Semantics of Multimodal Adjoint Type Theory

Michael Shulman

University of San Diego

June 22, 2023 MFPS XXXIX

Supported by AFOSR award number FA9550-21-1-0009

Unimodal type theories

A unimodal type theory consists of

- 1 An ordinary type theory
- 2 Some new unary type formers, called modalities.
- Specified functions relating the modalities and their composites, today called laws.

Example (Classical modal logic)

Two modalities:

- $\Box P$ = "necessarily P" (P holds in all possible worlds)
- $\Diamond P =$ "possibly *P*" (*P* holds in some possible world)

Laws including

$$\Box P o P \qquad P o \Diamond P \qquad \Box P o \Box \Box P \qquad \text{etc}$$

 Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A. Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A. Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.
- Phase distinctions: modalities O_{ϕ} , \bullet_{ϕ} , laws $A \to O_{\phi}A$ and $O_{\phi}O_{\phi}A \cong O_{\phi}A$, sim. $A \to \bullet_{\phi}A$ and $\bullet_{\phi}\bullet_{\phi}A \cong \bullet_{\phi}A$, etc.

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A. Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.
- Phase distinctions: modalities O_{ϕ} , \bullet_{ϕ} , laws $A \to O_{\phi}A$ and $O_{\phi}O_{\phi}A \cong O_{\phi}A$, sim. $A \to \bullet_{\phi}A$ and $\bullet_{\phi}\bullet_{\phi}A \cong \bullet_{\phi}A$, etc.
- Tangent type theory (?): modality T, laws $TA \rightarrow A$, etc.

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A. Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.
- Phase distinctions: modalities O_{ϕ} , \bullet_{ϕ} , laws $A \to O_{\phi}A$ and $O_{\phi}O_{\phi}A \cong O_{\phi}A$, sim. $A \to \bullet_{\phi}A$ and $\bullet_{\phi}\bullet_{\phi}A \cong \bullet_{\phi}A$, etc.
- Tangent type theory (?): modality T, laws $TA \rightarrow A$, etc.
- Crisp type theory: modality b, laws bA → A and bbA ≅ bA. Terms of bA represent "closed" or "global" terms of A.

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A. Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.
- Phase distinctions: modalities O_{ϕ} , \bullet_{ϕ} , laws $A \to O_{\phi}A$ and $O_{\phi}O_{\phi}A \cong O_{\phi}A$, sim. $A \to \bullet_{\phi}A$ and $\bullet_{\phi}\bullet_{\phi}A \cong \bullet_{\phi}A$, etc.
- Tangent type theory (?): modality T, laws $TA \rightarrow A$, etc.
- Crisp type theory: modality b, laws bA → A and bbA ≅ bA. Terms of bA represent "closed" or "global" terms of A.
- Synthetic topology: Both b and #, with b#A ≅ bA, #bA ≅ #A. Any type has an implicit topology, e.g. N → 2 is Cantor space. Then bA retopologizes it discretely, and #A indiscretely.

- Guarded recursion: modality ▷ ("later"), law A → ▷A, plus the Löb axiom (▷A → A) → A
- Synthetic computation: modality #, laws A → #A, ##A ≅ #A.
 Classical #-logic (e.g. ∇A ∈ Eff) in constructive ambient.
- Phase distinctions: modalities O_{ϕ} , \bullet_{ϕ} , laws $A \to O_{\phi}A$ and $O_{\phi}O_{\phi}A \cong O_{\phi}A$, sim. $A \to \bullet_{\phi}A$ and $\bullet_{\phi}\bullet_{\phi}A \cong \bullet_{\phi}A$, etc.
- Tangent type theory (?): modality T, laws $TA \rightarrow A$, etc.
- Crisp type theory: modality b, laws bA → A and bbA ≅ bA. Terms of bA represent "closed" or "global" terms of A.
- Synthetic topology: Both b and #, with b#A ≅ bA, #bA ≅ #A. Any type has an implicit topology, e.g. N → 2 is Cantor space. Then bA retopologizes it discretely, and #A indiscretely.
- Enhanced guarded recursion: modalities \triangleright and \Box ("always"), laws $\Box A \rightarrow A$ and $\Box \Box A \cong \Box A$ (like \flat) plus $\Box \triangleright A \cong \Box A$.

- A multimodal type theory consists of
 - 1 One or more ordinary type theories.
 - 2 Modalities mapping types of one mode to types of another (possibly different) mode.
 - **3** Laws relating the modalities and their composites.

A multimodal type theory consists of

- 1 One or more ordinary type theories.
- 2 Modalities mapping types of one mode to types of another (possibly different) mode.
- **3** Laws relating the modalities and their composites.

Examples include:

 Guarded recursion: modes t (time-varying) and s (constant). Then ▷: t → t, while □ decomposes into tot: t → s and const: s → t. Constancy is now ensured statically.

- A multimodal type theory consists of
 - 1 One or more ordinary type theories.
 - 2 Modalities mapping types of one mode to types of another (possibly different) mode.
 - **3** Laws relating the modalities and their composites.

Examples include:

- Guarded recursion: modes t (time-varying) and s (constant). Then ▷: t → t, while □ decomposes into tot : t → s and const : s → t. Constancy is now ensured statically.
- Similarly, all the bs and \$\$ can be decomposed through sets.

A multimodal type theory consists of

- 1 One or more ordinary type theories.
- 2 Modalities mapping types of one mode to types of another (possibly different) mode.
- **3** Laws relating the modalities and their composites.

Examples include:

- Guarded recursion: modes t (time-varying) and s (constant). Then ▷: t → t, while □ decomposes into tot: t → s and const: s → t. Constancy is now ensured statically.
- Similarly, all the \flat s and \sharp s can be decomposed through sets.
- Call by push value*: modes v (values) and c (computations), modalities F: v → c and U: c → v, laws giving F ⊢ U.

General modal type theories

The abstract structure of modes, modalities and laws forms a 2-category, with objects, morphisms, and 2-cells.

Big-picture goal

Formulate and implement a general multimodal type theory, parametrized over a user-specified 2-category \mathcal{M} .

A very biased and selective history:

- Pfenning–Davies 2001: unimodal simple type theory with \Box
- Reed 2009: multimodal simple type theory over any poset ${\cal M}$
- Licata–S.–Riley 2017: multimodal simple type theory over any 2-category $\ensuremath{\mathcal{M}}$
- S. 2018: unimodal dependent type theory with b, ♯
- Gratzer-Kavvos-Nuyts-Birkedal 2021: multimodal dependent type theory (MTT) over any 2-category M

The structure of modal type theories

- Each mode *p* has its own ordinary type theory.
- A modality $\mu : p \to q$ maps a *p*-type *A* to a *q*-type $\mu \boxdot A$.

The structure of modal type theories

- Each mode p has its own ordinary type theory.
- A modality $\mu : p \rightarrow q$ maps a *p*-type *A* to a *q*-type $\mu \square A$.
- A *q*-context can contain variables *x* :^μ *A*, where *A* is a *p*-type and μ : p → q is a modality.
- $\mu \Box A$ internalizes annotated variables, with elimination rule

$$\frac{\Gamma \vdash M : \mu \boxdot A \qquad \Gamma, x :^{\mu} A \vdash c : C}{\Gamma \vdash \operatorname{let} \operatorname{mod}(x) \leftarrow M \operatorname{in} c : C}.$$

Semantically, $x :^{\mu} A$ and $y : \mu \boxdot A$ are equivalent.

The structure of modal type theories

- Each mode p has its own ordinary type theory.
- A modality $\mu : p \rightarrow q$ maps a *p*-type *A* to a *q*-type $\mu \square A$.
- A *q*-context can contain variables x :^μ A, where A is a *p*-type and μ : p → q is a modality.
- $\mu \Box A$ internalizes annotated variables, with elimination rule

$$\frac{\Gamma \vdash M : \mu \boxdot A \qquad \Gamma, x :^{\mu} A \vdash c : C}{\Gamma \vdash \operatorname{let} \operatorname{mod}(x) \leftarrow M \operatorname{in} c : C}$$

Semantically, $x :^{\mu} A$ and $y : \mu \boxdot A$ are equivalent.

• The introduction rule requires a "locking" or "division" operation making a *q*-context into a *p*-context:

 $\frac{\Gamma/\mu \vdash M : A}{\Gamma \vdash \operatorname{mod}(M) : \mu \square A}$

Context operations

In PD, Reed, LSR, etc., Γ/μ was computed by removing or re-annotating variables according to the laws, e.g.

$$(x:^{\flat}A, y: B, z:^{\flat}C)/_{\flat} = (x:^{\flat}A, z:^{\flat}C)$$

Here y : B (meaning $y :^{id} B$) is removed as there is no law id $\Rightarrow \flat$. In general, $(x :^{\mu} A)/\nu$ contains an $x :^{\varrho} A$ for each $\alpha : \mu \Rightarrow \nu \circ \varrho$.

Hard to give a good equational theory for arbitrary \mathcal{M} .

Context operations

In PD, Reed, LSR, etc., Γ/μ was computed by removing or re-annotating variables according to the laws, e.g.

$$(x:^{\flat}A, y: B, z:^{\flat}C)/_{\flat} = (x:^{\flat}A, z:^{\flat}C)$$

Here y : B (meaning $y :^{id} B$) is removed as there is no law id $\Rightarrow \flat$. In general, $(x :^{\mu} A)/\nu$ contains an $x :^{\varrho} A$ for each $\alpha : \mu \Rightarrow \nu \circ \varrho$.

Hard to give a good equational theory for arbitrary \mathcal{M} .

In MTT, Γ/μ is a constructor of contexts: a context is a sequence of variables interspersed with "formal divisions" (a.k.a. "locks"). Now we choose a law when using a variable, e.g.

$$\frac{\alpha: \mu \Rightarrow \nu}{\Gamma, (x:^{\mu} A), /\nu, (y:B) \vdash x^{\alpha}: A}$$

Multimodal type theory over \mathcal{M} should have semantics in a 2-functor $\mathcal{M} \to \mathcal{C}at$:

- **1** Each mode p represents a (structured) category \mathscr{C}_p .
- **2** Each modality $\mu \Box -$ represents a functor $\mathscr{C}_p \to \mathscr{C}_q$.
- **3** Each law represents a natural transformation.

Example (Guarded recursion)

$$\mathscr{C}_t = \mathsf{Set}^{\omega^{\mathsf{op}}}$$
 (the "topos of trees") and $\mathscr{C}_s = \mathsf{Set}$, with

 $\triangleright X(n) = X(n+1)$ tot $X = \lim_{n \to \infty} X(n)$ (const Y)(n) = Y

Semantics of MTT

However, for MTT it seems we also need:

4 Each context division $-/\mu$ represents a left adjoint to $\mu \Box -$.

Semantics of MTT

However, for MTT it seems we also need:

4 Each context division $-/\mu$ represents a left adjoint to $\mu \Box -$.

Some functors do have left adjoints:

- \triangleright and \Box in the topos of trees
- open modalities O_{ϕ}
- indiscreteness # in topological spaces
- discreteness b in locally connected topological spaces

Semantics of MTT

However, for MTT it seems we also need:

4 Each context division $-/\mu$ represents a left adjoint to $\mu \Box -$.

Some functors do have left adjoints:

- \triangleright and \Box in the topos of trees
- open modalities O_{ϕ}
- indiscreteness # in topological spaces
- discreteness b in locally connected topological spaces

But others don't:

- # in the effective topos
- closed modalities \bullet_{ϕ}
- tangent space T
- global sections \flat in a general topos
- discreteness b in non-locally-connected topological spaces

The co-dextrification

Idea #1: Syntax is positive/inductive/data; semantics is negative/coinductive/observational.

The co-dextrification

Idea #1: Syntax is positive/inductive/data; semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about what variables can be used — thus including all the Γ/μ .

Idea #1: Syntax is positive/inductive/data; semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about what variables can be used — thus including all the Γ/μ .

Given $\mathscr{C}: \mathcal{M} \to \mathcal{C}at$, let an object of $\widehat{\mathscr{C}}_r$ consist of

1 For each $\mu : p \to r$ in \mathcal{M} , an object $\Gamma_{\mu} \in \mathscr{C}_{p}$.

2 For each $\varrho: p \to q$ and $\alpha: \mu \Rightarrow \nu \circ \varrho$, a map $\Gamma_{\nu} \to \mathscr{C}_{\varrho}(\Gamma_{\mu})$.

3 Coherence axioms.

Idea #1: Syntax is positive/inductive/data; semantics is negative/coinductive/observational.

Idea #2: A context Γ should contain all the information about what variables can be used — thus including all the Γ/μ .

Given $\mathscr{C}: \mathcal{M} \to \mathcal{C}at$, let an object of $\widehat{\mathscr{C}}_r$ consist of

1 For each $\mu : p \to r$ in \mathcal{M} , an object $\Gamma_{\mu} \in \mathscr{C}_{p}$.

2 For each $\varrho: p \to q$ and $\alpha: \mu \Rightarrow \nu \circ \varrho$, a map $\Gamma_{\nu} \to \mathscr{C}_{\varrho}(\Gamma_{\mu})$.

Coherence axioms.

Theorem

If each C_p has, and each C_µ preserves, M-sized limits, then
1 Each category Ĉ_p contains C_p as a reflective subcategory.
2 Each functor Ĉ_µ: Ĉ_p → Ĉ_q has a left adjoint.

The category of liftings

Given $\mu: p \to q$ and $\nu: r \to q$, let $\mathsf{Fact}^{\mu}_{\nu}$ be the set of:

• pairs
$$(\varrho, \alpha)$$
 of a modality
 $\varrho: \rho \rightarrow r$ and a law $\alpha: \mu \Rightarrow \nu \circ \varrho$

The ~LSR approach to $(x :^{\mu} A)/_{\nu}$ has one variable $(x :^{\varrho} A)$ for each $(\varrho, \alpha) \in \text{Fact}_{\nu}^{\mu}$, hence semantically the product

$$(\Gamma, (x :^{\mu} A))/_{\nu} \equiv (\Gamma/_{\nu}, \prod_{(\varrho, \alpha) \in \mathsf{Fact}_{\nu}^{\mu}} (x :^{\varrho} A))$$

The category of liftings

Given $\mu : p \to q$ and $\nu : r \to q$, let $\mathsf{Fact}^{\mu}_{\nu}$ be the category:

- Objects are pairs (ρ, α) of a modality
 ρ → r and a law α : μ ⇒ ν ∘ ρ
- Morphisms $(\varrho, \alpha) \rightarrow (\varrho', \alpha')$ are laws $\beta : \varrho \Rightarrow \varrho'$ such that $(\nu \triangleleft \beta) \circ \alpha = \alpha'$.

The ~LSR approach to $(x :^{\mu} A)/_{\nu}$ has one variable $(x :^{\varrho} A)$ for each $(\varrho, \alpha) \in Fact^{\mu}_{\nu}$, hence semantically the product

$$(\Gamma, (x:^{\mu} A))/_{\nu} \equiv (\Gamma/_{\nu}, \prod_{(\varrho, \alpha) \in \mathsf{Fact}_{\nu}^{\mu}} (x:^{\varrho} A))$$

The category of liftings

Given $\mu: p \to q$ and $\nu: r \to q$, let $\mathsf{Fact}^{\mu}_{\nu}$ be the category:

- Objects are pairs (ρ, α) of a modality
 ρ → r and a law α : μ ⇒ ν ∘ ρ
- Morphisms $(\varrho, \alpha) \to (\varrho', \alpha')$ are laws $\beta : \varrho \Rightarrow \varrho'$ such that $(\nu \triangleleft \beta) \circ \alpha = \alpha'$.

The ~LSR approach to $(x :^{\mu} A)/_{\nu}$ has one variable $(x :^{\varrho} A)$ for each $(\varrho, \alpha) \in Fact^{\mu}_{\nu}$, hence semantically the product

$$(\Gamma, (x:^{\mu} A))/_{\nu} \equiv (\Gamma/_{\nu}, \prod_{(\varrho, \alpha) \in \mathsf{Fact}_{\nu}^{\mu}} (x:^{\varrho} A))$$

This ignores the morphisms in $Fact^{\mu}_{\nu}$! We should instead use

$$(\Gamma, (x:^{\mu}A))/_{\nu} \equiv (\Gamma/_{\nu}, \lim_{(\varrho, \alpha) \in \mathsf{Fact}^{\mu}_{\nu}} (x:^{\varrho}A))$$

In the "coinductive" $\widehat{\mathscr{C}}$, this defines Γ , $(x : {}^{\mu} A)$ by copatterns.

Concluding remarks:

- Given \mathscr{C} , we can interpret MTT in $\widehat{\mathscr{C}}$ to reason about \mathscr{C} .
- If we think of *C* as a "coherence construction" applied to *C*, we can say MTT has semantics in functors *C* : *M* → *Cat*.
- Right adjoint negative/Fitch-style modalities also lift to $\widehat{\mathscr{C}}$.

Open problems:

- Does it work for homotopy type theory and higher categories?
- Can we weaken the assumption of *M*-sized limit-preservation?