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Overview

I Topic: programming with probability distributions on infinite
sequences and other coinductive data.

I Examples include: random walks, the Chinese restaurant
process and Brownian motion.

I A functional language based on fine-grained call-by-value with
primitives for coinductive types and probabilistic sampling.

I The language has a natural denotational semantics, over
standard Borel spaces, which exploits limit-preservation
properties of the Giry monad to model corecursion for
coinductive data.

I A subtle operational semantics is required to correctly
implement corecursion, in which effect ‘sequencing’ is
performed out of sequence using a call-by-need strategy,



Some overlap in content with:

[DKPS 2023] Dash, Kaddar, Paquet & Staton,
Affine Monads and Lazy Structures for Bayesian
Programming, POPL 2023

I Overlap: programming with probability distributions on
infinite data, monad-based language and semantics, laziness is
operationally necessary and semantically justified because the
distribution monad is affine and commutative.

I [DKPS 2023]: a second non-affine monad supporting Bayesian
Monte Carlo methods, new lazy inference methods, Haskell
implementation.

I This talk: coinductive data types and corecursion justified by
limit-preservation properties of the distribution monad,
operational semantics, agreement of denotational and
operational semantics.



Example 1: iid streams (preliminary)

iid : dist real → stream real

iid d = do x ← sample(d)

in return ( x : (iid d) )

bits : unit → stream real

bits () = iid (uniform{0, 1})

gaussians : unit → stream real

gaussians () = iid (normal(0, 1))



iid d = do x ← sample(d) in return (x : (iid d))

bits () = iid (uniform{0, 1})

xs = bits () : stream real

y = nth xs 1 — the second element (element with index 1) in xs

z = nth xs 1

y == z =⇒ ???



Example 1: iid streams (corrected)

iid : dist real → stream real

iid d = do x ← sample(d)

do xs ← iid d

in return ( x : xs )

bits : unit → stream real

bits () = iid (uniform{0, 1})

gaussians : unit → stream real

gaussians () = iid (normal(0, 1))



iid d = do x ← sample(d) in do xs ← iid d in return (x : xs)

bits () = iid (uniform{0, 1})

xs = bits () : stream real

y = nth xs 1 — the second element (element with index 1) in xs

z = nth xs 1

y == z =⇒ ???

xs : stream real behaves as an infinite sequence of bits, randomly
generated with the uniform probability distribution on {0, 1}ω.

In general, we interpret programs of result type stream real as
probabilistically generating infinite sequences of real numbers.



iid d = do x ← sample(d) in do xs ← iid d in return (x : xs)

bits () = iid (uniform{0, 1})

xs = bits () : stream real

y = nth xs 1 — the second element (element with index 1) in xs

z = nth xs 1

y == z =⇒ true

xs : stream real behaves as an infinite sequence of bits, randomly
generated with the uniform probability distribution on {0, 1}ω.

In general, we interpret programs of result type stream real as
probabilistically generating infinite sequences of real numbers.



iid d = do x ← sample(d) in do xs ← iid d in return (x : xs)

bits () = iid (uniform{0, 1})

xs = bits () : stream real

y = nth xs 1 — the second element (element with index 1) in xs

z = nth xs 1

y == z =⇒

xs : stream real behaves as an infinite sequence of bits, randomly
generated with the uniform probability distribution on {0, 1}ω.

In general, we interpret programs of result type stream real as
probabilistically generating infinite sequences of real numbers.



iid D = do x ← sample(D) in do xs ← iid D in return ( x : xs )

I The language separates general computations (e.g.,
sample(D), iid D and return (x :xs)) from effect-free
expressions (e.g., x , xs and x :xs). (Fine-grained call-by-value)

I Streams in particular are constructed by x : xs where the head
x : real and tail xs : stream real are both expressions.

I If the execution of ‘sequencing’ do x ← M in N is performed
in-sequence then stream-building programs loop. We avoid
this by using a call-by-need strategy to implement
out-of-sequence ‘sequencing’.



Denotational semantics

Types are measurable spaces:

JrealK = R (Borel σ-algebra)

Jstream σK = JσKω

Jdist σK = GJσK (G is the Giry monad)

A program M : σ → τ is interpreted as a Kleisli map for the Giry
monad:

JσK
JMK

. JτK := JσK
JMK- GJτK .

equivalently as a Markov kernel.



iid : dist real→ stream real

iid d = do x ← sample(d) in do xs ← iid d in return (x : xs)

Jiid K is the unique Kleisli map such that:

R× GR
1R ⊗ Jiid K

. R× Rω

GR

(sample, 1GR)

a

Jiid K
. Rω

(x : xs) 7→ (x , xs)

6

Justified because the right-hand map is a final coalgebra for
1R ⊗ (−) in the Kleisli category [Kerstan & König 2013].



For any M : σ → τ × σ, the final coalgebra property determines
corec(M) : σ → stream τ such that Jcorec(M)K is the unique
Kleisli map such that:

JτK× JσK
1JτK ⊗ Jcorec(M)K

. JτK× JτKω

JσK

JMK

a

Jcorec(M)K
. JτKω

(x , xs) 7→ (x : xs)

?

That is, corec(M) is the unique solution to:

corec(M) x = do p ← M x in match p as (y , x ′) in

do ys ← corec(M) x ′ in return (y : ys)



Example 2: Random walks

Any probability distribution D on R generates a random walk(
n∑

i=1

Xi−1

)
n≥0

where (Xn)n≥0 is a sequence of iid random variables, each with
distribution D.

This is directly implemented by walk : dist real → stream real,
which makes use of an auxiliary sums : stream real → stream real
implementing the operation

(xn)n≥0 7→

(
n∑

i=1

xi−1

)
n≥0



sums-from : stream real → real → stream real

sums-from xs s = match xs as (y : ys) in

do zs ← sums-from ys (s+y) in return (s : zs)

sums : stream real → stream real

sums xs = sums-from x 0s

walk : dist real → stream real

walk d = do xs ← iid d in sums xs

discrete-walk : unit → stream real

discrete-walk () = walk (uniform{−1, 1})

gaussian-walk : unit → stream real

gaussian-walk () = walk (normal(0, 1))



A more direct implementation

walk-from : dist real → real → stream real

walk-from d s

= do y ← sample d in do xs ← walk-from d (s+y) in return (s :xs)

walk′ : dist real → stream real

walk′ d = walk-from d 0

By the final coalgebra property walk-from d is the unique solution
to the highlighted equation above.
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Proof that walk d = walk′ d

walk′ d = walk-from d 0 walk d = do xs ← iid d in sums xs

= do xs ← iid d in sums-from xs 0

We prove walk-from d s = do xs ← iid d in sums-from xs s.

do xs ← iid d in sums-from xs s

= do xs ← (do y ← sample d in do ys ← iid d in return (y : ys)) in

match xs as (y : ys) in do zs ← sums-from ys (s+y) in return ( s : zs )

= do y ← sample d in do ys ← iid d in do xs ← return (y : ys) in

match xs as (y : ys) in do zs ← sums-from ys (s+y) in return ( s : zs )

= do y ← sample d in do ys ← iid d in

do zs ← sums-from ys (s+y) in return ( s : zs )

= do y ← sample d in do zs ← (do ys ← iid d in sums-from ys (s+y)) in

return ( s : zs )

So do xs ← iid d in sums-from xs satisfies the equation characterising
walk-from d .



Example 3: Chinese restaurant process (uses lists)

Diners arrive in sequence at a Chinese restaurant, in which there is
an unlimited supply of tables and unlimited space at each table.

When the (n + 1)-th diner arrives there are n customers seated at
m occupied tables (0 ≤ m ≤ n). With probability 1

n+1 the diner
decides to sit at the next empty table, and with probability n

n+1 to
join an occupied table. In the latter case, the diner chooses one of
the existing customers (with the uniform probability distribution)
and joins the table at which that customer is sitting.

The program chinese : unit → stream nat returns a sequence
(tn)n≥0 of natural numbers, where tn is the table number of the
table chosen by diner n + 1, with empty tables being allocated in
numerical order. So necessarily t0 = 1.



arrive : nat→ nat→ list nat→ stream nat

arrive n m ts =

do d ← sample(uniform{0, . . . , n}) in

do t ← {if d == 0 then return (m + 1) else (nth ts (n − d))} in

do cs ← arrive (n + 1) (d == 0 ?m + 1 : m) (t : ts) in

return ( t : cs) )

chinese : unit → stream nat

chinese () = arrive 0 0 []

arrive n m ts is called when n diners are already seated at m tables
and ts is a list of length n, whose entry at index n − d is the table
number (from 1 to m) of diner d (from 1 to n).



Example 4: Brownian motion (uses coinductive trees)

A standard Brownian motion (Bt)t∈[0,1]:



We define
brownian : unit→ B-Tree

where
B-Tree := νX . real× X × real× X × real

Every Node(x , l , c, r , y) at depth n (the root is depth 0) in a tree
generated by brownian () specifies Bc− 1

2n+1
= x and Bc+ 1

2n+1
= y ,

for a Brownian motion (Bt)t∈[0,1], where c ranges over the dyadic
rationals in [0, 1] with denominator 2n+1 and odd numerator.

(l and r are the child subtrees of Node(x , l , c , r , y).)

The program uses the Lévy construction of Brownian motion.



B-Tree = νX . real× X × real× X × real

split : nat → real → real→ real → B-Tree

split n x c y =

do z ← sample

(
normal

(
x + y

2
,

1

2n+2

))
in

do l ← split (n + 1) x

(
c − 1

2n+2

)
z in

do r ← split (n + 1) z

(
c +

1

2n+2

)
y in

return Node(x , l , c , r , y)

brownian : unit → B-Tree

brownian () = do y ← sample(normal(0, 1)) in split 0 0
1

2
y



Types

Ground types:
α ::= unit | bool | nat | real

Data types:

σ ::= α | σ × σ | σ + σ | distσ | X | µX . σ | Y | νY . σ

N.B., we distinguish between µ-variables X and ν-variables Y .

Restrictions on type formation:

I dist σ : the type σ has no free µ-variables.

I µX . σ : the type σ has no free ν-variables.

I νY . σ : the type σ has no free µ-variables.

Closed types are interpreted as standard Borel spaces.



Standard Borel spaces

SBS is the category whose objects are Polish spaces (topological
spaces arising from complete separable metrics), and whose
morphisms are Borel-measurable functions.

SBS is the free category with: countable limits, countable
extensive coproducts, countably boolean. [Chen 2023]

The first description explicitly exhibits SBS as a full subcategory
of the category of measurable spaces.

The Giry monad preserves standard Borel spaces.



Every type σ(X1, . . . ,Xm,Y1, . . . ,Yn) defines a functor

JσK : SBSm × SBSn → SBS

with a distributive law

λσ : JσKGm+n ⇒ GJσK

of the Giry monad over JσK, hence (equivalently) a Kleisli lifting

SBSm
G × SBSn

G
JσKG- SBSG

SBSm × SBSn

Jm+n

6

JσK
- SBS

J

6



The functor:
JσK : SBSm × SBSn → SBS

satisfies:

I for all ~B ∈ SBSn, JσK(−, ~B) preserves monos and colimits of
ω-chains of monos, and

I for all ~A ∈ SBSm, JσK(~A,−) preserves limits of ωop-chains.

For example,
Jdist Y K = G : SBS→ SBS

preserves limits of ωop-chains [folklore] (related to Kolmogorov’s
extension theorem).



Example νY . σ(Y1, . . . ,Yn,Y )

For any ~B ∈ SBSn the final coalgebra for

F~B := JσK(~B,−) : SBS→ SBS

is constructed as the ωop-limit in SBS

1 � F~B1 � F 2
~B

1 � · · · · · · Z � F~BZ

Lemma For any category C with monad T , the functors
J : C → CT and T : C → C preserve exactly the same limits.

Because G : SBS→ SBS preserves terminal object and ωop-limits,
it follows that J : SBS→ SBSG does too. So the limit diagram
below gives the final coalgebra for JσKG(~B,−) : SBSG → SBSG .

1 / F~B1 / F 2
~B

1 / · · · · · · Z / F~BZ



Coincidence of final coalgebras

The above shows that the functor J : SBS→ SBSG maps final
coalgebras for JσK(~B,−) : SBS→ SBS to final coalgebras for
JσKG(~B,−) : SBSG → SBSG .

In the case σ = Y1 × Y . we get the result that
J((a : as) 7→ (a, as)) : Aω . A× Aω is a final coalgebra for
A⊗ (−) on SBSG , cf. [Kerstan & König 2013].

JνY . σ(Y1, . . . ,Yn,Y )K : SBSn → SBS is defined as the
final-coalgebra-finding functor that maps ~B ∈ SBSn to the final
coalgebra for JσK(~B,−) : SBS→ SBS.

Similarly, JνY . σ(Y1, . . . ,Yn,Y )KG : SBSn
G → SBSG is the

final-coalgebra-finding functor that maps ~B ∈ SBSn to the final
coalgebra for JσKG(~B,−) : SBSG → SBSG .



Program syntax (fine-grained call-by-value [LPT 2003])

We syntactically distinguish between effect-free expressions and
(possibly) effectful computations

Γ ` E : τ

Γ ` return E : τ

E is an expression, return E is a computation.

Γ ` M : τ Γ, x : τ ` N : τ ′

Γ ` do x←M in N : τ ′

M,N and do x←M in N are computations.



Inductive types

Γ ` E : σ[X := µX . σ]

Γ ` wrap(E ) : µX . σ

Γ ` E : µX . σ Γ, x : σ[X := µX . σ] ` M : τ

Γ ` match E as wrap(x) in M : τ

Γ ` E : µX . σ Γ, x : σ[X := τ ] ` M : τ

Γ ` rec (x 7→ M) on E : τ

Return values: wrap(V ), where V is a return value of type
σ[X := µX . σ].



Coinductive types

Γ ` E : σ[Y := νY . σ]

Γ ` roll(E ) : νY . σ

Γ ` E : νY . σ Γ, x : σ[Y := νY . σ] ` M : τ

Γ ` match E as roll(x) in M : τ

Γ ` E : τ Γ, x : τ ` M : σ[Y := τ ]

Γ ` corec (x 7→ M) on E : νY . σ

Return values: roll(E ), where E is an expression of type
σ[Y := νY . σ].



Streams

Custom syntax for the type stream τ := νY . (τ × Y ):

Γ ` E : σ Γ ` E ′ : stream σ

Γ ` (E : E ′) : stream σ

Γ ` E : stream σ Γ, x : σ, y : stream σ ` M : τ

Γ ` match E as (x : y) in M : τ

Γ ` E : τ Γ, x : τ ` M : σ × τ

Γ ` corec (x 7→ M) on E : stream σ

Return values: (V : E ), where V is a return value of type σ and E
is an expression of type stream σ.



Operational semantics

Key feature: call-by-need implementation of ‘sequencing’:

do x ← M in N

I N is executed until (if at all) a value for x is needed.

I If and when the first value for x is needed, M is executed, and
its result value is substituted for all occurrences of x .

I Programs (which terminate and have only probabilistic effects)
are interpreted using the affine and commutative Giry monad.

I Affineness means that the call-by-need strategy is sound when
no value for x is required in the execution of N.

I Commutativity means that the call-by-need strategy is sound
even though it disregards the usual sequential order of effect
invocation specified by do x ← M in N.



Configurations

An execution task 〈 x : τ ← M 〉 says: execute the effectful
computation M : τ and assign the resulting value to x .

The operational semantics defines a transition system between
configurations:

ym . . . y0 | 〈xn : τn ← Mn〉 . . . 〈x0 : τ0 ← M0〉

I Ultimately we are executing the task 〈x0 ← M0〉
I ym . . . y0 is the subsequence of xn . . . x0 of scheduled tasks.

Currently we are executing 〈xi ← Mi 〉 for which xi = ym, and
ym−1 . . . y0 is the stack of pending tasks. Always y0 = x0.

I The remaining variables in xn . . . x0 identify execution tasks
that have not yet been scheduled as they may not need to be
evaluted (laziness).



Example transition rules

x Ξ | E 〈x ← M[y ]〉 E ′ −→ y x Ξ | E 〈x ← M[y ]〉 E ′

where M[−] is an evaluation context. A value for y is needed, so x
is suspended and y becomes active.

x Ξ | E 〈x ← return V 〉 E ′ −→ Ξ | E E ′[x := V ] (Ξ nonempty)

The return value V is substituted for all occurrences of x in E ′,
and x is popped off the stack of scheduled tasks.

x Ξ | E 〈x ← do y ← M in N〉 E ′ −→ x Ξ | E 〈y ← M〉 〈x ← N〉 E ′

x is still scheduled so execution contines with N, as required under
call-by-need evaluation.



Corecursion for streams

Γ ` E : τ Γ, x : τ ` M : σ × τ

Γ ` corec (x 7→ M) on E : stream σ

x Ξ | E 〈x ← corec (x 7→ M) on V 〉 E ′ −→ x Ξ | E 〈x ← R〉 E ′

where V is a return value and R is the expression below.

do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)



Signature of basic distributions

A basic distribution is given a signature declaration of the form

dist-op : (α1, . . . , αk) →dist α

E.g.,

normal : (real, real) →dist real

uniform : (real, real) →dist real

uniform : (nat) →dist nat

for each dist-op : (α1,. . ., αn)→dist β

Semantically, we can incorporate any Markov kernel



Sampling a distribution

x Ξ | E 〈x ← sample(dist-op(v1, . . . , vk))〉 E ′ −→
x Ξ | E 〈x ← return v〉 E ′

where dist-op : (α1,. . ., αn)→dist α is a basic distribution, each
vi ∈ JαiK v ∈ JαK.

N.b., we have one such transition, for every v ∈ JαK. The
transition system is thus nondeterministic.

A probabilistic interpretation will be superimposed later.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

x | 〈x ← do bs ← C [()] in return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.
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C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈b ← return 0〉 (0 randomly chosen)

〈p ← return (b, () )〉
〈bs ← match p as (b, u) in do bs′ ← C [u] in return (b : bs′)〉

b p bs x | 〈x ← return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈p ← return (0, () )〉
〈bs ← match p as (b, u) in do bs′ ← C [u] in return (b : bs′)〉

p bs x | 〈x ← return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs ← match (0, ()) as (b, u) in do bs′ ← C [u] in return (b : bs′)〉
bs x | 〈x ← return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs ← do bs′ ← C [()] in return (0 : bs′)〉
bs x | 〈x ← return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← C [()]〉
〈bs ← return (0 : bs′)〉

bs x | 〈x ← return (nth bs 1) + (nth bs 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← C [()]〉
x | 〈x ← return (nth (0 : bs′) 1) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← C [()]〉
x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← C [()]〉
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corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← do p ← (do b′ ← sample(uniform{0, 1}) in return (b′, () )) in

match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉
bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈p ← do b′ ← sample(uniform{0, 1}) in return (b′, () )〉
〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉

bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉
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corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .
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〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉

p bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉
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corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈b′ ← sample(uniform{0, 1})〉
〈p ← return (b′, () )〉
〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉

p bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉
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corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2
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do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .
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〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉
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Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2
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Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈b′ ← return 1〉 (1 randomly chosen)

〈p ← return (b′, () )〉
〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉

b′ p bs x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈p ← return (1, () )〉
〈bs′ ← match p as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉

p bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2
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Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← match (1, ()) as (b′, u) in do bs′′ ← C [u] in return (b′ : bs′′)〉
bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2
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Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′ ← do bs′′ ← C [()] in return (1 : bs′′)〉
bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
〈bs′ ← return (1 : bs′′)〉

bs′ x | 〈x ← return (nth bs′ 0) + (nth (0 : bs′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return (nth (1 : bs′′) 0) + (nth (0 : 1 : bs′′) 1)〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return 1 + nth (0 : 1 : bs′′) 1〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return 1 + nth (1 : bs′′) 0〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return 1 + 1〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return 2〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Illustrative execution of:

do bs ← C [()] in return (nth bs 1) + (nth bs 1)

C [−] := corec (u 7→ do b ← sample(uniform{0, 1}) in return (b, u)) on [−] .

〈bs′′ ← C [()]〉
x | 〈x ← return 2〉

Reduction for stream corecursion:

corec (x 7→ M) on E −→ do p ← M[x := E ] in match p as (y , x ′) in

do ys ← corec (x 7→ M) on x ′ in return (y : ys)

Execution returns 0 with probability 1
2

, and 2 with probability 1
2

.



Termination theorem

Every transition sequence from an initial configuration

x0 | 〈x0 : τ ← M〉

terminates in a terminal configuration

x0 | E 〈x0 : τ ← return V 〉

where V is a return value of type τ .



Structure of the transition system

For every non-terminal configuration

xΞ | E 〈x ← M〉 E ′

I If M is of the form sample(dist-op (v1, . . . , vn)) then there is
one outgoing transition

−→ xΞ | E 〈x ← return v〉 E ′

for every v ∈ JαK, where dist-op : (α1,. . ., αn)→dist α

This is a probabilistic configuration with law d-op (v1, . . . , vn)

I Otherwise, there is exactly one outgoing transition.

This is a deterministic configuration

(Configurations are identified up to α-equivalence.)



Probabilistic interpretation of operational semantics

The execution of an initial configuration

x0 | 〈x0 : τ0 ← M〉

is probabilistic and terminating. It should thus be described by a
probability measure on the set of terminal configurations
x0 | E 〈x0 : τ0 ← return V 〉.

The required probability measure can be defined in ZF+DC by
endowing the set of configurations with the structure of a standard
Borel space and establishing relevant measurability properties of
the operational semantics, cf. [SYHKW 2016].

Such (cumbersome) work can be avoided by working in a set
theory in which all sets are measurable.



Solovay’s Axiom LM

LM: Every set of reals is Lebesgue measurable.

Theorem (Solovay): If ZFC+I is consistent then so is ZF+DC+LM.

Theorem (ZF+DC+LM): If µ is Borel probability measure on a
standard Borel space X then every subset of X is µ-measurable
(i.e., measurable w.r.t. the completion µ∗ of µ).

It follows that, for any set X of countable or continuum cardinality,
there is a one-one correspondence between:

I powerset probability measures P(X )→ [0, 1], and

I Borel probabiity measures B(X )→ [0, 1], where B(X ) is the
Borel σ-algebra of a standard Borel structure on X .

Define:

M1(X ) := set of powerset probability measures P(X )→ [0, 1]



The type of a configuration Ξ | E 〈x0 : τ0 ← M0〉 is τ0. Define:

Configsτ := the set of all configurations of type τ

TermConfigsτ := the set of all terminal configurations of type τ

These sets always have continuum cardinality.

We define:

Terminalsτ : Configsτ →M1(TermConfigsτ )

by well-founded recursion on −→ (justified by termination).



I If Ξ | E is a terminal configuration of type τ then:

Terminalsτ (Ξ | E) = δΞ|E

(where δx is the Dirac measure X 7→ 1x∈X ).

I If Ξ | E is deterministic and Ξ | E −→ Ξ′ | E ′ then

Terminalsτ (Ξ | E) = Terminalsτ (Ξ′ | E ′)

I If Ξ | E is probabilistic of the form

xΞ | E 〈x ← sample(d-op (v1, . . . , vn))〉 E ′

where d-op : (α1,. . ., αn)→dist α, then

Terminalsτ (Ξ | E) =

∫
v∈JαK

Terminalsτ (xΞ | E 〈x ← return v〉 E ′) dJd-opK(v1, . . . , vn)∗



Agreement of operational and denotational semantics

For a closed term M : τ where τ = α1×· · ·×αk define Valuesτ (M)
to be the pushforward of Terminals(x0 | 〈x0 ← M〉) along

x0 | E 〈x0 ← return(v1, . . . , vk)〉 7→ (v1, . . . , vk)

So
Valuesτ (M) ∈M1(Jα1K× · · · × JαkK)

Theorem (Adequacy) For any closed term M : τ we have

Valuesτ (M) = JMK∗ .

This justifies the operational semantics as a correct
implementation of the intended denotational semantics.



Agreement of operational and denotational semantics

For a closed term M : τ where τ = α1×· · ·×αk define Valuesτ (M)
to be the pushforward of Terminals(x0 | 〈x0 ← M〉) along

x0 | E 〈x0 ← return(v1, . . . , vk)〉 7→ (v1, . . . , vk)

So
Valuesτ (M) ∈M1(Jα1K× · · · × JαkK)

Theorem (Adequacy) For any closed term M : τ we have

Valuesτ (M) = JMK∗ .

This justifies the operational semantics as a correct
implementation of the intended denotational semantics.
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