
Semantics of Multimodal Adjoint Type Theory

Michael Shulman

University of San Diego

June 22, 2023
MFPS XXXIX

Supported by AFOSR award number FA9550-21-1-0009
1 / 12



Unimodal type theories

A unimodal type theory consists of

1 An ordinary type theory

2 Some new unary type formers, called modalities.

3 Specified functions relating the modalities and their
composites, today called laws.

Example (Classical modal logic)

Two modalities:

• □P = “necessarily P” (P holds in all possible worlds)

• ♢P = “possibly P” (P holds in some possible world)

Laws including

□P → P P → ♢P □P → □□P etc.

2 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



More unimodal type theories

• Guarded recursion: modality ▷ (“later”), law A→ ▷A,
plus the Löb axiom (▷A→ A)→ A

• Synthetic computation: modality ♯, laws A→ ♯A, ♯♯A ∼= ♯A.
Classical ♯-logic (e.g. ∇A ∈ Eff) in constructive ambient.

• Phase distinctions: modalities ○ϕ,●ϕ, laws A→ ○ϕA and
○ϕ○ϕA ∼= ○ϕA, sim. A→ ●ϕA and ●ϕ●ϕA ∼= ●ϕA, etc.

• Tangent type theory (?): modality T, laws TA→ A, etc.

• Crisp type theory: modality ♭, laws ♭A→ A and ♭♭A ∼= ♭A.
Terms of ♭A represent “closed” or “global” terms of A.

• Synthetic topology: Both ♭ and ♯, with ♭♯A ∼= ♭A, ♯♭A ∼= ♯A.
Any type has an implicit topology, e.g. N→ 2 is Cantor space.
Then ♭A retopologizes it discretely, and ♯A indiscretely.

• Enhanced guarded recursion: modalities ▷ and □ (“always”),
laws □A→ A and □□A ∼= □A (like ♭) plus □▷ A ∼= □A.

3 / 12



Multimodal type theories

A multimodal type theory consists of

1 One or more ordinary type theories.

2 Modalities mapping types of one mode to types of another
(possibly different) mode.

3 Laws relating the modalities and their composites.

Examples include:

• Guarded recursion: modes t (time-varying) and s (constant).
Then ▷ ∶ t → t, while □ decomposes into tot ∶ t → s and
const ∶ s → t. Constancy is now ensured statically.

• Similarly, all the ♭s and ♯s can be decomposed through sets.

• Call by push value∗: modes v (values) and c (computations),
modalities F ∶ v → c and U ∶ c → v , laws giving F ⊣ U.

4 / 12



Multimodal type theories

A multimodal type theory consists of

1 One or more ordinary type theories.

2 Modalities mapping types of one mode to types of another
(possibly different) mode.

3 Laws relating the modalities and their composites.

Examples include:

• Guarded recursion: modes t (time-varying) and s (constant).
Then ▷ ∶ t → t, while □ decomposes into tot ∶ t → s and
const ∶ s → t. Constancy is now ensured statically.

• Similarly, all the ♭s and ♯s can be decomposed through sets.

• Call by push value∗: modes v (values) and c (computations),
modalities F ∶ v → c and U ∶ c → v , laws giving F ⊣ U.

4 / 12



Multimodal type theories

A multimodal type theory consists of

1 One or more ordinary type theories.

2 Modalities mapping types of one mode to types of another
(possibly different) mode.

3 Laws relating the modalities and their composites.

Examples include:

• Guarded recursion: modes t (time-varying) and s (constant).
Then ▷ ∶ t → t, while □ decomposes into tot ∶ t → s and
const ∶ s → t. Constancy is now ensured statically.

• Similarly, all the ♭s and ♯s can be decomposed through sets.

• Call by push value∗: modes v (values) and c (computations),
modalities F ∶ v → c and U ∶ c → v , laws giving F ⊣ U.

4 / 12



Multimodal type theories

A multimodal type theory consists of

1 One or more ordinary type theories.

2 Modalities mapping types of one mode to types of another
(possibly different) mode.

3 Laws relating the modalities and their composites.

Examples include:

• Guarded recursion: modes t (time-varying) and s (constant).
Then ▷ ∶ t → t, while □ decomposes into tot ∶ t → s and
const ∶ s → t. Constancy is now ensured statically.

• Similarly, all the ♭s and ♯s can be decomposed through sets.

• Call by push value∗: modes v (values) and c (computations),
modalities F ∶ v → c and U ∶ c → v , laws giving F ⊣ U.

4 / 12



General modal type theories

The abstract structure of modes, modalities and laws forms a
2-category, with objects, morphisms, and 2-cells.

Big-picture goal

Formulate and implement a general multimodal type theory,
parametrized over a user-specified 2-categoryM.

A very biased and selective history:

• Pfenning–Davies 2001: unimodal simple type theory with □

• Reed 2009: multimodal simple type theory over any posetM
• Licata–S.–Riley 2017: multimodal simple type theory over any
2-categoryM
• S. 2018: unimodal dependent type theory with ♭, ♯

• Gratzer–Kavvos–Nuyts–Birkedal 2021: multimodal dependent
type theory (MTT) over any 2-categoryM

5 / 12



The structure of modal type theories

• Each mode p has its own ordinary type theory.

• A modality µ ∶ p → q maps a p-type A to a q-type µ⊡A.

• A q-context can contain variables x ∶µ A, where A is a p-type
and µ ∶ p → q is a modality.

• µ⊡A internalizes annotated variables, with elimination rule

Γ ⊢ M ∶ µ⊡A Γ, x ∶µ A ⊢ c ∶ C

Γ ⊢ let mod(x)← M in c ∶ C
.

Semantically, x ∶µ A and y ∶ µ⊡A are equivalent.

• The introduction rule requires a “locking” or “division”
operation making a q-context into a p-context:

Γ/µ ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ⊡A

6 / 12



The structure of modal type theories

• Each mode p has its own ordinary type theory.

• A modality µ ∶ p → q maps a p-type A to a q-type µ⊡A.

• A q-context can contain variables x ∶µ A, where A is a p-type
and µ ∶ p → q is a modality.

• µ⊡A internalizes annotated variables, with elimination rule

Γ ⊢ M ∶ µ⊡A Γ, x ∶µ A ⊢ c ∶ C

Γ ⊢ let mod(x)← M in c ∶ C
.

Semantically, x ∶µ A and y ∶ µ⊡A are equivalent.

• The introduction rule requires a “locking” or “division”
operation making a q-context into a p-context:

Γ/µ ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ⊡A

6 / 12



The structure of modal type theories

• Each mode p has its own ordinary type theory.

• A modality µ ∶ p → q maps a p-type A to a q-type µ⊡A.

• A q-context can contain variables x ∶µ A, where A is a p-type
and µ ∶ p → q is a modality.

• µ⊡A internalizes annotated variables, with elimination rule

Γ ⊢ M ∶ µ⊡A Γ, x ∶µ A ⊢ c ∶ C

Γ ⊢ let mod(x)← M in c ∶ C
.

Semantically, x ∶µ A and y ∶ µ⊡A are equivalent.

• The introduction rule requires a “locking” or “division”
operation making a q-context into a p-context:

Γ/µ ⊢ M ∶ A

Γ ⊢ mod(M) ∶ µ⊡A

6 / 12



Context operations

In PD, Reed, LSR, etc., Γ/µ was computed by removing or
re-annotating variables according to the laws, e.g.

(x ∶♭ A, y ∶ B, z ∶♭ C)/♭ = (x ∶♭ A, z ∶♭ C)

Here y ∶ B (meaning y ∶id B) is removed as there is no law id⇒ ♭.
In general, (x ∶µ A)/ν contains an x ∶ϱ A for each α ∶ µ⇒ ν ◦ ϱ.

Hard to give a good equational theory for arbitraryM.

In MTT, Γ/µ is a constructor of contexts: a context is a sequence
of variables interspersed with “formal divisions” (a.k.a. “locks”).
Now we choose a law when using a variable, e.g.

α ∶ µ⇒ ν

Γ, (x ∶µ A), /ν, (y ∶ B) ⊢ xα ∶ A

7 / 12



Context operations

In PD, Reed, LSR, etc., Γ/µ was computed by removing or
re-annotating variables according to the laws, e.g.

(x ∶♭ A, y ∶ B, z ∶♭ C)/♭ = (x ∶♭ A, z ∶♭ C)

Here y ∶ B (meaning y ∶id B) is removed as there is no law id⇒ ♭.
In general, (x ∶µ A)/ν contains an x ∶ϱ A for each α ∶ µ⇒ ν ◦ ϱ.

Hard to give a good equational theory for arbitraryM.

In MTT, Γ/µ is a constructor of contexts: a context is a sequence
of variables interspersed with “formal divisions” (a.k.a. “locks”).
Now we choose a law when using a variable, e.g.

α ∶ µ⇒ ν

Γ, (x ∶µ A), /ν, (y ∶ B) ⊢ xα ∶ A

7 / 12



Semantics of modal type theory

Multimodal type theory overM should have semantics in a
2-functorM→ Cat:

1 Each mode p represents a (structured) category Cp.

2 Each modality µ⊡− represents a functor Cp → Cq.

3 Each law represents a natural transformation.

Example (Guarded recursion)

Ct = Setω
op

(the “topos of trees”) and Cs = Set, with

▷X (n) = X (n+1) totX = limn X (n) (constY )(n) = Y

8 / 12



Semantics of MTT

However, for MTT it seems we also need:

4 Each context division −/µ represents a left adjoint to µ⊡−.

Some functors do have left adjoints:

• ▷ and □ in the topos of trees

• open modalities ○ϕ

• indiscreteness ♯ in topological spaces

• discreteness ♭ in locally connected topological spaces

But others don’t:

• ♯ in the effective topos

• closed modalities ●ϕ

• tangent space T

• global sections ♭ in a general topos

• discreteness ♭ in non-locally-connected topological spaces

9 / 12



Semantics of MTT

However, for MTT it seems we also need:

4 Each context division −/µ represents a left adjoint to µ⊡−.

Some functors do have left adjoints:

• ▷ and □ in the topos of trees

• open modalities ○ϕ

• indiscreteness ♯ in topological spaces

• discreteness ♭ in locally connected topological spaces

But others don’t:

• ♯ in the effective topos

• closed modalities ●ϕ

• tangent space T

• global sections ♭ in a general topos

• discreteness ♭ in non-locally-connected topological spaces

9 / 12



Semantics of MTT

However, for MTT it seems we also need:

4 Each context division −/µ represents a left adjoint to µ⊡−.

Some functors do have left adjoints:

• ▷ and □ in the topos of trees

• open modalities ○ϕ

• indiscreteness ♯ in topological spaces

• discreteness ♭ in locally connected topological spaces

But others don’t:

• ♯ in the effective topos

• closed modalities ●ϕ

• tangent space T

• global sections ♭ in a general topos

• discreteness ♭ in non-locally-connected topological spaces

9 / 12



The co-dextrification

Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about
what variables can be used — thus including all the Γ/µ.

Given C ∶M→ Cat, let an object of Ĉr consist of

1 For each µ ∶ p → r inM, an object Γµ ∈ Cp.

2 For each ϱ ∶ p → q and α ∶ µ⇒ ν ◦ ϱ, a map Γν → Cϱ(Γµ).
3 Coherence axioms.

Theorem

If each Cp has, and each Cµ preserves,M-sized limits, then

1 Each category Ĉp contains Cp as a reflective subcategory.

2 Each functor Ĉµ ∶ Ĉp → Ĉq has a left adjoint.

10 / 12



The co-dextrification

Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about
what variables can be used — thus including all the Γ/µ.

Given C ∶M→ Cat, let an object of Ĉr consist of

1 For each µ ∶ p → r inM, an object Γµ ∈ Cp.

2 For each ϱ ∶ p → q and α ∶ µ⇒ ν ◦ ϱ, a map Γν → Cϱ(Γµ).
3 Coherence axioms.

Theorem

If each Cp has, and each Cµ preserves,M-sized limits, then

1 Each category Ĉp contains Cp as a reflective subcategory.

2 Each functor Ĉµ ∶ Ĉp → Ĉq has a left adjoint.

10 / 12



The co-dextrification

Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about
what variables can be used — thus including all the Γ/µ.

Given C ∶M→ Cat, let an object of Ĉr consist of

1 For each µ ∶ p → r inM, an object Γµ ∈ Cp.

2 For each ϱ ∶ p → q and α ∶ µ⇒ ν ◦ ϱ, a map Γν → Cϱ(Γµ).
3 Coherence axioms.

Theorem

If each Cp has, and each Cµ preserves,M-sized limits, then

1 Each category Ĉp contains Cp as a reflective subcategory.

2 Each functor Ĉµ ∶ Ĉp → Ĉq has a left adjoint.

10 / 12



The co-dextrification

Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about
what variables can be used — thus including all the Γ/µ.

Given C ∶M→ Cat, let an object of Ĉr consist of

1 For each µ ∶ p → r inM, an object Γµ ∈ Cp.

2 For each ϱ ∶ p → q and α ∶ µ⇒ ν ◦ ϱ, a map Γν → Cϱ(Γµ).
3 Coherence axioms.

Theorem

If each Cp has, and each Cµ preserves,M-sized limits, then

1 Each category Ĉp contains Cp as a reflective subcategory.

2 Each functor Ĉµ ∶ Ĉp → Ĉq has a left adjoint.

10 / 12



The category of liftings

Given µ ∶ p → q and ν ∶ r → q, let Factµν be the set of:

• pairs (ϱ, α) of a modality
ϱ ∶ p → r and a law α ∶ µ⇒ ν ◦ ϱ

• Morphisms (ϱ, α)→ (ϱ′, α′) are laws
β ∶ ϱ⇒ ϱ′ such that (ν ◁ β) ◦ α = α′.

p

q

r

µ

ϱ ⇓α

ν

The ∼LSR approach to (x ∶µ A)/ν has one variable (x ∶ϱ A) for
each (ϱ, α) ∈ Factµν , hence semantically the product(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, ∏(ϱ,α)∈Factµν (x ∶ϱ A)

)

This ignores the morphisms in Factµν ! We should instead use(
Γ, (x ∶µ A)

)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)
In the “coinductive” Ĉ , this defines Γ, (x ∶µ A) by copatterns.

11 / 12



The category of liftings

Given µ ∶ p → q and ν ∶ r → q, let Factµν be the category:

• Objects are pairs (ϱ, α) of a modality
ϱ ∶ p → r and a law α ∶ µ⇒ ν ◦ ϱ
• Morphisms (ϱ, α)→ (ϱ′, α′) are laws
β ∶ ϱ⇒ ϱ′ such that (ν ◁ β) ◦ α = α′.

p

q

r

µ

ϱ ⇓α

ν

The ∼LSR approach to (x ∶µ A)/ν has one variable (x ∶ϱ A) for
each (ϱ, α) ∈ Factµν , hence semantically the product(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, ∏(ϱ,α)∈Factµν (x ∶ϱ A)

)

This ignores the morphisms in Factµν ! We should instead use(
Γ, (x ∶µ A)

)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)
In the “coinductive” Ĉ , this defines Γ, (x ∶µ A) by copatterns.

11 / 12



The category of liftings

Given µ ∶ p → q and ν ∶ r → q, let Factµν be the category:

• Objects are pairs (ϱ, α) of a modality
ϱ ∶ p → r and a law α ∶ µ⇒ ν ◦ ϱ
• Morphisms (ϱ, α)→ (ϱ′, α′) are laws
β ∶ ϱ⇒ ϱ′ such that (ν ◁ β) ◦ α = α′.

p

q

r

µ

ϱ ⇓α

ν

The ∼LSR approach to (x ∶µ A)/ν has one variable (x ∶ϱ A) for
each (ϱ, α) ∈ Factµν , hence semantically the product(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, ∏(ϱ,α)∈Factµν (x ∶ϱ A)

)
This ignores the morphisms in Factµν ! We should instead use(

Γ, (x ∶µ A)
)
/ν ≡

(
Γ/ν, lim(ϱ,α)∈Factµν (x ∶ϱ A)

)
In the “coinductive” Ĉ , this defines Γ, (x ∶µ A) by copatterns.

11 / 12



Conclusion

Concluding remarks:

• Given C , we can interpret MTT in Ĉ to reason about C .

• If we think of Ĉ as a “coherence construction” applied to C ,
we can say MTT has semantics in functors C ∶M→ Cat.
• Right adjoint negative/Fitch-style modalities also lift to Ĉ .

Open problems:

• Does it work for homotopy type theory and higher categories?

• Can we weaken the assumption ofM-sized limit-preservation?

12 / 12


