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Unimodal type theories

A unimodal type theory consists of
@ An ordinary type theory
® Some new unary type formers, called modalities.

© Specified functions relating the modalities and their
composites, today called laws.

Example (Classical modal logic)

Two modalities:
® [P = "necessarily P" (P holds in all possible worlds)
® OP = "possibly P" (P holds in some possible world)
Laws including

apP — P P—OP orP — 0O4OP etc.

2/12



More unimodal type theories

® Guarded recursion: modality > (“later”), law A — >A,
plus the Lob axiom (>A — A) — A
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plus the Lob axiom (>A — A) — A

Synthetic computation: modality §, laws A — fA, §§A = A,
Classical -logic (e.g. VA € Eff) in constructive ambient.

Phase distinctions: modalities Oy, @4, laws A — OyA and
O¢O¢A = O¢A, sim. A — .¢A and .¢.¢A = .¢A, etc.
Tangent type theory (7): modality T, laws TA — A, etc.

Crisp type theory: modality b, laws bA — A and bbA = DA,
Terms of bA represent “closed” or “global” terms of A.
Synthetic topology: Both b and £, with bfA = bA, fbA = tA.
Any type has an implicit topology, e.g. N — 2 is Cantor space.
Then bA retopologizes it discretely, and A indiscretely.

Enhanced guarded recursion: modalities > and O (“always”),
laws A — A and OJOA = A (like b) plus O > A = A,
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Multimodal type theories

A multimodal type theory consists of
@ One or more ordinary type theories.

® Modalities mapping types of one mode to types of another
(possibly different) mode.

© Laws relating the modalities and their composites.
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Multimodal type theories

A multimodal type theory consists of
@ One or more ordinary type theories.

® Modalities mapping types of one mode to types of another
(possibly different) mode.

© Laws relating the modalities and their composites.
Examples include:

® Guarded recursion: modes t (time-varying) and s (constant).
Then > : t — t, while [ decomposes into tot : t — s and
const : s — t. Constancy is now ensured statically.

e Similarly, all the bs and fis can be decomposed through sets.

e Call by push value*: modes v (values) and ¢ (computations),
modalities F : v — cand U : ¢ — v, laws giving F 4 U.
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General modal type theories

The abstract structure of modes, modalities and laws forms a
2-category, with objects, morphisms, and 2-cells.
Big-picture goal

Formulate and implement a general multimodal type theory,
parametrized over a user-specified 2-category M.

A very biased and selective history:
® Pfenning—Davies 2001: unimodal simple type theory with [J
® Reed 2009: multimodal simple type theory over any poset M
® Licata-S.—Riley 2017: multimodal simple type theory over any
2-category M
e S. 2018: unimodal dependent type theory with b, #

® Gratzer—Kavvos—Nuyts—Birkedal 2021: multimodal dependent
type theory (MTT) over any 2-category M
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The structure of modal type theories

® Each mode p has its own ordinary type theory.
® A modality i : p — g maps a p-type A to a g-type u=A.
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The structure of modal type theories

® Each mode p has its own ordinary type theory.

A modality 1 p — g maps a p-type A to a g-type puEA.
® A g-context can contain variables x :* A, where A is a p-type
and u : p — g is a modality.

UEA internalizes annotated variables, with elimination rule

F-M:uA  Tx:*Akc:C
I+ let mod(x) + Minc: C

Semantically, x :* A and y : uEA are equivalent.

The introduction rule requires a “locking” or “division”
operation making a g-context into a p-context:

F/;i FM:A
M= mod(M) : u=A
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Context operations

In PD, Reed, LSR, etc., ['/u was computed by removing or
re-annotating variables according to the laws, e.g.

(x"Ay:B,z" CO)ph=(x"Az"C)

Here y : B (meaning y : B) is removed as there is no law id = b.
In general, (x :* A)/v contains an x :¢ A for each a : p = vop.

Hard to give a good equational theory for arbitrary M.
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In PD, Reed, LSR, etc., ['/u was computed by removing or
re-annotating variables according to the laws, e.g.

(x"Ay:B,z" CO)ph=(x"Az"C)

Here y : B (meaning y : B) is removed as there is no law id = b.
In general, (x :* A)/v contains an x :¢ A for each a : p = vop.

Hard to give a good equational theory for arbitrary M.
In MTT, I'/u is a constructor of contexts: a context is a sequence

of variables interspersed with “formal divisions” (a.k.a. “locks™).
Now we choose a law when using a variable, e.g.

aip=v
M(x:*A), v, (y:B)Fx*: A
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Semantics of modal type theory

Multimodal type theory over M should have semantics in a
2-functor M — Cat:

® Each mode p represents a (structured) category %5.
® Each modality E— represents a functor €, — %5.

© Each law represents a natural transformation.

Example (Guarded recursion)

%, = Set“” (the "topos of trees”) and %, = Set, with

>X(n) = X(n+1) tot X = lim, X(n) (const Y)(n) =Y
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Semantics of MTT

However, for MTT it seems we also need:

@ Each context division —/u represents a left adjoint to u&—.
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Semantics of MTT

However, for MTT it seems we also need:
@ Each context division —/u represents a left adjoint to u&—.

Some functors do have left adjoints:

® > and O in the topos of trees

open modalities Oy

® indiscreteness f in topological spaces

e discreteness b in locally connected topological spaces
But others don't:

® #in the effective topos

® closed modalities @

® tangent space T

global sections b in a general topos

discreteness b in non-locally-connected topological spaces
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The co-dextrification

Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.
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Idea #1: Syntax is positive/inductive/data;
semantics is negative/coinductive/observational.

Idea #2: A context I' should contain all the information about
what variables can be used — thus including all the I'/p.

Given % : M — Cat, let an object of %, consist of
® For each pv: p — rin M, an object ', € €.
@® Foreachp:p—qganda:p=vop amapl, = Ep(l,).
©® Coherence axioms.

Theorem

If each €}, has, and each €, preserves, M-sized limits, then
@ Each category %p contains 6, as a reflective subcategory.
® Each functor %u : %p — %q has a left adjoint.
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The category of liftings

Given p: p—qgand v :r — q, let Fact]) be the set of:

® pairs (o, ) of a modality P

o:p-—randalaw o : = rvop 0

AIVA

r

The ~LSR approach to (x :* A)/v has one variable (x :2 A) for
each (o, @) € Fact?, hence semantically the product

(NG A = (T, [T(p.0)eraces (x 3¢ A))
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The category of liftings

Given p: p— g and v : r — q, let Fact!, be the category:

® Objects are pairs (o, ) of a modality P4
o:p-—+randalaw ot — vop Qlu>q
e Morphisms (o, a) — (¢, ') are laws 5
r

7t 0= 0 such that (w<pB)oa=d.

The ~LSR approach to (x :* A)/v has one variable (x :2 A) for
each (o, @) € Fact?, hence semantically the product

(NG A = (T, [T(p.0)eraces (x 3¢ A))
This ignores the morphisms in Fact! We should instead use
(F, (X H A))/V = (F/u, Iim(g,a)eFactﬁ(X @ A))

In the “coinductive” €, this defines I, (x :* A) by copatterns.
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Conclusion

Concluding remarks:
® Given %, we can interpret MTT in & to reason about Z.

e If we think of % as a “coherence construction” applied to %,
we can say MTT has semantics in functors ¥ : M — Cat.

® Right adjoint negative/Fitch-style modalities also lift to z.

Open problems:
® Does it work for homotopy type theory and higher categories?

e Can we weaken the assumption of M-sized limit-preservation?
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