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Overview

Question

In which ways can we express not knowing something?

Consider the outcome of a coin flip in X = {H,T}:

probabilistic: 1
2
|H ⟩+ 1

2
|T ⟩ ∈ D(X )

nondeterministic: {H,T} ∈ P(X )

quotient: 1→ X/X

indiscrete: 1→ G(X , EX ) where EX = {∅,X}

How can we combine these notions?
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Open Stochastic Systems

Case study [Jan Willems, 2012–]

n-dimensional stochastic system: probability space (Rn, E,P)

‘closed’ if E = B(Rn). ← fully resolved random vector

‘open’ if E ⊂ B(Rn). ← ‘openness’ = lack of information
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Open Stochastic Systems

Example: Noisy Resistor

Ohm’s law constrains pairs (V , I ) ∈ R2 to lie in the subspace

D = {(V , I ) : V = RI}

In a noisy resistor, V = RI + ϵ with ϵ ∼ N (0, σ2).

According to Willems, we should model this as the open system

(R2,B(R2/D),PVI )

V , I are not considered random variables in isolation.

Stein & Samuelson

Extended Gaussians



Open Stochastic Systems

From [Willems’12]:
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Open Stochastic Systems

How to find a cleaner picture? Make σ-algebras part of the morphisms, not objects?

R

I R2

R

PVI

π1

π2

PV

PI

Goal:

Define a Markov category

Gauss −→ GaussEx←− LinRel+

which unifies probabilistic and nondeterministic contributions. [Caveat: no-go theorems]

corresponds to ‘linear open stochastic systems’ [Willems]

‘open‘ (morphism) ̸= ‘open‘ (lack of information)
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Extended Gaussian distributions

Definition

An extended Gaussian distribution on Rn is pair (D, ψ) where

D ⊆ Rn subspace, ψ ∈ Gauss(Rn/D)

Call D nondeterministic fibre, and write ψ + D ← just like coset notation 3 + 2Z

D = 0 ↔ purely probabilistic (‘closed’)

ψ = 0 ↔ purely nondeterministic

D = Rn ↔ ideal uniform distribution

Example: One-dimensional distributions

On R, either D = 0 and ψ ∈ Gauss(R), or D = R, and Gauss(R/R) ∼= {0}, so

GaussEx(R) = Gauss(R) + {R}

The uniform distribution R is translation invariant, e.g. N (0, 1) + R = R.
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Noisy Resistor Revisited

The extended Gaussian model

ϵ ∼ N (0, σ2)

I ∼ R
V = R · I + ϵ

has joint distribution

PϵIV = N

0
0
0

 ,

σ2 0 σ2

0 0 0
σ2 0 σ2

+


 0

I
V

 : V = R · I


with marginals [assuming R ̸= 0]

PIV = N
((

0
0

)
,

(
0 0
0 σ2

))
+

{(
I
V

)
: V = R · I

}
, PI = PV = R
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String Diagrams

How to compute these compositionally?

N R

×R

+

ϵ I V
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Categorical Structure

Extended Gaussian distributions can be added, tensored, pushed forward etc. just like
ordinary Gaussians. E.g. for A ∈ Rm×n,

A∗(N (µ,Σ) + D) = A∗N (µ,Σ) + A[D] = N (Aµ,AΣAT ) + A[D]

Gaussian maps [Fritz’20] → Extended Gaussian maps

Gauss(Rm,Rn) = linear maps + Gaussian noise

x 7→ f (x) + ψ where ψ ∈ Gauss(Rn)

GaussEx(Rm,Rn) = linear maps + extended Gaussian noise

x 7→ f (x) + ψ + D where ψ ∈ Gauss(Rn),D ⊆ Rn

but: Representatives are not unique; we really want f : Rm → Rn/D,
ψ ∈ Gauss(Rn/D). How to compose these?
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Decorated Cospans

Recall that a partial function X ⇀ Y is a span1 X A Ym f

Definition: a copartial function X ⇁ Y is a cospan1 X P Yf p

Copartial functions compose via pushout

W

P Q

X Y Z

f p g q

⌟

Linear Relations and cospans

Theorem [Fong]: To give a copartial function X ⇁ Y in Vec is to give a total linear
relation R ⊆ X × Y . That is every such relation can be written as

R(x) = f (x) + D for a unique f : X → Y /D

1up to equivalence

Stein & Samuelson

Extended Gaussians



Decorated Cospans

Given a monoidal functor F : C→ Set, a decorated cospan is a pair (X
f−→ P

p←− Y ;ψ)
with ψ ∈ F (P) [Fong’15]. Decorations are composed by taking their coproduct and
projecting them to the pushout.

Theorem/Definition

The extended Gaussian map
x 7→ f (x) + ψ + D

formally corresponds to the following Gauss-decorated copartial function on Vec

(Rn f−→ Rm/D
π←− Rm;ψ)

and composition is pushout.
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Applications

Extended Gaussians have been considered at different times, for different purposes.
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Applications I – Improper priors

Consider Bayesian inference with Gaussians (e.g. linear regression, Gaussian Processes,
Kalman filters)
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There is no uniform prior over R. In which sense is

lim
σ2→∞

N (µ, σ2) = R?
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Applications II – Duality

Covariance-Precision duality

For a Gaussian distribution N (µ,Σ), the precision matrix is defined as

Ω = Σ−1

if Σ is regular.

Precision forms generalize logprobability densities:

covariance is additive for convolution

precision is additive for conditioning!

Fix the asymmetry [e.g. James’73]:

that’s the precision for singular Σ? ← a partial quadratic form

which distributions correspond to singular Ω? ← extended Gaussians!

ker(Ω) = D = dom(Σ)⊥
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Applications III – Gaussian Relations

Definition

Define the category of Gaussian relations as

GaussRel(X ,Y ) = GaussEx(X ⊗ Y ) + {⊥}

This is a hypergraph category:

delete compare condition uniform uniform
diagonal

copy

Alternative characterizations:

1 equivalence classes of decorated cospans X
f−→ P

g←− Y .

2 convex functions (partial quadratic forms)
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Take Home Message

Summary:

Extended Gaussian = probability + nondeterminism

Compositional manipulation using decorated cospans & categorical probability

Categorical account of Willems’ open systems [extending Zanasi & al]

Outlook:

presentations, signal flow diagrams

convex analysis, nonlinear systems

Thank you!
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