
“Junctions” and “Exits” partition the set Nodes.

– An entry node (n c Entries) has no predecess...
and one successor, ((n-nred(n) = @)”and “-’-
(In-succ(n)l = l)).

238

<latexit sha1_base64="etWVOJShfgJM4aU7P1p/OvRSKOI=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESGFJrIBAWWAhjKRyENKrOh82SSnnM/W3RoRWfkFWqjoEC2/Q8G/YBsXkDDVaGZXOzteKIVB2/60lpZXVtfWCxvFza3tnd3S3n7LBJHm0OSBDHTHYwakUNBEgRI6oQbmexLa3uQ29dsPoI0I1D1OQ3B9NlJiKDjDVLquNE76pbJdtTPQReLkpExy1Pulr94g4JEPCrlkxnQdO0Q3ZhoFlzAr9iIDIeMTNoJuQhXzwbhxlnVGjyPDMKAhaCokzUT4vREz35ip7yWTPsOxmfdS8T+vG+Hwyo2FCiMExdNDKCRkhwzXIikB6EBoQGRpcqBCUc40QwQtKOM8EaOklWLShzP//SJpnVadi+pZ47xcu8mbKZBDckQqxCGXpEbuSJ00CSdj8kSeyYv1aL1ab9b7z+iSle8ckD+wPr4BoDCSEg==</latexit>

A(Q)

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]
<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]

<latexit sha1_base64="6Jv4AV8qHP7Ccfz4J8IckOiUYGE=">AAACtHicjVFNbxMxEHW2fJTwlZYjF0OEVC7RbkGFS6UiLj0WQdpK2Sia9U6CVdu72OOgyNpzf02v8Fv4N3i3OZC2B+b09ObjzbwpaiUdpemfXrJ17/6Dh9uP+o+fPH32fLCze+oqbwWORaUqe16AQyUNjkmSwvPaIuhC4Vlx8bnNny3ROlmZb7SqcaphYeRcCqBIzQavPu3lGui7pPC1RtG85Ye8v8HMBsN0lHbBb4NsDYZsHSeznV7Iy0p4jYaEAucmWVrTNIAlKRQ2/dw7rEFcwAInERrQ6Kahu6Xhb7wDqniNlkvFOxL/7QignVvpIla2W7qbuZa8KzfxNP84DdLUntCIVoikwk7ICSujSchLaZEI2s2RS8MFWCBCKzkIEUkfXdsQdKTBrmwZjzL4U1Ragynj+TjHH03ofLSoQl54qcqIeL6MNlgJZhG18yqq8nDYNHf1e7n87xH5dXmcE9+V3XzObXC6P8oORu++vB8eHa8ft81estdsj2XsAztix+yEjZlgl+yK/WK/k4MkT0SC16VJb93zgm1EYv4C+7nbpw==</latexit>

A(Spec) = Spec

<latexit sha1_base64="OBCCJhZikWaVP+fMIo/buEs6Gbw=">AAACrnicjVFLb9NAEN6YVymvFI69rIiQyiWyAUEvSEVcemwFSSvFVjReT9JVd9fu7myqaOUDv4Yr/Bz+DWs3B/o4MKdP3zy+mW/KRklHafpnkNy7/+Dho63H20+ePnv+YrjzcupqbwVORK1qe1qCQyUNTkiSwtPGIuhS4Ul5/rXLn6zQOlmb77RusNCwNHIhBVCk5sPdL3vHb3PnS4eEFzzXQGeSwrcGRTsfjtJx2ge/DbINGLFNHM13BiGvauE1GhIKnJtlaUNFAEtSKGy3c++wAXEOS5xFaECjK0J/RcvfeAdU8wYtl4r3JP7bEUA7t9ZlrOy2dDdzHXlXbuZpsV8EaRpPaEQnRFJhL+SEldEe5JW0SATd5sil4QIsEKGVHISIpI9+XRN0pMGubRWPMngpaq3BVPF8XOBFG3ofLaqQl16qKiKer6INVoJZRu28jqo8fG7bu/q9XP33iPyqPM6J78puPuc2mL4bZx/H748/jA4ON4/bYrvsNdtjGfvEDtghO2ITJtgP9pP9Yr+TNJkmRTK/Kk0Gm55X7FokZ38BJHnZtw==</latexit>

A(Q) ✓ Spec

Locally Complete
Abstraction

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

The idea

[["]]P ⊆ A(Q)
Q ⊆ [["]]P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

ABSTRACT INTERPRETATION : ‘A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d’Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con–
sists in using that denotation to describe compu–
tations in another universe of abstract objects,
so that the results of abstract execution give
some information on the actual computations. An
intuitive example (which we borrow from Sintzoff
172]) is the rule of signs. The text ‘1515* 17
may be understood to denote computations on the
abstract universe {(+), (-), (~)} where the se-
mantics of arithmetic operators is defined by the
rule of signs. The abstract execution -1515* 17
=> -(+) * (+) e> (–) * (+) => (–), proves that

–1515 * 17 is a negative number. Abstract interpre–
tation is concerned by a particular underlying
structure of the usual universe of computations
(the sign, in our example). It gives a summary of
some facets of the actual executions of a program.
In general this summary is simple to obtain but
inaccurate (e.g. –1515+17 => –(+)+(+) ‘>
(-)+(+) => (f)). Despite its fundamentally in-
complete results abstract interpretation allows
the programmer or the compiler to answer ques–
tions which,do not need full knowled~e of program
executions or which tolerate an imprecise answer,
(e.g. partial correctness proofs of programs ignO-
ring the termination problems, type checking, pro-
gram optimizations which are not carried in the
absence of certainty about their feasibility, . . .).

2. &unmary

Section 3 describes the syntax and mathematical
semantics of a simple flowchart language, Scott
and Strachey[71]. This mathematical semantics is
used in section 4 to built a more abstract model of
the semantics of programs, in that it ignores the
sequencing of control flow. This model is taken to
be the most concrete of the abstract interpretatiOns
of programs. Section 5 gives the formal definition
of the abstract interpretations of a program.

*

**

Attach= de Recherche au C.N.R.S., Laboratoire
Associ6 no 7.

This work was supported by IRIA–SESORI under
grants 75-035 and 75-160.

Abstract program properties are modeled by a com–
plete semilattice, Birkhoff[611. Elementary Pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate
a system of recursive equations with a program. The
program global properties are then defined as one
of the extreme fixpoints of that system, Tarski [55].
The abstraction process is defined in section 6. It
is shown that the program properties obtained by
an abstract interpretation of a program are consis–
tent with those obtained by a more refined inter–
pretation of that program. In particular, an ab–
stract interpretation may be shown to be consistent
with the formal semantics of the language. Levels
of abstraction are formalized by showing that con-
sistent abstract interpretations form a lattice
(section 7). Section 8 gives a constructive defi–
nition of abstract properties of programs based on
constructive definitions of fixpoints. It shows
that various classical algorithms such as Kildall
[731, Wegbreit[751 compute program properties as
limits of finite Kleene[52]’s sequences. Section
9 introduces finite fixpoint approximation methods
to be used when Kleene’ssequences are infinite,
Cousot[761. They are shown to be consistent with
the abstraction process. Practical examples illus–
trate the various sections. The conclusion points
out that abstract interpretation of programs is a
unified approach to apparently unrelated program
analysis techniques.

3’. Syntax and Semantics of programs

We will use finite flowcharts as a language inde–
pendent representation of progrems.

3.1 Syntax of a Progrwn

A program is built from a set “Nodes”. Each node
has successor and predecessor nodes :

n–succ, n–pred : Nodes+ 2Nodesl (men-succ(n))

<=>(ne n-pred(m))

Hereafter, we note ISl the cardinality of a set S.
~Jhen]Sl = 1 so that S = {~we sometimes use S to
denote x.

The node subsets “Entries”’, “Assignments’!, “Tests”,
“Junctions” and “Exits” partition the set Nodes.

– An entry node (n c Entries) has no predecess...
and one successor, ((n-nred(n) = @)”and “-’-
(In-succ(n)l = l)).

238

<latexit sha1_base64="etWVOJShfgJM4aU7P1p/OvRSKOI=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESGFJrIBAWWAhjKRyENKrOh82SSnnM/W3RoRWfkFWqjoEC2/Q8G/YBsXkDDVaGZXOzteKIVB2/60lpZXVtfWCxvFza3tnd3S3n7LBJHm0OSBDHTHYwakUNBEgRI6oQbmexLa3uQ29dsPoI0I1D1OQ3B9NlJiKDjDVLquNE76pbJdtTPQReLkpExy1Pulr94g4JEPCrlkxnQdO0Q3ZhoFlzAr9iIDIeMTNoJuQhXzwbhxlnVGjyPDMKAhaCokzUT4vREz35ip7yWTPsOxmfdS8T+vG+Hwyo2FCiMExdNDKCRkhwzXIikB6EBoQGRpcqBCUc40QwQtKOM8EaOklWLShzP//SJpnVadi+pZ47xcu8mbKZBDckQqxCGXpEbuSJ00CSdj8kSeyYv1aL1ab9b7z+iSle8ckD+wPr4BoDCSEg==</latexit>

A(Q)

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]
<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]

<latexit sha1_base64="6Jv4AV8qHP7Ccfz4J8IckOiUYGE=">AAACtHicjVFNbxMxEHW2fJTwlZYjF0OEVC7RbkGFS6UiLj0WQdpK2Sia9U6CVdu72OOgyNpzf02v8Fv4N3i3OZC2B+b09ObjzbwpaiUdpemfXrJ17/6Dh9uP+o+fPH32fLCze+oqbwWORaUqe16AQyUNjkmSwvPaIuhC4Vlx8bnNny3ROlmZb7SqcaphYeRcCqBIzQavPu3lGui7pPC1RtG85Ye8v8HMBsN0lHbBb4NsDYZsHSeznV7Iy0p4jYaEAucmWVrTNIAlKRQ2/dw7rEFcwAInERrQ6Kahu6Xhb7wDqniNlkvFOxL/7QignVvpIla2W7qbuZa8KzfxNP84DdLUntCIVoikwk7ICSujSchLaZEI2s2RS8MFWCBCKzkIEUkfXdsQdKTBrmwZjzL4U1Ragynj+TjHH03ofLSoQl54qcqIeL6MNlgJZhG18yqq8nDYNHf1e7n87xH5dXmcE9+V3XzObXC6P8oORu++vB8eHa8ft81estdsj2XsAztix+yEjZlgl+yK/WK/k4MkT0SC16VJb93zgm1EYv4C+7nbpw==</latexit>

A(Spec) = Spec

<latexit sha1_base64="OBCCJhZikWaVP+fMIo/buEs6Gbw=">AAACrnicjVFLb9NAEN6YVymvFI69rIiQyiWyAUEvSEVcemwFSSvFVjReT9JVd9fu7myqaOUDv4Yr/Bz+DWs3B/o4MKdP3zy+mW/KRklHafpnkNy7/+Dho63H20+ePnv+YrjzcupqbwVORK1qe1qCQyUNTkiSwtPGIuhS4Ul5/rXLn6zQOlmb77RusNCwNHIhBVCk5sPdL3vHb3PnS4eEFzzXQGeSwrcGRTsfjtJx2ge/DbINGLFNHM13BiGvauE1GhIKnJtlaUNFAEtSKGy3c++wAXEOS5xFaECjK0J/RcvfeAdU8wYtl4r3JP7bEUA7t9ZlrOy2dDdzHXlXbuZpsV8EaRpPaEQnRFJhL+SEldEe5JW0SATd5sil4QIsEKGVHISIpI9+XRN0pMGubRWPMngpaq3BVPF8XOBFG3ofLaqQl16qKiKer6INVoJZRu28jqo8fG7bu/q9XP33iPyqPM6J78puPuc2mL4bZx/H748/jA4ON4/bYrvsNdtjGfvEDtghO2ITJtgP9pP9Yr+TNJkmRTK/Kk0Gm55X7FokZ38BJHnZtw==</latexit>

A(Q) ✓ Spec

Locally Complete
Abstraction

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

The idea

[["]]P ⊆ A(Q)
Q ⊆ [["]]P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP
<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="ROwjC3l7hHoSdvAiDfmYJ6nvmtE=">AAACmnicjVFNTxRBEO0dQRBRQY966LAh4bSZIUa5mBC9YLxgwgJmZ0NqemrXCt09Q3f1ms1kfoVX+WH8G3uWPcjHwTq9vPp4r6qKWpPnNL3pJU9WVp+urT/beL754uWrre3Xp74KTuFQVbpy5wV41GRxyMQaz2uHYAqNZ8Xlly5/NkPnqbInPK9xbGBqaUIKOFI/ch8Kj4xXF1v9dJAuQj4E2RL0xTKOL7Z7TV5WKhi0rDR4P8rSmscNOCalsd3Ig8ca1CVMcRShBYN+3Cwct3I3eOBK1ugkabkg8d+OBoz3c1PESgP809/PdeRjuVHgycG4IVsHRqs6ISaNCyGvHMVToCzJITN0zlGSlQocMKMjCUpFMsTb3BH0bMDNXRmXsvhLVcaALeP6OMGrtsk7Fw51kxeBdBmRzGfxDI7ATqN2XkVV2Xxq28f6A83+e0R+Wx7nxHdl95/zEJzuD7IPg/3v7/uHR8vHrYu3YkfsiUx8FIfiSByLoVDCiN/ij7hO3iWfk6/Jt9vSpLfseSPuRHLyF4nx0mg=</latexit> ✓

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

<latexit sha1_base64="90JsLMsksBwB1Boj8k3nt4jLRtw=">AAAConicjVHJbhNBEG0PWxKWOOSYSwuDxMmaiSLgghSJS4Q4JAInkdyWVdNTdlrpZeiudmSN5ku4wkfxN/Q4PmQ7UKenV8t7VVXWWgXK87+97NHjJ0+fbWxuPX/x8tV2f+f1aXDRSxxJp50/LyGgVhZHpEjjee0RTKnxrLz80uXPFuiDcvYHLWucGJhbNVMSKFHT/rb4hjPyan5B4L27mvYH+TBfBb8PijUYsHUcT3d6jaicjAYtSQ0hjIu8pkkDnpTU2G6JGLAGeQlzHCdowWCYNCvnLX8XA5DjNXquNF+ReLOjARPC0pSp0gBdhLu5jnwoN440+zRplK0joZWdECmNK6EgvUonQV4pj0TQOUeuLJfggQi94iBlImO60S3BQAb80ldpKYtX0hkDtkrr4wx/to3oXHjUjSij0lVCXCzSGbwCO0/awiVV3nxu24f6o1r89whxXZ7mpHcVd59zH5zuD4sPw/2Tg8Hh0fpxG2yPvWHvWcE+skN2xI7ZiEkW2S/2m/3J3mZfs5Ps+3Vp1lv37LJbkYl/UbjVPQ==</latexit>,

ABSTRACT INTERPRETATION : ‘A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d’Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con–
sists in using that denotation to describe compu–
tations in another universe of abstract objects,
so that the results of abstract execution give
some information on the actual computations. An
intuitive example (which we borrow from Sintzoff
172]) is the rule of signs. The text ‘1515* 17
may be understood to denote computations on the
abstract universe {(+), (-), (~)} where the se-
mantics of arithmetic operators is defined by the
rule of signs. The abstract execution -1515* 17
=> -(+) * (+) e> (–) * (+) => (–), proves that

–1515 * 17 is a negative number. Abstract interpre–
tation is concerned by a particular underlying
structure of the usual universe of computations
(the sign, in our example). It gives a summary of
some facets of the actual executions of a program.
In general this summary is simple to obtain but
inaccurate (e.g. –1515+17 => –(+)+(+) ‘>
(-)+(+) => (f)). Despite its fundamentally in-
complete results abstract interpretation allows
the programmer or the compiler to answer ques–
tions which,do not need full knowled~e of program
executions or which tolerate an imprecise answer,
(e.g. partial correctness proofs of programs ignO-
ring the termination problems, type checking, pro-
gram optimizations which are not carried in the
absence of certainty about their feasibility, . . .).

2. &unmary

Section 3 describes the syntax and mathematical
semantics of a simple flowchart language, Scott
and Strachey[71]. This mathematical semantics is
used in section 4 to built a more abstract model of
the semantics of programs, in that it ignores the
sequencing of control flow. This model is taken to
be the most concrete of the abstract interpretatiOns
of programs. Section 5 gives the formal definition
of the abstract interpretations of a program.

*

**

Attach= de Recherche au C.N.R.S., Laboratoire
Associ6 no 7.

This work was supported by IRIA–SESORI under
grants 75-035 and 75-160.

Abstract program properties are modeled by a com–
plete semilattice, Birkhoff[611. Elementary Pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate
a system of recursive equations with a program. The
program global properties are then defined as one
of the extreme fixpoints of that system, Tarski [55].
The abstraction process is defined in section 6. It
is shown that the program properties obtained by
an abstract interpretation of a program are consis–
tent with those obtained by a more refined inter–
pretation of that program. In particular, an ab–
stract interpretation may be shown to be consistent
with the formal semantics of the language. Levels
of abstraction are formalized by showing that con-
sistent abstract interpretations form a lattice
(section 7). Section 8 gives a constructive defi–
nition of abstract properties of programs based on
constructive definitions of fixpoints. It shows
that various classical algorithms such as Kildall
[731, Wegbreit[751 compute program properties as
limits of finite Kleene[52]’s sequences. Section
9 introduces finite fixpoint approximation methods
to be used when Kleene’ssequences are infinite,
Cousot[761. They are shown to be consistent with
the abstraction process. Practical examples illus–
trate the various sections. The conclusion points
out that abstract interpretation of programs is a
unified approach to apparently unrelated program
analysis techniques.

3’. Syntax and Semantics of programs

We will use finite flowcharts as a language inde–
pendent representation of progrems.

3.1 Syntax of a Progrwn

A program is built from a set “Nodes”. Each node
has successor and predecessor nodes :

n–succ, n–pred : Nodes+ 2Nodesl (men-succ(n))

<=>(ne n-pred(m))

Hereafter, we note ISl the cardinality of a set S.
~Jhen]Sl = 1 so that S = {~we sometimes use S to
denote x.

The node subsets “Entries”’, “Assignments’!, “Tests”,
“Junctions” and “Exits” partition the set Nodes.

– An entry node (n c Entries) has no predecess...
and one successor, ((n-nred(n) = @)”and “-’-
(In-succ(n)l = l)).

238

<latexit sha1_base64="etWVOJShfgJM4aU7P1p/OvRSKOI=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESGFJrIBAWWAhjKRyENKrOh82SSnnM/W3RoRWfkFWqjoEC2/Q8G/YBsXkDDVaGZXOzteKIVB2/60lpZXVtfWCxvFza3tnd3S3n7LBJHm0OSBDHTHYwakUNBEgRI6oQbmexLa3uQ29dsPoI0I1D1OQ3B9NlJiKDjDVLquNE76pbJdtTPQReLkpExy1Pulr94g4JEPCrlkxnQdO0Q3ZhoFlzAr9iIDIeMTNoJuQhXzwbhxlnVGjyPDMKAhaCokzUT4vREz35ip7yWTPsOxmfdS8T+vG+Hwyo2FCiMExdNDKCRkhwzXIikB6EBoQGRpcqBCUc40QwQtKOM8EaOklWLShzP//SJpnVadi+pZ47xcu8mbKZBDckQqxCGXpEbuSJ00CSdj8kSeyYv1aL1ab9b7z+iSle8ckD+wPr4BoDCSEg==</latexit>

A(Q)

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]
<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]

<latexit sha1_base64="6Jv4AV8qHP7Ccfz4J8IckOiUYGE=">AAACtHicjVFNbxMxEHW2fJTwlZYjF0OEVC7RbkGFS6UiLj0WQdpK2Sia9U6CVdu72OOgyNpzf02v8Fv4N3i3OZC2B+b09ObjzbwpaiUdpemfXrJ17/6Dh9uP+o+fPH32fLCze+oqbwWORaUqe16AQyUNjkmSwvPaIuhC4Vlx8bnNny3ROlmZb7SqcaphYeRcCqBIzQavPu3lGui7pPC1RtG85Ye8v8HMBsN0lHbBb4NsDYZsHSeznV7Iy0p4jYaEAucmWVrTNIAlKRQ2/dw7rEFcwAInERrQ6Kahu6Xhb7wDqniNlkvFOxL/7QignVvpIla2W7qbuZa8KzfxNP84DdLUntCIVoikwk7ICSujSchLaZEI2s2RS8MFWCBCKzkIEUkfXdsQdKTBrmwZjzL4U1Ragynj+TjHH03ofLSoQl54qcqIeL6MNlgJZhG18yqq8nDYNHf1e7n87xH5dXmcE9+V3XzObXC6P8oORu++vB8eHa8ft81estdsj2XsAztix+yEjZlgl+yK/WK/k4MkT0SC16VJb93zgm1EYv4C+7nbpw==</latexit>

A(Spec) = Spec

<latexit sha1_base64="OBCCJhZikWaVP+fMIo/buEs6Gbw=">AAACrnicjVFLb9NAEN6YVymvFI69rIiQyiWyAUEvSEVcemwFSSvFVjReT9JVd9fu7myqaOUDv4Yr/Bz+DWs3B/o4MKdP3zy+mW/KRklHafpnkNy7/+Dho63H20+ePnv+YrjzcupqbwVORK1qe1qCQyUNTkiSwtPGIuhS4Ul5/rXLn6zQOlmb77RusNCwNHIhBVCk5sPdL3vHb3PnS4eEFzzXQGeSwrcGRTsfjtJx2ge/DbINGLFNHM13BiGvauE1GhIKnJtlaUNFAEtSKGy3c++wAXEOS5xFaECjK0J/RcvfeAdU8wYtl4r3JP7bEUA7t9ZlrOy2dDdzHXlXbuZpsV8EaRpPaEQnRFJhL+SEldEe5JW0SATd5sil4QIsEKGVHISIpI9+XRN0pMGubRWPMngpaq3BVPF8XOBFG3ofLaqQl16qKiKer6INVoJZRu28jqo8fG7bu/q9XP33iPyqPM6J78puPuc2mL4bZx/H748/jA4ON4/bYrvsNdtjGfvEDtghO2ITJtgP9pP9Yr+TNJkmRTK/Kk0Gm55X7FokZ38BJHnZtw==</latexit>

A(Q) ✓ Spec

Locally Complete
Abstraction

<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

The idea

Completeness in
Abstract Interpretation

Abstract Interpretation (Mathematically)

A concrete
complete lattice α

γ

An abstract
complete lattice

$

c ≤ γ(a) α(c) ≤ a⇔A Galois connection

A Galois insertion id = α ∘ γ : A → A

A = γ ∘ α : C → CClosure operator

(is injective)γ

(is idempotent)A

Abstract Interpretation (by example)

℘(ℤ)

A concrete
complete lattice

An abstract
complete lattice

{−16, − 8, − 4, − 2,0}

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

ú

Z<0 Z=0 Z>0

Z0 Z<0 Z�0

ZSign

Fig. 1. Abstract Domain for Sign Analysis.

making the proof of (in)correctness useless or poorly trustworthy. This is a consequence of the
approximation inherent in the need to make an otherwise undecidable analysis decidable. As all
alarming systems, program analysis is credible (and useful) to decide correctness and incorrectness,
when few false-alarms are reported, ideally none. In this case, we say that the abstract interpreter
is complete for our program under analysis. As an illustrative example, consider the program

Abs(G) =4 if (G � 0) then skip else G := �G

computing the absolute value of integer variables. The well-known interval abstraction Int ap-
proximates any property (2 ®(Z) of the integer values that G may assume by the least interval
Int(() = [0,1] such that (✓ [0,1], where 0  1, 0 2 Z [{�1} and 1 2 Z [{+1}. Int is clearly
incomplete for Abs. Assume we know that the variable G can just assume an odd value. Then, it turns
out that the best correct approximation of Abs we can compute in Int can introduce false-alarms:

Int(Abs({G | G is odd})) = Int({G | G is odd, G � 0}) = [1, +1],
Int(Abs(Int({G | G is odd}))) = Int(Abs([�1, +1])) = Int({G | G � 0}) = [0, +1] .

Since [1, +1] ([0, +1], it means that Int is incomplete for Abs on input � = {G | G is odd}. This
can cause a problem in veri�cation: even if no input will be zero, an interval analysis of Abs(G) may
produce a false-alarm, for instance whenever used as divisor in an integer division. As it is often
the case (cf. [Giacobazzi et al. 2015]), the problem with this program Abs resides in the Boolean
guard G � 0, that is not complete when the input � is abstracted in Int.
Completeness intuitively encodes the greatest achievable precision for an abstract transfer

function, meaning that it exactly matches the abstraction of its concrete counterpart. The problem
of constructively making abstract domains complete by either domain re�nement (i.e., increasing
abstract domain precision) or by domain simpli�cation (i.e., reducing abstract domain precision)
has been settled in [Giacobazzi et al. 2000]. The most abstract re�nement, called complete shell,
of an abstract domain � always exists for Scott continuous concrete transfer functions — hence
for all computable functions — and it can be constructively de�ned as solution of a recursive
abstract domain equation. As a classical simple example, we can consider the rule of signs domain
(see Figure 1). Sign is an abstraction of Int and is sound and complete for integer multiplication
but merely sound for addition. As proved in [Giacobazzi et al. 2000], the complete shell of Sign
for binary addition is the most abstract domain upper approximating sets of integers which is
complete for integer addition of their elements, which turns out to be precisely Int. Although
extremely powerful, this notion has an intrinsic global �avor: The complete shell of an abstract
domain with respect to a semantic transfer function 5 makes the abstract domain complete for 5
on all possible inputs. Instead, a program computation corresponds to a speci�c sequence (i.e., trace)
of applications of concrete transfer functions. Hence, this method does not allow us to tailor the
abstraction re�nement to the speci�c shape of a computational trace of interest. As a result, the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

α

γ

$

α

{ . . . , − 3, − 2, − 1,0}

γ

,-./

Abstract Interpretation (as closure)

Ø

{1} {2} {3} {4} {5}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5}

{1,2,3,4,5}℘({1,2,3,4,5}) Odd&Even

expressible
elements

Abstract Interpretation (as closure)

Ø

{1} {2} {3} {4} {5}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5}

{1,2,3,4,5} LessMoreThan3℘({1,2,3,4,5})

Abstract Interpretation (as closure)

Ø

{1} {2} {3} {4} {5}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5}

{1,2,3,4,5}

Must be closed
under meet!

(Moore closure)

LessMoreThan3℘({1,2,3,4,5})

Soundness (by construction)

#

α

f

$$
f ♯

α Abstract interpretation
computes over-approximations!
(ok to prove absence of bugs)

α ∘ f ≤ f ♯ ∘ α

≥

Best correct approximation (bca)

#

$$

#
f

f A

αγ

≜
As much precise as possible!

f A ≤ f ♯

Completeness (maximal precision)

α

#

$$

#
f

f ♯

α

α ∘ f = f ♯ ∘ α

A f = A f A
in terms of closures, requires:

It must be the bca!

f A ∘ α
≤ ≤

=

Program Analysis with
Abstract Interpretation

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

we consider its bcas JeK� on �, i.e., we assume that no additional loss of precision is due to their
abstract interpretation. Let us remark that (2) is the standard de�nition by structural induction of
abstract semantics used in abstract interpretation [Cousot 2021; Rival and Yi 2020], instantiated
to the language of regular commands. Therefore, the abstract semantics of the choice command
preserves bcas, namely Jr1 � r2K�0 = Jr1K�0 _� Jr2K�0, whereas this preservation of bcas does not
hold, in general, for sequential composition and Kleene iteration: for example, Jr2K� � Jr1K� is not
guaranteed to be the bca Jr1; r2K�. On the other hand, it can be easily seen, by structural induction,
that all the de�nitions in (2) preserve completeness, meaning that if Jr1K•�, Jr2K

•
�, JrK

•
� are complete,

then Jr1; r2K•�, Jr1 � r2K•� and Jr⇤K•� are complete as well.

Programs. We consider standard basic transfer expressions used in deterministic while programs:
no-op instruction, assignments and Boolean guards, as de�ned below:

AExp 3 a ::= E 2 Z | G 2 Var | a + a | a � a | a ⇤ a
BExp 3 b ::= tt | � | a = a | a < a | a  a | b ^ b | ¬b
Exp 3 e ::= skip | G := a | b?

where, for simplicity, we consider just integer values and variables G 2 Var . A standard deterministic
imperative language such as Winskel [1993]’s Imp can be easily retrieved using guarded branching
and loop commands as syntactic sugar (cf. [Kozen 1997, Section 2.2]):

if (b) then c1 else c2 =4 (b?; c1) � (¬b?; c2) while (b) do c =4 (b?; c)⇤ ; ¬b?
A program store f : + ! Z is a total function from a �nite set of variables of interest + ✓ Var

to values and Σ =4 + ! Z denotes the set of stores on the variables ranging in a set + that is left
implicit. The concrete domain is therefore S =4 ®(Σ), ordered by inclusion. Store update is de�ned
as usual and lifted to sets (2 S: ([G 7! E] =4 {f [G 7! E] | f 2 (}. The semantics LeM : S! S of
basic transfer expressions is standard:

LskipM(=4 (, LG := aM(=4 {f [G 7! {|a|} f] | f 2 (}, Lb?M(=4 {f 2 (| {|b|} f = tt},
where {|a|} : Σ ! Z and {|b|} : Σ ! {tt,�} are inductively de�ned as expected. For brevity, we
overload b to denote the set Lb?MΣ of all and only stores that satisfy b, so that Lb?M(= (\b �lters the
concrete stores in (making b true. For programs with only one variable, i.e.,+ = {G}, ®(Z) denotes
the sets of stores in S, i.e., (2 ®(Z) is the set {f 2 ⌃ | f (G) 2 (} 2 S. Accordingly, Abs(®(Z)) will
represent Abs(S). The standard strongest post-condition for r on pre-condition % 2 S is therefore
post[r]% =4 JrK% . Analogously, the abstract post-condition is post� [r]U (%) =

4 JrK•�U (%).

3 MAKING ABSTRACT INTERPRETATIONS LOCALLY COMPLETE
The completeness property �5 = �5 � of an abstract domain � w.r.t. a transfer function 5 is,
to some extent, a global property, in the sense that it requires an equality between functions
and therefore is universally quanti�ed on all possible inputs ranging in the concrete domain, i.e.,
82 2 ⇠ . �5 (2) = �5 �(2). In program analysis, the semantic functions 5 are given by the collecting
semantics JeK of basic expressions e, e.g. Boolean guards and variable assignments for imperative
programs, and the corresponding concrete domain is the set of all possible input store properties.
It turns out that only trivial abstract domains can be globally complete for Turing complete
languages [Bruni et al. 2020; Giacobazzi et al. 2015]. While completeness can be hard/impossible to
achieve globally, as argued by Bruni et al. [2021], it may well happen that completeness holds locally,
i.e. just for some input properties, thus giving grounds for investigating a more general notion
of local completeness in program analysis. In this section, we investigate whether and how local
completeness can be constructively characterized and then we explore how to “repair” an abstract

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Regular commands

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Abstract Interpretation Repair 1:7

between closures and GIs, hAbs(⇠), v,t,u, _G .>⇠ , id⇠i denotes the well-known lattice of abstract
interpretations [Cousot and Cousot 1979, Section 8], where �0 v � means that �0 is more precise
than (i.e., is a re�nement of) �, and one can consider the most concrete simpli�cation (i.e., lub
t) and the most abstract re�nement (i.e., glb u) of any family of abstract domains; in particular,
recall that �0 v � holds when � ✓ �0 and, consequently, that a lub of a set X ✓ Abs(⇠) of abstract
domains coincides with their intersection, i.e., t{� | � 2 X} = \{� | � 2 X} holds. In the rest of
the paper, we will abuse notation, and often write � for a corresponding closure W�U�, for instance,
we write Int({�2, 5}) = [�2, 5] in the case of the interval abstract domain. Given� 2 Abs(⇠) and a
set of concrete elements # ✓ ⇠ we de�ne � ⌦ # =4 M(� [#) to be the re�nement of � obtained
by adding the (possibly) new concrete elements in # . Using the shorthand �# for � ⌦ # , and, in
particular, �I for � ⌦ {I}, it turns out that for all 2 2 ⇠ ,

�# (2) = ^{G 2 # [{�(2)} | 2  G}, �I (2) =
(
I ^�(2) if 2  I,

�(2) otherwise.

The domain �= is called a pointed re�nement of �.

2.2 Syntax and Semantics of Regular Commands
Following O’Hearn [2020] and Bruni et al. [2021] (see also [Winskel 1993, Chapter 14]), we consider
a simple language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative languages as well as other programming
paradigms including, e.g., nondeterministic and probabilistic computations and equational systems
such as Kleene algebras with tests [Kozen 1997, 2000]. This language is parametric on the syntax
of basic transfer expressions (or functions) e 2 Exp, which de�ne the basic commands. These can
be instantiated with di�erent kinds of instructions such as (deterministic or nondeterministic or
parallel) assignments, (Boolean) guards or assumptions, error generation primitives, etc. Moreover,
regular commands represent in a compact way the structure of control-�ow graphs (CFGs) of
imperative programs. The term r1; r2 represents sequential composition, r1 � r2 a choice command
that can behave as either r1 or r2, and r⇤ is the Kleene iteration of r where r can be executed 0 or
any bounded number of times in a sequence. We write r= for the sequence r; ...; r of = instances of r.

Concrete semantics. We assume that basic transfer expressions have a semantics L ·M : Exp ! ⇠ ! ⇠
on a complete lattice⇠ such that LeM is an additive function. This assumption can be done w.l.o.g. in
Hoare-like (i.e., collecting) program semantics, since the basic transfer functions are always de�ned
by additive lifting. In turn, the concrete semantics J·K : Reg ! ⇠ ! ⇠ of regular commands is
inductively de�ned as follows:

JeK2 =4 LeM2 Jr1 � r2K2 =4 Jr1K2 _ Jr2K2
Jr1; r2K2 =4 Jr2K(Jr1K2) Jr⇤K2 =4 ‘{JrK=2 | = 2 N} (1)

Abstract Semantics. The abstract semantics of regular commands J·K•� : Reg ! � ! � on an
abstract domain � 2 Abs(⇠) is de�ned by structural induction as follows:

JeK•�0 =4 JeK�0 = �(LeM0) Jr1 � r2K•�0 =4 Jr1K•�0 _� Jr2K•�0

Jr1; r2K•�0 =4 Jr2K•� (Jr1K
•
�0) Jr⇤K•�0 =4

‘
�{(JrK•�)=0 | = 2 N}

(2)

It is easily seen, by structural induction, that the abstract semantics (2) is monotonic and sound,
i.e., � � JrK v JrK•� �� holds. Let us point out that as abstract semantics of a basic expression e

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

Authorized licensed use limited to: University of Pisa. Downloaded on June 14,2023 at 17:07:21 UTC from IEEE Xplore. Restrictions apply.

Collecting semantics

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v 2 Z | x 2 Var | a+ a | a� a | a ⇤ a
BExp 3 b ::= tt | ff | a = a | a < a | a  a | b ^ b | b _ b | ¬b
Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4
(b?; c1) � (¬b?; c2)

while (b) do c =
4
(b?; c)⇤ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store � : V ! Z is a total function from a finite
set of variables of interest V ✓ Var to values and ⌃ =

4
V ! Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
}(⌃),

ordered by inclusion. Store update [x 7! v] is defined as usual:
S[x 7! v] =

4 {�[x 7! v] | � 2 S} where

�[x 7! v](y) =
4

⇢
v if y = x
�(y) otherwise

The semantics LeM : S ! S of basic transfer expressions is:

LskipMS =
4

S Lx := aMS =
4 {�[x 7! {|a|}�] | � 2 S}

Lb?MS =
4 {� 2 S | {|b|}� = tt}

where {|a|} : ⌃ ! Z and {|b|} : ⌃ ! {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M⌃ of all and only stores that satisfy b, so that Lb?MS =
S \b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P 2 S is thus
post[r]P =

4 JrKP . Analogously, postA[r]↵(P) =
4 JrK]A↵(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, }(Z) will be
used to represent sets of stores in S, i.e., S 2 }(Z) represents
the set {� 2 ⌃ | �(x) 2 S} 2 S. Accordingly, Abs(}(Z))
will represent Abs(S). For example, {�2, 2} will be used to
represent a more verbose expression such as x = �2_x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

8S 2 S . A(S \ b) = A(A(S) \ b) &

A(S \ ¬b) = A(A(S) \ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A 2 Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map ↵ or,
equivalently, an additivity requirement for the concretization
map �. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in A↵,� 2 Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

8S 2 S . ↵(S \ b) = ↵(S) ^A ↵(b) &

↵(S \ ¬b) = ↵(S) ^A ↵(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., ↵(b) and ↵(¬b), is
also expressible in A (see Example III.4).

and ↵ and � are called, resp., abstraction and concretization
maps. We only consider GCs such that ↵� = idA, called
Galois insertions (GIs), where ↵ is onto and � is 1-1. Let
us recall that ↵ is additive and � is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
A↵,� 2 Abs(C) to make explicit the maps h↵, �i. An abstract
domain A↵,� 2 Abs(C) is strict when �(?A) = ? and a
concrete value c 2 C is expressible in A when �↵(c) = c,
while if c < �↵(c) holds then c is (strictly) approximated in
A. Notice that �(A) and C r �(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., �↵ = id) or it is a singleton (i.e., �↵ = �x.>).

1) Correctness: Given an abstract domain A↵,� 2 Abs(C)
and a concrete operation f : C ! C (a generalization
to n-ary functions of type Cn ! C can be easily done
pointwise), an abstract function f] : A ! A is a correct
(or sound) approximation of f when ↵f A f]↵ holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
↵(lfp(f)) A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
↵ � f � �. Any

other abstract function f] : A ! A is a correct approximation
of f iff fA A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if ↵ � f = f] �↵ holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A ! A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness ↵(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A ! A such that
completeness ↵ � f = f] �↵ holds iff ↵ � f = ↵ � f � � �↵ iff
(�↵) � f = (�↵) � f � (�↵) = � � fA �↵. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A 2 Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function �↵ : C ! C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({�7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ,4 A � f = A � f �A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e 2 Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 � r2 represents a choice command
that can behave as either r1 or r2, and the term r⇤ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r 2 Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp ! C ! C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg ! C ! C of regular commands is
inductively defined as follows:

JeKc =4 LeMc Jr1 � r2Kc =
4 Jr1Kc _ Jr2Kc

Jr1; r2Kc =
4 Jr2K(Jr1Kc) Jr⇤Kc =4

W
{JrKnc | n 2 N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg ! A ! A on an abstract domain
A↵,� 2 Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (↵ � JeK � �)a

Jr1; r2K]Aa =
4 Jr2K]A(Jr1K

]
Aa)

Jr1 � r2K]Aa =
4 Jr1K]Aa _A Jr2K]Aa

Jr⇤K]Aa =
4 W

A{(JrK
]
A)

na | n 2 N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
↵ � JrK A JrK]A �↵ holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1� r2KAa =
Jr1KAa_AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA � Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K]A, Jr2K

]
A, JrK

]
A are complete, then Jr1; r2K]A,

Jr1 � r2K]A and Jr⇤K]A are complete as well.

and ↵ and � are called, resp., abstraction and concretization
maps. We only consider GCs such that ↵� = idA, called
Galois insertions (GIs), where ↵ is onto and � is 1-1. Let
us recall that ↵ is additive and � is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
A↵,� 2 Abs(C) to make explicit the maps h↵, �i. An abstract
domain A↵,� 2 Abs(C) is strict when �(?A) = ? and a
concrete value c 2 C is expressible in A when �↵(c) = c,
while if c < �↵(c) holds then c is (strictly) approximated in
A. Notice that �(A) and C r �(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., �↵ = id) or it is a singleton (i.e., �↵ = �x.>).

1) Correctness: Given an abstract domain A↵,� 2 Abs(C)
and a concrete operation f : C ! C (a generalization
to n-ary functions of type Cn ! C can be easily done
pointwise), an abstract function f] : A ! A is a correct
(or sound) approximation of f when ↵f A f]↵ holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
↵(lfp(f)) A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
↵ � f � �. Any

other abstract function f] : A ! A is a correct approximation
of f iff fA A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if ↵ � f = f] �↵ holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A ! A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness ↵(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A ! A such that
completeness ↵ � f = f] �↵ holds iff ↵ � f = ↵ � f � � �↵ iff
(�↵) � f = (�↵) � f � (�↵) = � � fA �↵. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A 2 Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function �↵ : C ! C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({�7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ,4 A � f = A � f �A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e 2 Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 � r2 represents a choice command
that can behave as either r1 or r2, and the term r⇤ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r 2 Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp ! C ! C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg ! C ! C of regular commands is
inductively defined as follows:

JeKc =4 LeMc Jr1 � r2Kc =
4 Jr1Kc _ Jr2Kc

Jr1; r2Kc =
4 Jr2K(Jr1Kc) Jr⇤Kc =4

W
{JrKnc | n 2 N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg ! A ! A on an abstract domain
A↵,� 2 Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (↵ � JeK � �)a

Jr1; r2K]Aa =
4 Jr2K]A(Jr1K

]
Aa)

Jr1 � r2K]Aa =
4 Jr1K]Aa _A Jr2K]Aa

Jr⇤K]Aa =
4 W

A{(JrK
]
A)

na | n 2 N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
↵ � JrK A JrK]A �↵ holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1� r2KAa =
Jr1KAa_AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA � Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K]A, Jr2K

]
A, JrK

]
A are complete, then Jr1; r2K]A,

Jr1 � r2K]A and Jr⇤K]A are complete as well.

and ↵ and � are called, resp., abstraction and concretization
maps. We only consider GCs such that ↵� = idA, called
Galois insertions (GIs), where ↵ is onto and � is 1-1. Let
us recall that ↵ is additive and � is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
A↵,� 2 Abs(C) to make explicit the maps h↵, �i. An abstract
domain A↵,� 2 Abs(C) is strict when �(?A) = ? and a
concrete value c 2 C is expressible in A when �↵(c) = c,
while if c < �↵(c) holds then c is (strictly) approximated in
A. Notice that �(A) and C r �(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., �↵ = id) or it is a singleton (i.e., �↵ = �x.>).

1) Correctness: Given an abstract domain A↵,� 2 Abs(C)
and a concrete operation f : C ! C (a generalization
to n-ary functions of type Cn ! C can be easily done
pointwise), an abstract function f] : A ! A is a correct
(or sound) approximation of f when ↵f A f]↵ holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
↵(lfp(f)) A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
↵ � f � �. Any

other abstract function f] : A ! A is a correct approximation
of f iff fA A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if ↵ � f = f] �↵ holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A ! A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness ↵(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A ! A such that
completeness ↵ � f = f] �↵ holds iff ↵ � f = ↵ � f � � �↵ iff
(�↵) � f = (�↵) � f � (�↵) = � � fA �↵. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A 2 Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function �↵ : C ! C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({�7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ,4 A � f = A � f �A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e 2 Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 � r2 represents a choice command
that can behave as either r1 or r2, and the term r⇤ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r 2 Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp ! C ! C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg ! C ! C of regular commands is
inductively defined as follows:

JeKc =4 LeMc Jr1 � r2Kc =
4 Jr1Kc _ Jr2Kc

Jr1; r2Kc =
4 Jr2K(Jr1Kc) Jr⇤Kc =4

W
{JrKnc | n 2 N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg ! A ! A on an abstract domain
A↵,� 2 Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (↵ � JeK � �)a

Jr1; r2K]Aa =
4 Jr2K]A(Jr1K

]
Aa)

Jr1 � r2K]Aa =
4 Jr1K]Aa _A Jr2K]Aa

Jr⇤K]Aa =
4 W

A{(JrK
]
A)

na | n 2 N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
↵ � JrK A JrK]A �↵ holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1� r2KAa =
Jr1KAa_AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA � Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K]A, Jr2K

]
A, JrK

]
A are complete, then Jr1; r2K]A,

Jr1 � r2K]A and Jr⇤K]A are complete as well.

and ↵ and � are called, resp., abstraction and concretization
maps. We only consider GCs such that ↵� = idA, called
Galois insertions (GIs), where ↵ is onto and � is 1-1. Let
us recall that ↵ is additive and � is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
A↵,� 2 Abs(C) to make explicit the maps h↵, �i. An abstract
domain A↵,� 2 Abs(C) is strict when �(?A) = ? and a
concrete value c 2 C is expressible in A when �↵(c) = c,
while if c < �↵(c) holds then c is (strictly) approximated in
A. Notice that �(A) and C r �(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., �↵ = id) or it is a singleton (i.e., �↵ = �x.>).

1) Correctness: Given an abstract domain A↵,� 2 Abs(C)
and a concrete operation f : C ! C (a generalization
to n-ary functions of type Cn ! C can be easily done
pointwise), an abstract function f] : A ! A is a correct
(or sound) approximation of f when ↵f A f]↵ holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
↵(lfp(f)) A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
↵ � f � �. Any

other abstract function f] : A ! A is a correct approximation
of f iff fA A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if ↵ � f = f] �↵ holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A ! A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness ↵(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A ! A such that
completeness ↵ � f = f] �↵ holds iff ↵ � f = ↵ � f � � �↵ iff
(�↵) � f = (�↵) � f � (�↵) = � � fA �↵. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A 2 Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function �↵ : C ! C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({�7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ,4 A � f = A � f �A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e 2 Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 � r2 represents a choice command
that can behave as either r1 or r2, and the term r⇤ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r 2 Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp ! C ! C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg ! C ! C of regular commands is
inductively defined as follows:

JeKc =4 LeMc Jr1 � r2Kc =
4 Jr1Kc _ Jr2Kc

Jr1; r2Kc =
4 Jr2K(Jr1Kc) Jr⇤Kc =4

W
{JrKnc | n 2 N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg ! A ! A on an abstract domain
A↵,� 2 Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (↵ � JeK � �)a

Jr1; r2K]Aa =
4 Jr2K]A(Jr1K

]
Aa)

Jr1 � r2K]Aa =
4 Jr1K]Aa _A Jr2K]Aa

Jr⇤K]Aa =
4 W

A{(JrK
]
A)

na | n 2 N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
↵ � JrK A JrK]A �↵ holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1� r2KAa =
Jr1KAa_AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA � Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K]A, Jr2K

]
A, JrK

]
A are complete, then Jr1; r2K]A,

Jr1 � r2K]A and Jr⇤K]A are complete as well.

Abstract semantics

and ↵ and � are called, resp., abstraction and concretization
maps. We only consider GCs such that ↵� = idA, called
Galois insertions (GIs), where ↵ is onto and � is 1-1. Let
us recall that ↵ is additive and � is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
A↵,� 2 Abs(C) to make explicit the maps h↵, �i. An abstract
domain A↵,� 2 Abs(C) is strict when �(?A) = ? and a
concrete value c 2 C is expressible in A when �↵(c) = c,
while if c < �↵(c) holds then c is (strictly) approximated in
A. Notice that �(A) and C r �(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., �↵ = id) or it is a singleton (i.e., �↵ = �x.>).

1) Correctness: Given an abstract domain A↵,� 2 Abs(C)
and a concrete operation f : C ! C (a generalization
to n-ary functions of type Cn ! C can be easily done
pointwise), an abstract function f] : A ! A is a correct
(or sound) approximation of f when ↵f A f]↵ holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
↵(lfp(f)) A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
↵ � f � �. Any

other abstract function f] : A ! A is a correct approximation
of f iff fA A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if ↵ � f = f] �↵ holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A ! A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness ↵(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A ! A such that
completeness ↵ � f = f] �↵ holds iff ↵ � f = ↵ � f � � �↵ iff
(�↵) � f = (�↵) � f � (�↵) = � � fA �↵. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A 2 Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function �↵ : C ! C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({�7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ,4 A � f = A � f �A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r � r | r⇤

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e 2 Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 � r2 represents a choice command
that can behave as either r1 or r2, and the term r⇤ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r 2 Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp ! C ! C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg ! C ! C of regular commands is
inductively defined as follows:

JeKc =4 LeMc Jr1 � r2Kc =
4 Jr1Kc _ Jr2Kc

Jr1; r2Kc =
4 Jr2K(Jr1Kc) Jr⇤Kc =4

W
{JrKnc | n 2 N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg ! A ! A on an abstract domain
A↵,� 2 Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (↵ � JeK � �)a

Jr1; r2K]Aa =
4 Jr2K]A(Jr1K

]
Aa)

Jr1 � r2K]Aa =
4 Jr1K]Aa _A Jr2K]Aa

Jr⇤K]Aa =
4 W

A{(JrK
]
A)

na | n 2 N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
↵ � JrK A JrK]A �↵ holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1� r2KAa =
Jr1KAa_AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA � Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K]A, Jr2K

]
A, JrK

]
A are complete, then Jr1; r2K]A,

Jr1 � r2K]A and Jr⇤K]A are complete as well.

Just a composition of bcas!

Intervals
Elements of A:

• the empty set of values

• , ,

⊥
(n0, n1) n0 ∈ (ℤ ∪ {−∞}) n1 ∈ (ℤ ∪ {+∞}), n0 ≤ n1

 is the interval inclusion⊑

[−∞, + ∞]

⊥
<latexit sha1_base64="8IIMEhBJ5MtV+AbWSf2l7Uq3i7U=">AAADdXicjVJLb9NAEN7YPEpoIS1HhLQiUBXRBhuVx6VSBReORSJtpdiK1ut1s+o+rN1xiWX5h3LgzE/gyiZxJCfhkJFW+2lmvvlmRpPkglsIgl8dz793/8HDnUfdx7t7T5729g8urS4MZUOqhTbXCbFMcMWGwEGw69wwIhPBrpLbr7P41R0zlmv1A8qcxZLcKJ5xSsC5xvudu8OIiHxCjuibsyjRgCOZ6GmFeYZrehYxmUNpGRxHUbeViUdYcoUdPMaSTN0frxAjpaFFxsvsZRJRKa4XRLz0sakb19a4pYSdVEvpbcRVBuWWUuuFNyY4WZTbdoKm262rrnerYcLMT27ZbMRxrx8MgrnhTRA2oI8auxj3/kSppoVkCqgg1o7CIIe4IgY4FazuRoVlOaG35IaNHFREMhtX8wOp8WvnSXGmjXsK8NzbZlREWlvKxGVKAhO7Hps5/xcbFZB9jiuu8gKYoguhrBAYNJ5dG065YRRE6QChhrteMZ0QQyi4m1xRsSCJKU1au82E63vYBJfvB+HHwYfvp/3zL82OdtBz9BIdoRB9QufoG7pAQ0Q7vz3f2/X2vL/+C/+Vf7hI9ToN5xlaMf/dP067ElA=</latexit>

↵(c) = ? if c = ;,
↵(c) = [min(c),max(c)] if c 6= ;,min(c) and max(c) exists

↵(c) = [min(c),+1] if c 6= ;,min(c) exists

↵(c) = [�1,max(c)] if c 6= ;,max(c) exists

↵(c) = [�1,+1] otherwise

<latexit sha1_base64="auJurYNxGqazMyJnZF6Ja4qLQbM=">AAAC+XicfVLLatwwFJXdVzJ9TdplN6JDIaHtYJcmLQyB0G6yTKGThI6MkTXyRESSHem6YNxZd5t8Qncl235Nv6AfkU3lB2UmGXpB4nDuPederpTkUlgIgt+ef+v2nbv31tZ79x88fPS4v/Hk0GaFYXzMMpmZ44RaLoXmYxAg+XFuOFWJ5EfJ6cc6f/SVGysy/RnKnEeKzrRIBaPgqLh/RWZUKbpJkgzw1i6pyJyQXkdOdBy80nEYtZmRJkJjoiicJEn1ZU5GZPSNjLCrIpKfYd3ecbjk8dqJUigbn61dvNKncVmprid42Tr8V70wxKrmixb/lHF/EAyDJvBNEHZggLo4iPt/yDRjheIamKTWTsIgh6iiBgSTfN4jheU5Zad0xicOaqq4jarmkeb4hWOmOM2MOxpwwy4qKqqsLVXiKusJ7fVcTa7KTQpI30eV0HkBXLO2UVpIDBmuXxxPheEMZOkAZUa4WTE7oYYycP9iqYsFRU1ppvVmwut7uAkO3wzDneH2p7eDvQ/djtbQM/QcbaIQvUN7aB8doDFiHvW+e+fehV/5P/yf/mVb6nud5ilaCv/XX0bt7ao=</latexit>

�(?) = {}
�([n0, n1]) = { n 2 Z | n0  n  n1}

�([�1, n1]) = { n 2 Z | n  n1}
�([n0,+1]) = { n 2 Z | n0  n}

�([�1,+1]) = Z

… …

…

An example of program analysis: Intervals domain

(x < 0) x := − x

An example of program analysis

Concrete
P = {−7,0}

" = -3 (x < 0) 456/ x := − x

(x < 0) x := − x

An example of program analysis

Concrete
P = {−7,0}

" = -3 (x < 0) 456/ x := − x

{−7}

{0}

(x < 0) x := − x

An example of program analysis

Concrete
P = {−7,0}

" = -3 (x < 0) 456/ x := − x

{0}

{7}

(x < 0) x := − x

An example of program analysis

Concrete
P = {−7,0}

" = -3 (x < 0) 456/ x := − x

{0,7} = [["]]P

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

{0,7} = [["]]P

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

P ⊆ A(P)

{0,7} = [["]]P

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7} = [["]]P

(x < 0) x := − x

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7} = [["]]P

(x < 0) x := − x

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]
[−7, − 1]

[0,0]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7} = [["]]P

(x < 0) x := − x

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

[0,0]

[1,7]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7} = [["]]P

(x < 0) x := − x

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7}

[0,7]

⊆ [["]]♯A(P)

= [["]]♯A(P)

= [["]]P

(x < 0) x := − x

(x < 0) x := − x

An example of program analysis

Abstract (ex. Intervals)

Concrete

over-approximations are
good for proving correctness
but not for bug finding!

P = {−7,0}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,0]

P ⊆ A(P) [["]]P ⊆ A([["]]P)

[0,7] = A([["]]P)

{0,7}

[0,7]

= Complete analysis!
⊆ [["]]♯A(P)

= [["]]♯A(P)

= [["]]P

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

P ⊆ A(P) [["]]P ⊆

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

A(P) = [−7,7]

P ⊆ A(P) [["]]P ⊆

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

{−7}

{7}

A(P) = [−7,7]
[−7, − 1]

[0,7]

P ⊆ A(P) [["]]P ⊆

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

{7}

{7}

A(P) = [−7,7]

[0,7]

[1,7]

P ⊆ A(P) [["]]P ⊆

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

{7}

A(P) = [−7,7] [0,7]

P ⊆ A(P) [["]]P ⊆

= [["]]♯A(P)

= [["]]P

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

{7}

A(P) = [−7,7] [0,7]

P ⊆ A(P) [["]]P ⊆

[7,7] = A([["]]P)
= [["]]♯A(P)

= [["]]P

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

(x < 0) x := − x

(x < 0) x := − x

Completeness vs Incompleteness

Abstract (ex. Intervals)

Concrete
P = {−7,7}

" = -3 (x < 0) 456/ x := − x

{7}

A(P) = [−7,7] [0,7]

P ⊆ A(P) [["]]P ⊆

[7,7] = A([["]]P)
≠ Incomplete analysis!

= [["]]♯A(P)

= [["]]P

over-approximations are
good for proving correctness
but not for bug finding!

A([["]]P) ⊆ [["]]♯A(P)

Completeness + Turing Equivalence = Trivial domains

Th. Only trivial abstractions are complete
for Turing equivalent programming languages

A = Id ∨ A = λ S . ⊤

Th. Completeness depends only on the
basic expressions allowed in the syntax
(guards and assignments)

e.g. Int is (non-trivial and) complete for any assignment

Sources of Incompleteness
and Local Completeness

Guards are hard to handle

Th. A domain can be complete only for guards
that are expressible in it

e.g. Int cannot be complete for x=0
 (because (x≠0) is not expressible in Int)

What if we add the abstract point x≠0?
After Moore closure: intervals with or without holes in zero
The domain is no longer complete for sums!:/4≠0

Necessary and sufficient conditions for guard completeness

Th. A domain is complete for b?/-b? iff
it contains any union of abstract points below b/-b

⊥

b¬b

a1 a2

a1 ∨ a2

Necessary and sufficient conditions for guard completeness

Th. A domain is complete for b?/-b? iff
it contains any union of abstract points below b/-b

e.g. Int is not complete for x≤0/x>0
 (because x<-2 is expressible and below x≤0
 x>2 is expressible and below x>0
 but (x<-2 or x>2) is not expressible in Int)

Local Completeness

Global completeness

A f = A f A
∀c . A f (c) = A f A (c)

Local completeness at c

A f (c) = A f A (c)

We must abandon the ambition of being complete
for every program and for every input!

Local completeness is about a given program and a given input

ℂA
c (f)

Locally Complete Analysis

Th.

Q ≤ [["]]P ∧ [["]]♯A(P) = A(Q) ∧ S = A(S) ⇒

Verification

([["]]P ≤ S ⇔ Q ≤ S)

Q ≤ [["]]P

∧ [["]]♯A(P) = A(Q)

⇒ A(Q) ≤ A([["]]P) ≤ [["]]♯A(P)

⇒ A([["]]P) = [["]]♯A(P)

∧ S = A(S) ⇒ [["]]P ≤ S ⇔ A([["]]P) ≤ A(S) = S
⇔ A(Q) ≤ A(S) = S ⇔ Q ≤ S

under-approx + local completeness + spec expressible

Local Completeness Logic
(LCL)

The Rules of LCL

CA
P (e)

`A [P] e [JeKP]
(transfer)

P 0  P  A(P 0) `A [P 0] r [Q0] Q  Q0  A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 � r2 [Q1 _Q2]
(join)

`A [P] r [R] `A [P _R] r⇤ [Q]

`A [P] r⇤ [Q]
(rec)

`A [P] r [Q] Q  A(P)

`A [P] r⇤ [P _Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)
`Int [P] b1? [P]

(transfer)
CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)
`Int [P] b2? [P]

(transfer)
CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 � r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx  0?K)

`Sign [P] x  0? [{�10,�1}]
(transfer)

CSign{�10,�1}(Jx := x ⇤ 10K)

`Sign [{�10,�1}] x := x ⇤ 10 [{�100,�10}]
(transfer)

`Sign [P] x  0?; x := x ⇤ 10 [{�100,�10}] {�100,�10} ✓ Sign(P) = Z 6=0
(seq)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100,�10,�1, 100}] {�100, 100} ✓ {�100,�10,�1, 100} ✓ Sign({�100, 100}) = Z 6=0

(iterate)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100, 100}]
(relax)

CSign{�100,100}(J0 < x?K)

`Sign [{�100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {�10,�1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4
(r1�r2)⇤ where

r1 =
4
(0 < x?;x := x� 1) r2 =

4
(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4
0 < x e1 =

4
x := x� 1 P1 =

4 {0, 1, 999, 1000}
b2 =

4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1
(Jb1?K),

etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ✓
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k 2 N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {�10,�1, 100} and the Imp program

c =
4

while (x  0) do x := x ⇤ 10
= (x  0? ; x := x ⇤ 10)⇤ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {�10,�1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 62 Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x  0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ 6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({�10,�1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q  P

`A [P] r⇤ [P]
(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r⇤ [Q]
(abs-fix)

Local completeness
proof obligations Key (consequence) rule

Fixpoint acceleration by
abstract interpretationTh. Logical Soundness

⊢A [P] " [Q] ⇒ Q ≤ [["]]P ≤ [["]]♯A(P) = A(Q)

Proof obligations: local completeness for basic expressions
(all the other rules preserve local completeness)

⊢A [P] 6 [[[6]]P]
A([[6]]P) = A([[6]]A(P))

(4AB/C36A)

locally complete!

⊢:/4 [{−7,7}] x := x + 1 [{−6,8}]
(4AB/C36A)
assignments

not locally complete!

⊢:/4 [{−7,7}] D < E? [{−7}]
(4AB/C36A)
guards

The Proof System (compositional reasoning!)

Proof obligations: local completeness for basic expressions
(all the other rules preserve local completeness)

⊢A [P] 6 [[[6]]P]
A([[6]]P) = A([[6]]A(P))

(4AB/C36A)

locally complete!

⊢:/4 [{−7,7}] x := x + 1 [{−6,8}]
(4AB/C36A)
assignments

The Proof System (compositional reasoning!)

locally complete!

⊢:/4 [{−7, − 1,7}] D < E? [{−7, − 1}]
(4AB/C36A)
guards

The key new consequence rule

⊢A [P] " [Q]
⊢A [P′] " [Q′] Q A(Q)≤ Q′ ≤P′ ≤ P ≤ A(P′)

(A6GBD)

⊢A [P′] " [Q′] Q′

P′

A(Q′)A(P′)

The key new consequence rule

⊢A [P] " [Q]
⊢A [P′] " [Q′] Q A(Q)≤ Q′ ≤P′ ≤ P ≤ A(P′)

(A6GBD)

A(Q′)A(P′)

QP

= A(P) A(Q) =

⊢A [P] " [Q]

we can weaken the precondition… and strengthen the postcondition as far as we preserve
their abstractions

Fixpoint acceleration

CA
P (e)

`A [P] e [JeKP]
(transfer)

P 0  P  A(P 0) `A [P 0] r [Q0] Q  Q0  A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 � r2 [Q1 _Q2]
(join)

`A [P] r [R] `A [P _R] r⇤ [Q]

`A [P] r⇤ [Q]
(rec)

`A [P] r [Q] Q  A(P)

`A [P] r⇤ [P _Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)
`Int [P] b1? [P]

(transfer)
CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)
`Int [P] b2? [P]

(transfer)
CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 � r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx  0?K)

`Sign [P] x  0? [{�10,�1}]
(transfer)

CSign{�10,�1}(Jx := x ⇤ 10K)

`Sign [{�10,�1}] x := x ⇤ 10 [{�100,�10}]
(transfer)

`Sign [P] x  0?; x := x ⇤ 10 [{�100,�10}] {�100,�10} ✓ Sign(P) = Z 6=0
(seq)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100,�10,�1, 100}] {�100, 100} ✓ {�100,�10,�1, 100} ✓ Sign({�100, 100}) = Z 6=0

(iterate)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100, 100}]
(relax)

CSign{�100,100}(J0 < x?K)

`Sign [{�100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {�10,�1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4
(r1�r2)⇤ where

r1 =
4
(0 < x?;x := x� 1) r2 =

4
(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4
0 < x e1 =

4
x := x� 1 P1 =

4 {0, 1, 999, 1000}
b2 =

4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1
(Jb1?K),

etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ✓
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k 2 N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {�10,�1, 100} and the Imp program

c =
4

while (x  0) do x := x ⇤ 10
= (x  0? ; x := x ⇤ 10)⇤ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {�10,�1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 62 Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x  0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ 6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({�10,�1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q  P

`A [P] r⇤ [P]
(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r⇤ [Q]
(abs-fix)

CA
P (e)

`A [P] e [JeKP]
(transfer)

P 0  P  A(P 0) `A [P 0] r [Q0] Q  Q0  A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 � r2 [Q1 _Q2]
(join)

`A [P] r [R] `A [P _R] r⇤ [Q]

`A [P] r⇤ [Q]
(rec)

`A [P] r [Q] Q  A(P)

`A [P] r⇤ [P _Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)
`Int [P] b1? [P]

(transfer)
CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)
`Int [P] b2? [P]

(transfer)
CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 � r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx  0?K)

`Sign [P] x  0? [{�10,�1}]
(transfer)

CSign{�10,�1}(Jx := x ⇤ 10K)

`Sign [{�10,�1}] x := x ⇤ 10 [{�100,�10}]
(transfer)

`Sign [P] x  0?; x := x ⇤ 10 [{�100,�10}] {�100,�10} ✓ Sign(P) = Z 6=0
(seq)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100,�10,�1, 100}] {�100, 100} ✓ {�100,�10,�1, 100} ✓ Sign({�100, 100}) = Z 6=0

(iterate)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100, 100}]
(relax)

CSign{�100,100}(J0 < x?K)

`Sign [{�100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {�10,�1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4
(r1�r2)⇤ where

r1 =
4
(0 < x?;x := x� 1) r2 =

4
(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4
0 < x e1 =

4
x := x� 1 P1 =

4 {0, 1, 999, 1000}
b2 =

4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1
(Jb1?K),

etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ✓
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k 2 N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {�10,�1, 100} and the Imp program

c =
4

while (x  0) do x := x ⇤ 10
= (x  0? ; x := x ⇤ 10)⇤ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {�10,�1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 62 Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x  0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ 6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({�10,�1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q  P

`A [P] r⇤ [P]
(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r⇤ [Q]
(abs-fix)

CA
P (e)

`A [P] e [JeKP]
(transfer)

P 0  P  A(P 0) `A [P 0] r [Q0] Q  Q0  A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 � r2 [Q1 _Q2]
(join)

`A [P] r [R] `A [P _R] r⇤ [Q]

`A [P] r⇤ [Q]
(rec)

`A [P] r [Q] Q  A(P)

`A [P] r⇤ [P _Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)
`Int [P] b1? [P]

(transfer)
CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)
`Int [P] b2? [P]

(transfer)
CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 � r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx  0?K)

`Sign [P] x  0? [{�10,�1}]
(transfer)

CSign{�10,�1}(Jx := x ⇤ 10K)

`Sign [{�10,�1}] x := x ⇤ 10 [{�100,�10}]
(transfer)

`Sign [P] x  0?; x := x ⇤ 10 [{�100,�10}] {�100,�10} ✓ Sign(P) = Z 6=0
(seq)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100,�10,�1, 100}] {�100, 100} ✓ {�100,�10,�1, 100} ✓ Sign({�100, 100}) = Z 6=0

(iterate)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100, 100}]
(relax)

CSign{�100,100}(J0 < x?K)

`Sign [{�100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {�10,�1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4
(r1�r2)⇤ where

r1 =
4
(0 < x?;x := x� 1) r2 =

4
(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4
0 < x e1 =

4
x := x� 1 P1 =

4 {0, 1, 999, 1000}
b2 =

4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1
(Jb1?K),

etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ✓
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k 2 N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {�10,�1, 100} and the Imp program

c =
4

while (x  0) do x := x ⇤ 10
= (x  0? ; x := x ⇤ 10)⇤ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {�10,�1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 62 Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x  0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ 6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({�10,�1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q  P

`A [P] r⇤ [P]
(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r⇤ [Q]
(abs-fix)

CA
P (e)

`A [P] e [JeKP]
(transfer)

P 0  P  A(P 0) `A [P 0] r [Q0] Q  Q0  A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 � r2 [Q1 _Q2]
(join)

`A [P] r [R] `A [P _R] r⇤ [Q]

`A [P] r⇤ [Q]
(rec)

`A [P] r [Q] Q  A(P)

`A [P] r⇤ [P _Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)
`Int [P] b1? [P]

(transfer)
CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)
`Int [P] b2? [P]

(transfer)
CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 � r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx  0?K)

`Sign [P] x  0? [{�10,�1}]
(transfer)

CSign{�10,�1}(Jx := x ⇤ 10K)

`Sign [{�10,�1}] x := x ⇤ 10 [{�100,�10}]
(transfer)

`Sign [P] x  0?; x := x ⇤ 10 [{�100,�10}] {�100,�10} ✓ Sign(P) = Z 6=0
(seq)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100,�10,�1, 100}] {�100, 100} ✓ {�100,�10,�1, 100} ✓ Sign({�100, 100}) = Z 6=0

(iterate)

`Sign [P] (x  0?; x := x ⇤ 10)⇤ [{�100, 100}]
(relax)

CSign{�100,100}(J0 < x?K)

`Sign [{�100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {�10,�1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4
(r1�r2)⇤ where

r1 =
4
(0 < x?;x := x� 1) r2 =

4
(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4
0 < x e1 =

4
x := x� 1 P1 =

4 {0, 1, 999, 1000}
b2 =

4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1
(Jb1?K),

etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ✓
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k 2 N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {�10,�1, 100} and the Imp program

c =
4

while (x  0) do x := x ⇤ 10
= (x  0? ; x := x ⇤ 10)⇤ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {�10,�1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 62 Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x  0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ 6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({�10,�1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q  P

`A [P] r⇤ [P]
(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r⇤ [Q]
(abs-fix)

Main results

Th. Logical Completeness

Th. Intrinsic Incompleteness

Th. Verification
correctness + bug finding!

any provable triple either shows the program correct or exposes some error

if the abstraction is complete for every basic expressions in the program,
then any valid triple is provable

for any Turing complete language and any non-trivial abstraction,
there are valid triples that cannot be proved

Combine Abstract Domains

Proof obligations and domain refinement

Suppose and ⊢A1
[P] AH [R] ⊢A2

[R] AI [Q]

Can we conclude for some ?⊢A [P] AH ; AI [Q] A

The reduced product domain may not workA = A1 ⊓ A2

Idea: combine more abstract domains in the same derivation

The rule refine

take a more
 precise domain

preserve abstractions
of pre-conditions

Th. Logical Soundness
⊢A [P] " [Q] ⇒ Q ≤ [["]]P ≤ A(Q)

extensional analysis:
cannot guarantee that

 [["]]♯A(P) = A(Q)

A Correctness and Incorrectness Program Logic 15:37

Fig. 11. The refinement rule of LCL!A .

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS
When a provable triple "A [p] r [q] is used for program veri!cation, we exploit the following
property:

q ≤ !r"p ≤ α (!r"p) = α (q), (§)
so that, by under-approximation q ≤ !r"p, any alarm in q is a true alarm for p, and, by over-
approximation !r"p ≤ α (q), the lack of alarms in α (q) entails the correctness of p. In LCLA, local
completeness can be viewed as a technical assumption to infer (§), meaning that it is a necessary
condition for deriving "A [p] r [q] within our proof system, since we are able to prove only triples
that satisfy local completeness !r"!Aα (p) = α (!r"p) (cf. Theorem 5.5). In this section, we show that it
is possible to relax our program logic so that local completeness is not required for the intensional
and inductively de!ned abstract interpreter !r"!A but merely for the best correct approximation
!r"A ! α ◦ !r" ◦γ of the extensional concrete semantics !r". This is achieved by allowing di"erent
abstract domains in di"erent sub-derivations to increase the precision of the analysis whenever
necessary. Without the extension proposed in this section, whenever it would be convenient to use
di"erent abstract domains for di"erent parts of the proof, the only possibility would be to check if
it is possible to complete the derivation in the abstract domain obtained as the reduced product of
all domains involved in every sub-derivation: For example, if we are able to derive "A1 [p] r1 [w]
and "A2 [w] r2 [q], then we could try to derive "A1%A2 [p] r1; r2 [q] leveraging the reduced product
A1%A2. One remarkable advantage of using di"erent abstractions within the same derivation will
be that it is not necessary to consider their join at every step.

This extension of LCLA is obtained by adding the rule (refine) in Figure 11, where we recall
that ! denotes the re!nement relation between abstract domains and write "!A [p] r [q] for a triple
that can be derived in this extended proof system LCL!A ! LCLA ∪ {(refine)}. When A is not
locally complete for r on p, (refine) allows us to exploit an abstraction re!nementA′ ofA, which is
locally complete provided that the over-approximations in A and A′ of both p and q coincide. The
soundness result for LCL!A shows that any triple "!A [p] r [q] still ensures thatq ≤ !r"p ≤ α (q) holds.
Let us remark that the only di"erence in soundness of LCLA and LCL!A , as stated by Theorems 5.5
and 8.1, is that the intensional abstract semantics !r"!A of Theorem 5.5 is replaced by the bca !r"A

of Theorem 8.1.
Theorem 8.1 (Soundness of LCL!A). Let Aα,γ ∈ Abs(C). For all r ∈ Reg, p,q ∈ C , if "!A [p] r [q]

then:

(1) q ≤ !r"p, and
(2) !r"Aα (p) = α (q) = α (!r"p).

Proof. As in the proof of Theorem 5.5, we refer to the equality !r"Aα (p) = α (q) as (2a) and
use (2b) for the equality !r"Aα (p) = α (!r"p). We then recall that (2b) follows immediately by (1)
and (2a).

The proof is by induction on the derivation tree of "!A [p] r [q]. For the cases where the
last used rule is in LCLA (in Figure 4), the proof follows the same pattern of the proof of
Theorem 5.5: for (1) there is nothing to change, while for (2) we just need to replace !·"!A with !·"A

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

A Correctness and Incorrectness Program Logic 15:37

Fig. 11. The refinement rule of LCL!A .

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS
When a provable triple "A [p] r [q] is used for program veri!cation, we exploit the following
property:

q ≤ !r"p ≤ α (!r"p) = α (q), (§)
so that, by under-approximation q ≤ !r"p, any alarm in q is a true alarm for p, and, by over-
approximation !r"p ≤ α (q), the lack of alarms in α (q) entails the correctness of p. In LCLA, local
completeness can be viewed as a technical assumption to infer (§), meaning that it is a necessary
condition for deriving "A [p] r [q] within our proof system, since we are able to prove only triples
that satisfy local completeness !r"!Aα (p) = α (!r"p) (cf. Theorem 5.5). In this section, we show that it
is possible to relax our program logic so that local completeness is not required for the intensional
and inductively de!ned abstract interpreter !r"!A but merely for the best correct approximation
!r"A ! α ◦ !r" ◦γ of the extensional concrete semantics !r". This is achieved by allowing di"erent
abstract domains in di"erent sub-derivations to increase the precision of the analysis whenever
necessary. Without the extension proposed in this section, whenever it would be convenient to use
di"erent abstract domains for di"erent parts of the proof, the only possibility would be to check if
it is possible to complete the derivation in the abstract domain obtained as the reduced product of
all domains involved in every sub-derivation: For example, if we are able to derive "A1 [p] r1 [w]
and "A2 [w] r2 [q], then we could try to derive "A1%A2 [p] r1; r2 [q] leveraging the reduced product
A1%A2. One remarkable advantage of using di"erent abstractions within the same derivation will
be that it is not necessary to consider their join at every step.

This extension of LCLA is obtained by adding the rule (refine) in Figure 11, where we recall
that ! denotes the re!nement relation between abstract domains and write "!A [p] r [q] for a triple
that can be derived in this extended proof system LCL!A ! LCLA ∪ {(refine)}. When A is not
locally complete for r on p, (refine) allows us to exploit an abstraction re!nementA′ ofA, which is
locally complete provided that the over-approximations in A and A′ of both p and q coincide. The
soundness result for LCL!A shows that any triple "!A [p] r [q] still ensures thatq ≤ !r"p ≤ α (q) holds.
Let us remark that the only di"erence in soundness of LCLA and LCL!A , as stated by Theorems 5.5
and 8.1, is that the intensional abstract semantics !r"!A of Theorem 5.5 is replaced by the bca !r"A

of Theorem 8.1.
Theorem 8.1 (Soundness of LCL!A). Let Aα,γ ∈ Abs(C). For all r ∈ Reg, p,q ∈ C , if "!A [p] r [q]

then:

(1) q ≤ !r"p, and
(2) !r"Aα (p) = α (q) = α (!r"p).

Proof. As in the proof of Theorem 5.5, we refer to the equality !r"Aα (p) = α (q) as (2a) and
use (2b) for the equality !r"Aα (p) = α (!r"p). We then recall that (2b) follows immediately by (1)
and (2a).

The proof is by induction on the derivation tree of "!A [p] r [q]. For the cases where the
last used rule is in LCLA (in Figure 4), the proof follows the same pattern of the proof of
Theorem 5.5: for (1) there is nothing to change, while for (2) we just need to replace !·"!A with !·"A

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

A′ ⪯ A A′ (P) = A(P) ⊢A′
[P] " [Q]

⊢A [P] " [Q]

Example
<latexit sha1_base64="n6/xsG//hUEenagG15AXht481wc=">AAACp3icbVFdb9MwFHXC11o+VuCRlysqphZElVQMEBNjghfeGBLtKtVV5bhOa81xgn0DtaL8IH4Sv4C/QZJFotu4tqWjc+891z6OMiUtBsFvz79x89btO3ud7t179x/s9x4+mto0N1xMeKpSM4uYFUpqMUGJSswyI1gSKXEWnX+q82c/hLEy1d/QZWKRsLWWseQMK2rZ+0UThhsbF6ZchnAAFI1keq3Ed3pUrTqJWDh49x7G8BwcvIDwCGi9G5JFduCGJVDa7XR2tMZw8E8KdrW2dZtrNX5upBIw2MIxhEOgBTSiDl7WU5rKbY2BluWy1w9GQRNwHYQt6JM2Tpe9P3SV8jwRGrli1s7DIMNFwQxKrkTZpbkVGePnbC3mFdQsEXZRNJaW8KxiVhCnpjoaoWF3OwqWWOuSqKpsHn01V5P/y81zjN8uCqmzHIXmF4PiXAGmUP8PrKQRHJWrAONGVncFvmGGcax+8dIUiwkzzqxqZ8KrPlwH0/EofD06/Pqqf/Kx9WiPPCFPyYCE5A05IZ/JKZkQ7u17h96x98Ef+l/8qT+7KPW9tucxuRQ++wt6b8dN</latexit>

r1 , y := 2 ⇤ y+ 1; y := abs(y)

r2 , x := y; while(x > 1){y := y� 1; x := x� 1}

<latexit sha1_base64="uIJ5hLcy9g4YQEWacCLadpl/Lc4=">AAACbnicbVFda9swFJXdtWu8r3SDvYyxy8IgfViwAlsHZVC2lz2mbGkLlgnXspKKyrIjyaXG5G8W9gv2uh+whylpGEvbA1cczj2XeznKKiWti+OfQbj1YHvn4W4nevT4ydNn3b3nJ7asDRdjXqrSnGVohZJajJ10SpxVRmCRKXGaXXxd9k8vhbGy1D9cU4m0wJmWU8nReWnSrVgSdUbAnJGoZ0rMod8AkxqS9zSOD8E/6T6w+bzGHL7f42MtPYRhTNnin+14w3YFn6HxRfejDkujSbcXD+IV4C6ha9Ija4wm3V8sL3ldCO24QmsTGlcubdE4yZVYRKy2okJ+gTOReKqxEDZtV8ks4J1XcpiWxpd2sFL/n2ixsLYpMu8s0J3b272leF8vqd30U9pKXdVOaH6zaForcCUsY4ZcGsGdajxBbqS/Ffg5GuTOf8bGFusKNI3JFz4ZejuHu+RkOKAfBx+Oh72jL+uMdskr8pb0CSUH5Ih8IyMyJpxckz/BdrAT/A5fhq/DNzfWMFjPvCAbCPt/Acwztb8=</latexit>

P , (y 2 [�100; 100]) S , (y 2 {1; 201}) Q , (x = y = 1)

A Correctness and Incorrectness Program Logic 15:37

Fig. 11. The refinement rule of LCL!A .

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS
When a provable triple "A [p] r [q] is used for program veri!cation, we exploit the following
property:

q ≤ !r"p ≤ α (!r"p) = α (q), (§)
so that, by under-approximation q ≤ !r"p, any alarm in q is a true alarm for p, and, by over-
approximation !r"p ≤ α (q), the lack of alarms in α (q) entails the correctness of p. In LCLA, local
completeness can be viewed as a technical assumption to infer (§), meaning that it is a necessary
condition for deriving "A [p] r [q] within our proof system, since we are able to prove only triples
that satisfy local completeness !r"!Aα (p) = α (!r"p) (cf. Theorem 5.5). In this section, we show that it
is possible to relax our program logic so that local completeness is not required for the intensional
and inductively de!ned abstract interpreter !r"!A but merely for the best correct approximation
!r"A ! α ◦ !r" ◦γ of the extensional concrete semantics !r". This is achieved by allowing di"erent
abstract domains in di"erent sub-derivations to increase the precision of the analysis whenever
necessary. Without the extension proposed in this section, whenever it would be convenient to use
di"erent abstract domains for di"erent parts of the proof, the only possibility would be to check if
it is possible to complete the derivation in the abstract domain obtained as the reduced product of
all domains involved in every sub-derivation: For example, if we are able to derive "A1 [p] r1 [w]
and "A2 [w] r2 [q], then we could try to derive "A1%A2 [p] r1; r2 [q] leveraging the reduced product
A1%A2. One remarkable advantage of using di"erent abstractions within the same derivation will
be that it is not necessary to consider their join at every step.

This extension of LCLA is obtained by adding the rule (refine) in Figure 11, where we recall
that ! denotes the re!nement relation between abstract domains and write "!A [p] r [q] for a triple
that can be derived in this extended proof system LCL!A ! LCLA ∪ {(refine)}. When A is not
locally complete for r on p, (refine) allows us to exploit an abstraction re!nementA′ ofA, which is
locally complete provided that the over-approximations in A and A′ of both p and q coincide. The
soundness result for LCL!A shows that any triple "!A [p] r [q] still ensures thatq ≤ !r"p ≤ α (q) holds.
Let us remark that the only di"erence in soundness of LCLA and LCL!A , as stated by Theorems 5.5
and 8.1, is that the intensional abstract semantics !r"!A of Theorem 5.5 is replaced by the bca !r"A

of Theorem 8.1.
Theorem 8.1 (Soundness of LCL!A). Let Aα,γ ∈ Abs(C). For all r ∈ Reg, p,q ∈ C , if "!A [p] r [q]

then:

(1) q ≤ !r"p, and
(2) !r"Aα (p) = α (q) = α (!r"p).

Proof. As in the proof of Theorem 5.5, we refer to the equality !r"Aα (p) = α (q) as (2a) and
use (2b) for the equality !r"Aα (p) = α (!r"p). We then recall that (2b) follows immediately by (1)
and (2a).

The proof is by induction on the derivation tree of "!A [p] r [q]. For the cases where the
last used rule is in LCLA (in Figure 4), the proof follows the same pattern of the proof of
Theorem 5.5: for (1) there is nothing to change, while for (2) we just need to replace !·"!A with !·"A

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

A Correctness and Incorrectness Program Logic 15:37

Fig. 11. The refinement rule of LCL!A .

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS
When a provable triple "A [p] r [q] is used for program veri!cation, we exploit the following
property:

q ≤ !r"p ≤ α (!r"p) = α (q), (§)
so that, by under-approximation q ≤ !r"p, any alarm in q is a true alarm for p, and, by over-
approximation !r"p ≤ α (q), the lack of alarms in α (q) entails the correctness of p. In LCLA, local
completeness can be viewed as a technical assumption to infer (§), meaning that it is a necessary
condition for deriving "A [p] r [q] within our proof system, since we are able to prove only triples
that satisfy local completeness !r"!Aα (p) = α (!r"p) (cf. Theorem 5.5). In this section, we show that it
is possible to relax our program logic so that local completeness is not required for the intensional
and inductively de!ned abstract interpreter !r"!A but merely for the best correct approximation
!r"A ! α ◦ !r" ◦γ of the extensional concrete semantics !r". This is achieved by allowing di"erent
abstract domains in di"erent sub-derivations to increase the precision of the analysis whenever
necessary. Without the extension proposed in this section, whenever it would be convenient to use
di"erent abstract domains for di"erent parts of the proof, the only possibility would be to check if
it is possible to complete the derivation in the abstract domain obtained as the reduced product of
all domains involved in every sub-derivation: For example, if we are able to derive "A1 [p] r1 [w]
and "A2 [w] r2 [q], then we could try to derive "A1%A2 [p] r1; r2 [q] leveraging the reduced product
A1%A2. One remarkable advantage of using di"erent abstractions within the same derivation will
be that it is not necessary to consider their join at every step.

This extension of LCLA is obtained by adding the rule (refine) in Figure 11, where we recall
that ! denotes the re!nement relation between abstract domains and write "!A [p] r [q] for a triple
that can be derived in this extended proof system LCL!A ! LCLA ∪ {(refine)}. When A is not
locally complete for r on p, (refine) allows us to exploit an abstraction re!nementA′ ofA, which is
locally complete provided that the over-approximations in A and A′ of both p and q coincide. The
soundness result for LCL!A shows that any triple "!A [p] r [q] still ensures thatq ≤ !r"p ≤ α (q) holds.
Let us remark that the only di"erence in soundness of LCLA and LCL!A , as stated by Theorems 5.5
and 8.1, is that the intensional abstract semantics !r"!A of Theorem 5.5 is replaced by the bca !r"A

of Theorem 8.1.
Theorem 8.1 (Soundness of LCL!A). Let Aα,γ ∈ Abs(C). For all r ∈ Reg, p,q ∈ C , if "!A [p] r [q]

then:

(1) q ≤ !r"p, and
(2) !r"Aα (p) = α (q) = α (!r"p).

Proof. As in the proof of Theorem 5.5, we refer to the equality !r"Aα (p) = α (q) as (2a) and
use (2b) for the equality !r"Aα (p) = α (!r"p). We then recall that (2b) follows immediately by (1)
and (2a).

The proof is by induction on the derivation tree of "!A [p] r [q]. For the cases where the
last used rule is in LCLA (in Figure 4), the proof follows the same pattern of the proof of
Theorem 5.5: for (1) there is nothing to change, while for (2) we just need to replace !·"!A with !·"A

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

 computes [[A1; A2]]#
:/4 x = 1 ∧ 0 ≤ y ≤ 100

Abstract Interpretation Repair
(AIR)

Proof obligations and domain refinement
What if a derivation fails?
e.g. a local completeness proof obligation fails
Idea: Refine the domain and restart the analysis

ℂA
R(6)

⊥

⊤

+

A

u

Au(c) =

Add new element
+

Moore closure

u ∧ A(c)

A(c)
if c ≤ u

owise

Refinement (as closure)

Ø

{1} {2} {3} {4} {5}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5}

{1,2,3,4,5} LessMoreThan3℘({1,2,3,4,5})

In the case of we set:ℂA
P(L?)

Pointed shell
Which refinement when fails?
Idea: add the most abstract over-approximation of c that
yields local completeness
(the most concrete would be c itself)

ℂA
c (f)

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

re�nement of � which is locally complete on 2 , in general,
does not exist. For instance, in Example 4.6 we have shown
that the two pointed re�nements �[0,2] and �{0,2} are both
locally complete but their common abstraction�[0,2] t�{0,2}
is � itself, which is not locally complete. Notice that for
the standard precision ordering v in the lattice of abstract
interpretations Abs(⇠), the locally complete pointed re�ne-
ments �[0,2] and �{0,2} turn out to be incomparable because
�[0,2] * �{0,2} and �{0,2} * �[0,2] . Nevertheless, we argue
that the pointed re�nement �[0,2] should be preferred to �{0,2}
because the new point [0, 2] is more abstract than {0, 2},
namely, {0, 2} ([0, 2] holds. One further reason support-
ing our claim is that, due to the convexity property of local
completeness mentioned after De�nition 4.1, the choice of a
more abstract approximation 2• for 2 guarantees that local
completeness holds not only for 2 but also for any concrete
element in between 2 and 2•. We therefore put forward a
novel notion of shell re�nement of abstract domains, which
is restricted to pointed re�nements �G and compares them
by the relative precision ordering of their new point G .
De�nition 4.8 (Pointed Shells). Let 5 : ⇠ ! ⇠ be mono-
tone, � 2 Abs(⇠) and 2 2 ⇠ . The pointed locally complete
shell, pointed shell for short, of � in 2 exists when

max({G 2 ⇠ | G  �(2), C�G
2 (5)}) = {D} (1)

and, in such a case, this pointed shell is �D 2 Abs(⇠). ⇤

Let us remark that the condition G  �(2) in (1) is justi�ed
by Lemma 4.7, as discussed above. We therefore give the
following main result that: (i) by leveraging Theorem 4.4,
characterizes the point D of a pointed shell �D , and (ii) when
5 is additive, provides a necessary and su�cient condition
for the existence of a pointed shell.
Theorem 4.9 (Existence of Pointed Shells). Let us consider
5 : ⇠ ! ⇠ , � 2 Abs(⇠) and 2 2 ⇠ , and let D =4 _L�2,5 .
(i) If 5 is monotone then: C�D

2 (5) , �D is the pointed shell
of � for 5 on 2 .

(ii) If 5 is additive then: C�D
2 (5) , (5 (2)  D) 5 (D)  D).

Hence, for an additive function 5 , such as a collecting
semantics, and the new concrete element D = _L�2,5 , the
pointed shell of � exists exactly when 5 (2) ⇥ D or 5 (D)  D
holds, and in such a case �D is the pointed shell.
Example 4.10. Consider again Example 4.6 dealing with
local completeness of the function 5 = JG := G + 1K on input
% = {0, 2} in the toy abstract domain � = {Z, [0, 4], [1, 3]}.
We have: L�%,5 = {- 2 ®(Z) | - ✓ �(%), 5 (-) ✓ �5 (%)} =
{- 2 ®(Z) | - ✓ [0, 4], 5 (-) ✓ [1, 3]}, so thatD = [L�%,5 =
[0, 2]. Since 5 (%) = {1, 3} * [0, 2] = D, the condition of
Theorem 4.9 (ii) is satis�ed, because its premise 5 (%) ✓ D is
false, thus �[0,2] is the pointed shell of � for 5 on % .
Consider now Example 4.5, showing that Int is not locally
complete on %2 = {0, 3} for the program c in Example 4.2. We

have already seen that D = [LInt
%2,JcK = {0, 3}. Since JcK%2 =

{1} * {0, 3} = D holds, the condition JcK%2 ✓ D) JcKD ✓ D
of Theorem 4.9 (ii) is satis�ed, and Int{0,3} = Int [{0, 3} is
the pointed shell of Int for JcK on %2. ⇤

4.4 Boolean Guards
Boolean guards are particularly important in this scenario
because, as argued in [28], they represent the major source
of incompleteness. In this case we are interested in achieving
local completeness for two transfer functions Jb?K and J¬b?K.
De�nition 4.8 can be slightly generalized as follows: the
pointed locally complete shell of � in 2 exists for a set of
functions � ✓ ⇠ ! ⇠ when:

max({G 2 ⇠ | G  �(2),85 2� .�G 5 (2) = �G 5 �G (2)})= {D}.
If this is the case, then�D is de�ned to be the pointed (locally
complete) shell of � for � . Interestingly, we constructively
prove that pointed shells for Boolean guards always exist.
Theorem 4.11 (Pointed Shell for Boolean Guards). Given
b 2 BExp, � 2 Abs(S) and % 2 S, let

D =4 (�(% \ b) \ b) [(�(% \ ¬b) \ ¬b) 2 S.
Then, �D is the pointed shell for {Jb?K, J¬b?K} on % .
Example 4.12. Let us apply Theorem 4.11 to the case of the
interval domain and the Boolean guard b =4 (G > 0)? on the
point of incompleteness % = {�3,�1, 2}. Letting
D =4 (Int(% \ G  0) \ G  0) [(Int(% \ G > 0) \ G > 0)
= (Int({�3,�1}) \ ¬b) [(Int({2}) \ b) = [�3,�1][{2},

by closing under meets, we obtain that the pointed shell is
IntD = Int [

�
[�3,�1] [{2}, [�2,�1] [{2}, {�1, 2}

. ⇤

5 Repair Strategies
Whenever the current abstract domain is not precise enough
to prevent false-alarms, we advocate AIR as a way to opti-
mally re�ne the abstract domain so to remove false-alarms.

The general scenario consists of a composite transfer func-
tion 5 =4 5= � ... � 51, e.g., modeling the sequential composition
of 51, ..., 5= : ⇠ ! ⇠ , a concrete input 2 and a correctness spec-
i�cation 0 for which we want to decide whether 5 (2)  0 is
satis�ed, without actually computing 5 (2). In CEGAR, the
functions 5: are the post transformers of a transition system,
while in program veri�cation each 5: is the transfer function
of some basic command. In abstract interpretation, we select
an abstract domain� 2 Abs(⇠) such that the property0 is ex-
pressible in� and then we check whether 5 •��(2) � 0 holds,
where 5 •� =4 5 �= � ... � 5 �1 and each 5 �8 is the bca in � of 58 . In
the positive case, by soundness of abstract interpretation, we
are done. Otherwise, we cannot tell if the speci�cation 0 is
met or not, because the bca 5 � of 5 in� does not coincide, in
general, with 5 •� . However, if 5

•
��(2) = �(5 (2)) holds, then

from 5 •��(2) ⇥� 0 we can conclude that 0 is not met, because
�(5 (2)) ⇥� 0 implies 5 (2) ⇥ 0 when 0 2 �.

433

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

re�nement of � which is locally complete on 2 , in general,
does not exist. For instance, in Example 4.6 we have shown
that the two pointed re�nements �[0,2] and �{0,2} are both
locally complete but their common abstraction�[0,2] t�{0,2}
is � itself, which is not locally complete. Notice that for
the standard precision ordering v in the lattice of abstract
interpretations Abs(⇠), the locally complete pointed re�ne-
ments �[0,2] and �{0,2} turn out to be incomparable because
�[0,2] * �{0,2} and �{0,2} * �[0,2] . Nevertheless, we argue
that the pointed re�nement �[0,2] should be preferred to �{0,2}
because the new point [0, 2] is more abstract than {0, 2},
namely, {0, 2} ([0, 2] holds. One further reason support-
ing our claim is that, due to the convexity property of local
completeness mentioned after De�nition 4.1, the choice of a
more abstract approximation 2• for 2 guarantees that local
completeness holds not only for 2 but also for any concrete
element in between 2 and 2•. We therefore put forward a
novel notion of shell re�nement of abstract domains, which
is restricted to pointed re�nements �G and compares them
by the relative precision ordering of their new point G .
De�nition 4.8 (Pointed Shells). Let 5 : ⇠ ! ⇠ be mono-
tone, � 2 Abs(⇠) and 2 2 ⇠ . The pointed locally complete
shell, pointed shell for short, of � in 2 exists when

max({G 2 ⇠ | G  �(2), C�G
2 (5)}) = {D} (1)

and, in such a case, this pointed shell is �D 2 Abs(⇠). ⇤

Let us remark that the condition G  �(2) in (1) is justi�ed
by Lemma 4.7, as discussed above. We therefore give the
following main result that: (i) by leveraging Theorem 4.4,
characterizes the point D of a pointed shell �D , and (ii) when
5 is additive, provides a necessary and su�cient condition
for the existence of a pointed shell.
Theorem 4.9 (Existence of Pointed Shells). Let us consider
5 : ⇠ ! ⇠ , � 2 Abs(⇠) and 2 2 ⇠ , and let D =4 _L�2,5 .
(i) If 5 is monotone then: C�D

2 (5) , �D is the pointed shell
of � for 5 on 2 .

(ii) If 5 is additive then: C�D
2 (5) , (5 (2)  D) 5 (D)  D).

Hence, for an additive function 5 , such as a collecting
semantics, and the new concrete element D = _L�2,5 , the
pointed shell of � exists exactly when 5 (2) ⇥ D or 5 (D)  D
holds, and in such a case �D is the pointed shell.
Example 4.10. Consider again Example 4.6 dealing with
local completeness of the function 5 = JG := G + 1K on input
% = {0, 2} in the toy abstract domain � = {Z, [0, 4], [1, 3]}.
We have: L�%,5 = {- 2 ®(Z) | - ✓ �(%), 5 (-) ✓ �5 (%)} =
{- 2 ®(Z) | - ✓ [0, 4], 5 (-) ✓ [1, 3]}, so thatD = [L�%,5 =
[0, 2]. Since 5 (%) = {1, 3} * [0, 2] = D, the condition of
Theorem 4.9 (ii) is satis�ed, because its premise 5 (%) ✓ D is
false, thus �[0,2] is the pointed shell of � for 5 on % .
Consider now Example 4.5, showing that Int is not locally
complete on %2 = {0, 3} for the program c in Example 4.2. We

have already seen that D = [LInt
%2,JcK = {0, 3}. Since JcK%2 =

{1} * {0, 3} = D holds, the condition JcK%2 ✓ D) JcKD ✓ D
of Theorem 4.9 (ii) is satis�ed, and Int{0,3} = Int [{0, 3} is
the pointed shell of Int for JcK on %2. ⇤

4.4 Boolean Guards
Boolean guards are particularly important in this scenario
because, as argued in [28], they represent the major source
of incompleteness. In this case we are interested in achieving
local completeness for two transfer functions Jb?K and J¬b?K.
De�nition 4.8 can be slightly generalized as follows: the
pointed locally complete shell of � in 2 exists for a set of
functions � ✓ ⇠ ! ⇠ when:

max({G 2 ⇠ | G  �(2),85 2� .�G 5 (2) = �G 5 �G (2)})= {D}.
If this is the case, then�D is de�ned to be the pointed (locally
complete) shell of � for � . Interestingly, we constructively
prove that pointed shells for Boolean guards always exist.
Theorem 4.11 (Pointed Shell for Boolean Guards). Given
b 2 BExp, � 2 Abs(S) and % 2 S, let

D =4 (�(% \ b) \ b) [(�(% \ ¬b) \ ¬b) 2 S.
Then, �D is the pointed shell for {Jb?K, J¬b?K} on % .
Example 4.12. Let us apply Theorem 4.11 to the case of the
interval domain and the Boolean guard b =4 (G > 0)? on the
point of incompleteness % = {�3,�1, 2}. Letting
D =4 (Int(% \ G  0) \ G  0) [(Int(% \ G > 0) \ G > 0)
= (Int({�3,�1}) \ ¬b) [(Int({2}) \ b) = [�3,�1][{2},

by closing under meets, we obtain that the pointed shell is
IntD = Int [

�
[�3,�1] [{2}, [�2,�1] [{2}, {�1, 2}

. ⇤

5 Repair Strategies
Whenever the current abstract domain is not precise enough
to prevent false-alarms, we advocate AIR as a way to opti-
mally re�ne the abstract domain so to remove false-alarms.

The general scenario consists of a composite transfer func-
tion 5 =4 5= � ... � 51, e.g., modeling the sequential composition
of 51, ..., 5= : ⇠ ! ⇠ , a concrete input 2 and a correctness spec-
i�cation 0 for which we want to decide whether 5 (2)  0 is
satis�ed, without actually computing 5 (2). In CEGAR, the
functions 5: are the post transformers of a transition system,
while in program veri�cation each 5: is the transfer function
of some basic command. In abstract interpretation, we select
an abstract domain� 2 Abs(⇠) such that the property0 is ex-
pressible in� and then we check whether 5 •��(2) � 0 holds,
where 5 •� =4 5 �= � ... � 5 �1 and each 5 �8 is the bca in � of 58 . In
the positive case, by soundness of abstract interpretation, we
are done. Otherwise, we cannot tell if the speci�cation 0 is
met or not, because the bca 5 � of 5 in� does not coincide, in
general, with 5 •� . However, if 5

•
��(2) = �(5 (2)) holds, then

from 5 •��(2) ⇥� 0 we can conclude that 0 is not met, because
�(5 (2)) ⇥� 0 implies 5 (2) ⇥ 0 when 0 2 �.

433

Given try to find such that A, P, " Q ⊢A [P] A [Q]

If a local completeness proof obligation fails, refine with and retryA u1

If a local completeness proof obligation fails, refine with and retryAu1
u2

If a local completeness proof obligation fails, refine with and retryA{u1,u2} u3
…

Until for some and ⊢AN
[P] A [Q] N = {u1, . . . , un} Q

A (forward) repair strategy

A (forward) repair strategy

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

checking whether JrK%  Spec holds. Abstract interpretation
exploits over-approximations to interpret r on a (tractable)
abstract domain �. By soundness of JrK•�, if JrK•�%  Spec
holds then JrK%  Spec follows, but the reverse implication
is not necessarily true. Nevertheless, if the abstraction � is
locally complete for JrK on % and Spec is expressible in �
then JrK%  Spec implies JrK•�%  Spec. In this section we
apply AIR to iteratively repair an initial, possibly incomplete,
abstract domain � to get a re�ned domain �# such that

JrK%  Spec , JrK•�#
%  Spec (6)

To see the analogy with abstract model checking, given
a CEGAR abstract counterexample c = h⌫1, ...,⌫=i, assume
that we de�ne a regular command rc =4 e1; e2; ...; e= such
that the semantics Je:K of each basic expression is exactly
the function postc: de�ned in (3). Then, if we take the input
property % =4 ⌫1 and a trivial speci�cation Spec =4 ?⇠ , it turns
out that Jrc K%  Spec holds i� c is spurious. The correspon-
dence with the general scenario presented in Section 5 is
recovered by taking 2 = % , 0 = Spec and 5: = postc: = Je:K.

7.1 Program Veri�cation by Forward Repair
The forward repair strategy is described by the pseudocode
in Algorithm 1. Here, we do not commit to a speci�c method-
ology to detect local incompleteness, because the approach
is independent of the way in which such completeness coun-
terexamples are found. Thus, we merely assume that an
oracle function find� is available for the abstraction�, which
takes as input a re�nement �# = � � # , simply passed as
, a current set of stores % and a command r and, either
returns an under-approximation & satisfying &  JrK% and
�# (&) = �# (JrK%) — thus meaning that �# is locally com-
plete for JrK on % — or returns a pair h', ei for some set of
stores ' and basic command e occurring in r such that a local
completeness proof obligation C�#

' (e) is not met.
The procedure fRepair calls the oracle find�, and if this

returns a pair h', ei for a failed proof obligation C�' (e), then
the abstraction � is repaired by taking the pointed shell
returned by refine� (# ,', e). More precisely, refine� (# ,', e)
takes as input the current domain re�nement �# = � � # ,
the current set of stores ' and a basic expression e, and
outputs a �nite set # 0 ◆ # such that C�# 0

' (e) holds. This
oracle function find� is iteratively called until an under-
approximation& is eventually output by find�. Summing up,
fRepair� (# , %, r) takes as input a re�nement �# = � � # , a
command r and a concrete input % , and returns a pair h# 0,&i
such that # 0 ◆ # , &  JrK% , and �# 0 (&) = �# 0 (JrK%).
Theorem 7.1 (fRepair is Sound). For all � 2 Abs(⇠), �nite
✓ ⇠ , % 2 ⇠ , and r 2 Reg, if fRepair� (# , %, r) = h&,# 0i,
then # 0 ◆ # , C�# 0

% (r) and&  JrK%  �# 0 (&) = �# 0 (JrK%).
Example 7.2. Consider the regular command for AbsVal:

rAbs (G) =4 ((G � 0)?; skip) � ((G < 0)?;G := �G)

Algorithm 1: Forward repair procedure fRepair�
1 Function fRepair� (# ,%, r)
2 found := false;
3 do
4 out := find� (# ,%, r) ;
5 switch out do
6 case& do found := true; // underapprox.

7 case h', ei do # := refine� (# ,', e) ; // incompl.

8 while (¬found) ;
9 return h# , outi;

As discussed in Section 1, the analysis on Int of rAbs on input
� =4 {G | G is odd} and Spec =4 [1, +1] raises an alarm for the
allowed output G = 0 * Spec. To recognize whether this is a
true- or false-alarm, we apply the forward repair Algorithm 1,
where the oracle findInt (ú, � , rAbs) returns, as expected, the
proof obligation CInt� ((G � 0)?). Therefore, at line 7 the func-
tion refineInt (ú, � , (G � 0)?) is called. By Theorem 4.11, this
re�nement adds the new concrete element:

(Int(� \ (G � 0)) \ (G � 0))[(Int(� \ (G < 0)) \ (G < 0))
= [1, +1] [[�1,�1] = Z<0,

and consequently, by meet closure, all the intervals with a
hole in 0. In the next iteration, findInt ({Z<0}, � , rAbs) is called
and this returns & = {G 2 Z | G > 0, G is odd}. By Theo-
rem 7.1, we know that JrK%  Int{Z<0 } (&) = [1, +1] holds,
so that we infer that G = 0 was a false-alarm. ⇤

Whenever the abstract domain is re�ned, at the next itera-
tion the procedure find� performs a new full analysis in the
re�ned domain. Backward repair will overcome this issue.

7.2 Program Veri�cation by Backward Repair
The key idea of backward repair is to exploit as much as possi-
ble the abstract reasoning, disregarding the concrete input %
and the actual elements traversed by a concrete computation.
To achieve this, the target equivalence (6) is replaced by the
following stronger condition (7), guaranteeing that the re-
�nement �# is precise enough to decide the (in)correctness
of r not only for input % but also for any % 0  �(%):
8% 0  �(%))

�
JrK•�#

% 0  Spec , JrK% 0  Spec
�

(7)

This condition (7) admits an equivalent formulation in terms
of weakest liberal precondition (see Theorem 7.4).
De�nition 7.3 (Valid Input). Given r 2 Reg, an input set
% 2 ⇠ , and Spec 2 ⇠ , we let:

Vh%, r, Speci =4 ‘
⇠ {% 0 2 ⇠ | % 0  %, JrK% 0  Spec}

denote the greatest valid input set. ⇤

It turns out that Vh%, r, Speci = % ^ ���(JrK, Spec). As an
example, for the basic expressions in Exp we have that:

Vh%, skip, (i =4 % \ (, Vh%, b?, (i =4 % \ (([¬b),
Vh%, G := a, (i =4 {f 2 % | f [G 7! {|a|} f] 2 (}.

436

¬ℂAN
R (6)

⊢AN
[P] A [Q]

given try to find such that A, N, P, A Q ⊢AN
[P] A [Q]

the latest set of refinements and are returnedN Q

update and retryN

Slogan

AIR is to program verification
what CEGAR is for model checking

(we have shown that CEGAR is an instance of AIR)

Concluding Remarks

What next?

AIR with backward repair or
how to find the most abstract domain
refinement for proving correctness

Difficulties in swapping the roles of over-
and under-approximations

LCL enhancements
(local variables, rewrite strategy languages)

What else?
Expressiveness hierarchy
of (locally) complete domains?

Handling pointers and memory errors with
ideas from separation logic

Theoretical foundations for scalable bug-
catching and security tools

References

Thanks for the kind invitation
and for the attention!

