A Category for Unifying Gaussian Probability and Nondeterminism

Dario Stein ${ }^{1}$, Richard Samuelson ${ }^{2}$
${ }^{1}$ Radboud University Nijmegen, ${ }^{2}$ Humming Inc.

CALCO 2023
Bloomington, Indiana - 19 June 2023

Overview

Question

In which ways can we express not knowing something?

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

- probabilistic: $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle \in \mathcal{D}(X)$

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

- probabilistic: $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle \in \mathcal{D}(X)$
- nondeterministic: $\{H, T\} \in \mathcal{P}(X)$

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

- probabilistic: $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle \in \mathcal{D}(X)$
- nondeterministic: $\{H, T\} \in \mathcal{P}(X)$
- quotient: $1 \rightarrow X / X$

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

- probabilistic: $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle \in \mathcal{D}(X)$
- nondeterministic: $\{H, T\} \in \mathcal{P}(X)$
- quotient: $1 \rightarrow X / X$
- indiscrete: $1 \rightarrow \mathcal{G}\left(X, \mathcal{E}_{X}\right)$ where $\mathcal{E}_{X}=\{\emptyset, X\}$

Overview

Question

In which ways can we express not knowing something?
Consider the outcome of a coin flip in $X=\{H, T\}$:

- probabilistic: $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle \in \mathcal{D}(X)$

■ nondeterministic: $\{H, T\} \in \mathcal{P}(X)$

- quotient: $1 \rightarrow X / X$
- indiscrete: $1 \rightarrow \mathcal{G}\left(X, \mathcal{E}_{X}\right)$ where $\mathcal{E}_{X}=\{\emptyset, X\}$
- How can we combine these notions?

Open Stochastic Systems

Case study [Jan Willems, 2012-]
n-dimensional stochastic system: probability space $\left(\mathbb{R}^{n}, \mathcal{E}, P\right)$

- 'closed' if $\mathcal{E}=\mathcal{B}\left(\mathbb{R}^{n}\right)$. \leftarrow fully resolved random vector
- 'open' if $\mathcal{E} \subset \mathcal{B}\left(\mathbb{R}^{n}\right) . \leftarrow$ 'openness' = lack of information

Open Stochastic Systems

Example: Noisy Resistor

Ohm's law constrains pairs $(V, I) \in \mathbb{R}^{2}$ to lie in the subspace

$$
D=\{(V, I): V=R I\}
$$

In a noisy resistor, $V=R I+\epsilon$ with $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
According to Willems, we should model this as the open system

$$
\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2} / D\right), P_{V I}\right)
$$

V, I are not considered random variables in isolation.

Open Stochastic Systems

From [Willems'12]:

(a)

(b)

Fig. 2. Events for the noisy resistor.

Open Stochastic Systems

How to find a cleaner picture？Make σ－algebras part of the morphisms，not objects？

Goal：

Define a Markov category

$$
\text { Gauss } \rightarrow \text { GaussEx } \leftarrow \text { LinRel }^{+}
$$

which unifies probabilistic and nondeterministic contributions．［Caveat：no－go theorems］
－corresponds to＇linear open stochastic systems＇［Willems］
－＇open＇（morphism）\neq＇open＇（lack of information）

Extended Gaussian distributions

Definition

An extended Gaussian distribution on \mathbb{R}^{n} is pair (D, ψ) where

$$
D \subseteq \mathbb{R}^{n} \text { subspace, } \quad \psi \in \operatorname{Gauss}\left(\mathbb{R}^{n} / D\right)
$$

Call D nondeterministic fibre, and write $\psi+D \leftarrow$ just like coset notation $3+2 \mathbb{Z}$

- $D=0 \leftrightarrow$ purely probabilistic ('closed')
- $\psi=0 \leftrightarrow$ purely nondeterministic
- $D=\mathbb{R}^{n} \leftrightarrow$ ideal uniform distribution

Example: One-dimensional distributions

On \mathbb{R}, either $D=0$ and $\psi \in \operatorname{Gauss}(\mathbb{R})$, or $D=\mathbb{R}$, and $\operatorname{Gauss}(\mathbb{R} / \mathbb{R}) \cong\{0\}$, so

$$
\operatorname{GaussEx}(\mathbb{R})=\operatorname{Gauss}(\mathbb{R})+\{\mathbb{R}\}
$$

The uniform distribution \mathbb{R} is translation invariant, e.g. $\mathcal{N}(0,1)+\mathbb{R}=\mathbb{R}$.

Noisy Resistor Revisited

The extended Gaussian model

$$
\begin{aligned}
\epsilon & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
I & \sim \mathbb{R} \\
V & =R \cdot I+\epsilon
\end{aligned}
$$

has joint distribution

$$
P_{\epsilon I V}=\mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{ccc}
\sigma^{2} & 0 & \sigma^{2} \\
0 & 0 & 0 \\
\sigma^{2} & 0 & \sigma^{2}
\end{array}\right)\right)+\left\{\left(\begin{array}{l}
0 \\
1 \\
V
\end{array}\right): V=R \cdot I\right\}
$$

with marginals [assuming $R \neq 0$]

$$
P_{I V}=\mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma^{2}
\end{array}\right)\right)+\left\{\binom{I}{V}: V=R \cdot I\right\}, \quad P_{I}=P_{V}=\mathbb{R}
$$

String Diagrams

How to compute these compositionally?

Categorical Structure

Extended Gaussian distributions can be added, tensored, pushed forward etc. just like ordinary Gaussians. E.g. for $A \in \mathbb{R}^{m \times n}$,

$$
A_{*}(\mathcal{N}(\mu, \Sigma)+D)=A_{*} \mathcal{N}(\mu, \Sigma)+A[D]=\mathcal{N}\left(A \mu, A \Sigma A^{T}\right)+A[D]
$$

Gaussian maps [Fritz'20] \rightarrow Extended Gaussian maps

Gauss $\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)=$ linear maps + Gaussian noise

$$
x \mapsto f(x)+\psi \text { where } \psi \in \operatorname{Gauss}\left(\mathbb{R}^{n}\right)
$$

$\operatorname{GaussEx}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)=$ linear maps + extended Gaussian noise

$$
x \mapsto f(x)+\psi+D \text { where } \psi \in \operatorname{Gauss}\left(\mathbb{R}^{n}\right), D \subseteq \mathbb{R}^{n}
$$

but: Representatives are not unique; we really want $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} / D$, $\psi \in \operatorname{Gauss}\left(\mathbb{R}^{n} / D\right)$. How to compose these?

Decorated Cospans

Recall that a partial function $X \rightharpoonup Y$ is a span ${ }^{1} \quad X \stackrel{m}{\longleftrightarrow} A \xrightarrow{f} Y$
Definition：a copartial function $X \rightharpoondown Y$ is a cospan ${ }^{1} X \xrightarrow{f} P \underset{\longleftrightarrow}{P} Y$
Copartial functions compose via pushout

Linear Relations and cospans
Theorem［Fong］：To give a copartial function $X \rightharpoondown Y$ in Vec is to give a total linear relation $R \subseteq X \times Y$ ．That is every such relation can be written as

$$
R(x)=f(x)+D \text { for a unique } f: X \rightarrow Y / D
$$

[^0]
Decorated Cospans

Given a monoidal functor $F: \mathbb{C} \rightarrow$ Set, a decorated cospan is a pair $(X \xrightarrow{f} P \stackrel{p}{\leftarrow} Y ; \psi)$ with $\psi \in F(P)$ [Fong'15]. Decorations are composed by taking their coproduct and projecting them to the pushout.

Theorem/Definition

The extended Gaussian map

$$
x \mapsto f(x)+\psi+D
$$

formally corresponds to the following Gauss-decorated copartial function on Vec

$$
\left(\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} / D \stackrel{\pi}{\leftarrow} \mathbb{R}^{m} ; \psi\right)
$$

and composition is pushout.

Applications

Extended Gaussians have been considered at different times, for different purposes.

Applications I - Improper priors

Consider Bayesian inference with Gaussians (e.g. linear regression, Gaussian Processes, Kalman filters)

There is no uniform prior over \mathbb{R}. In which sense is

$$
\lim _{\sigma^{2} \rightarrow \infty} \mathcal{N}\left(\mu, \sigma^{2}\right)=\mathbb{R} ?
$$

Applications II - Duality

Covariance-Precision duality

For a Gaussian distribution $\mathcal{N}(\mu, \Sigma)$, the precision matrix is defined as

$$
\Omega=\Sigma^{-1}
$$

if Σ is regular.
Precision forms generalize logprobability densities:

- covariance is additive for convolution
- precision is additive for conditioning!

Fix the asymmetry [e.g. James'73]:

- that's the precision for singular Σ ? \leftarrow a partial quadratic form
- which distributions correspond to singular Ω ? \leftarrow extended Gaussians!

$$
\operatorname{ker}(\Omega)=D=\operatorname{dom}(\Sigma)^{\perp}
$$

Applications III－Gaussian Relations

Definition

Define the category of Gaussian relations as

$$
\operatorname{GaussRel}(X, Y)=\operatorname{Gauss} \operatorname{Ex}(X \otimes Y)+\{\perp\}
$$

This is a hypergraph category：

Alternative characterizations：
$\boxed{1}$ equivalence classes of decorated cospans $X \xrightarrow{f} P \stackrel{g}{\curvearrowleft} Y$ ．
© convex functions（partial quadratic forms）

Take Home Message

Summary:
■ Extended Gaussian = probability + nondeterminism

- Compositional manipulation using decorated cospans \& categorical probability
- Categorical account of Willems' open systems [extending Zanasi \& al]

Take Home Message

Summary:

■ Extended Gaussian $=$ probability + nondeterminism

- Compositional manipulation using decorated cospans \& categorical probability
- Categorical account of Willems' open systems [extending Zanasi \& al]

Outlook:

- presentations, signal flow diagrams
- convex analysis, nonlinear systems

Fig. 10. Price/demand/supply event

Thank you!

[^0]: ${ }^{1}$ up to equivalence

