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Statistical Learning

Statistics Example

Covid tests have a known sensitivity/specificity.

A patient takes three tests: two are positive, one negative

What’s the probability they have covid?

How does this relate to taking a single test with an uncertain outcome: 66%
positive, 33% negative?

How to interpret uncertain evidence in the first place?
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Overview

Recap: Modes of learning from uncertain evidence [Jacobs’21]

Pearl’s update

Jeffrey’s update

New Insights:

Sampling interpretation: Probabilistic Programming & Nested Normalization

Learning from datasets: Mixture Modelling & Variational Inference
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Pearl’s & Jeffrey’s update

We need finite distributions

D(X ) =

{
n∑

i=1

pi |xi ⟩ : pi ∈ [0, 1],
∑
i

pi = 1

}

Basic setting for learning

1 beliefs ω ∈ D(X )

2 prediction channel c : X → D(Y )

3 uncertain evidence τ ∈ D(Y ) ← e.g. noisy measurement

Question: How to update ω given τ?
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Calculus of distributions and predicates

Allowing possibly unnormalized distributions: [0,∞)X×Y

1 states ω : I → X

2 predicates p : X → I , q : Y → I
every state gives rise to a predicate ω̂(x) = ω(x).

3 pushforward/pullback: for c : X → Y

c∗ω = c ◦ ω : I → Y , c∗q = q ◦ c : X → I

4 Validity pairing

(ω |= p) =
∑
x

ω(x) · p(x) (ω |= τ̂) = ⟨ω, τ⟩ ← L2-inner product

5 conditioning (Bayes’ rule)

ω|p =
ω · p
ω |= p

, i.e. ω|p(x) =
ω(x)p(x)∑
x ω(x)p(x)
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Pearl’s & Jeffrey’s update

Recall Bayesian inversion c†ω : Y → D(X ) given by c†ω(y) = ω|c∗1y .

Def: Pearl’s update

ωPearl = ω|c∗τ̂

Def: Jeffrey’s update

ωJeffreys = c†ω ◦ τ

Sharp evidence = Bayesian inversion

For sharp evidence τ = |y0 ⟩, both updates equal Bayesian inversion

ωPearl = ωJeffrey = c†ω(y0)
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Pearl’s & Jeffrey’s update

Key difference: When to normalize?

ω

c τ

X

Y

ω

c

τ

X

Y

Pearl’s update Jeffrey’s update
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In probabilistic programs

Pearl’s

y = τ()
x = ω()
condition(c(x) == y)
return x

Jeffrey’s using Nested Normalization

y = τ()
return normalize(
x = ω()
condition(c(x) == y)
return x

)

Jacobs & Stein

Pearl’s and Jeffrey’s update



Rejection samplers

# Pearl ’s update

while True:
x = ω()
y = τ() # new target in every iteration

if c(x) == y:
yield x

# Jeffreys ’s update

while True:
x = ω()
if c(x) == y:

y = τ() # new target after accept

yield x
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Pearl’s & Jeffrey’s update

Pearl’s update

1 Symmetric: belief is revised ↔ evidence is distrusted

2 Repeated updates commute

3 Learns nothing if τ = uniform.

Jeffrey’s update

1 Asymmetric: Belief changes, evidence does not
take a random sample y ∼ τ of the evidence, treat it as certain

2 Repeated updates do not commute

3 Learns nothing if τ = cω
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Learning from what’s right and wrong

From [Jacobs’21]:

Pearl’s update [easy]

Pearl’s update increases validity of the model under the evidence

⟨τ, c ◦ ω⟩ ≤ ⟨τ, c ◦ ωPearl⟩

Jeffrey’s update [surprisingly tricky!]

Jeffrey’s update reduces divergence of evidence and prediction

D(τ || c ◦ ω) ≥ D(τ || c ◦ ωJeffreys)

where

D(τ ||σ) =
∑
x

τ(x) log

(
τ(x)

σ(x)

)
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Datasets

Statistical datasets naturally organize as multisets (unordered lists)

M[n](X ) =

{∑
i

ni |xi ⟩ : ni ∈ N,
∑
i

ni = n

}

We have a natural transformations

acc : X n →M[n](X ), (x1, . . . , xn) 7→ |x1 ⟩+ . . .+ |xn ⟩

flrn :M[n](X )→ D(X ), φ 7→
φ

N

mn[n] : D(X )→ D(M[n](X )), ω 7→ D(acc)(ω⊗n)

Multiset lifting

M[n] extends to a functor Kℓ(D)→ Kℓ(D).
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Pearl’s & Jeffrey’s update

Back to the Covid example: [all numbers purely hypothetical]

X = {true, false} ← covid or not

Y = {pos, neg} ← test result

ω = 0.05|true ⟩+ 0.95| false ⟩ ← base rate

c : X → D(Y ), 10% false negatives, 5% false positives

ψ = 2|pos ⟩+ 1|neg ⟩ ∈ M[3](Y ) ← observations

Possible inferences

3 x Bayes rule ⇒ 64%

1 x Pearl’s update with τ = flrn(ψ) ⇒ 9%

1 x Jeffreys’s update with τ = flrn(ψ) ⇒ 33%

How to interpret the results? What are the underlying generative models?
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Generative models & Likelihoods

Pearl style mixture model

We use the same latent value x for all datapoints (single patient)

x ∼ ω, yi ∼ c(x) iid.

That is we take the mixture

ΦPearl =
∑
x

ω(x) ·mn[n](c(x))

Jeffrey style multinomial model

All datapoints {yi} are independently sampled (population of patients)

xi ∼ ω iid., yi ∼ c(xi )

hence
ΦJeffrey = mn[n](c ◦ ω)

Jacobs & Stein

Pearl’s and Jeffrey’s update



Increasing likelihoods via updates

Let a dataset ψ = acc(y1, . . . , yn) ∈M[n](X ) be given.

Pearl’s likelihood

Repeated application of Bayes’s rule

ω 7→ ω|mn[n](c)∗1ψ

= ω|c∗1y1 |c∗1y2 · · · |c∗1yn

increase the likelihood ΦPearl(ψ).

Jeffrey’s likelihood

The likelihood of ψ under the multinomial model is inversely related to the divergence

D(flrn(ψ) || cω)

Jeffrey’s update ω 7→ c†ω ◦ flrn(ψ) increases the multinomial likelihood ΦJeffrey(ψ).
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Variational Inference for Multinomial models

New Perspective

Jeffrey’s update is variational approximation to Bayesian inversion on multisets, under
an independence assumption.

Let a population be modelled by Φ = mn[n](ω) for some ω ∈ D(X ). Each member
performs a test c, and we observe outcomes ψ ∈M[n](Y ) sharply. The Bayesian
inverse is

Φ′ =M[n](c)†Φ(ψ) ∈ D(M[n](X ))

Φ′ is no longer a multinomial distribution!

The best approximation is given by Jeffrey’s update

Theorem

argmin
ω′

D(mn[n](ω′) ||Φ′) = c†ω ◦ flrn(ψ)
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Summary

We saw

Difference between Jeffrey’s and Pearl’s update is subtle
Rejection samplers differ in 1 line

Different modelling assumptions:
Pearl’s: repeated information about a single individual
Jeffrey’s: population level / independence assumptions
both updates increase a model likelihood

Jeffrey’s update ↔ nested normalization in PPL

Variational principle

Outlook: Further Connections with active inference / predictive coding

Free-energy principle

Operational differences (sampling, particle filters) ← Jeffrey needs only a single

sample of τ

Thank you!
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