
Completeness for Categories of Generalized Automata
((Co)algebraic pearls) / CALCO 2023

Guido Boccali†, Andrea Laretto⊛, Fosco Loregian⊛, Stefano Luneia‡

2023-06-21

† : Università di Torino
⊛ : Tallinn University of Technology
‡ : Università di Bologna

1



Context

• Many ways of categorifying automata theory in category theory
[Adámek-Trnková, 1990], [Rutten, 2000], [Jacobs, 2006]

• Very long tradition, with some works already from the 1970s
[Ehrig et al. 1974], [Naudé, 1977], [Guitart, 1980]

• We want to study the completeness of categories of F-automata
• This is known in the literature for the case F := −⊗ I [Ehrig, 1974]:
we present a generalization based on a more conceptual approach.

• We formalize some of our results in the Agda proof assistant.

2



Automata in monoidal categories

• Our setting: automata in a monoidal category (K,⊗, 1)
• Take two fixed I,O ∈ K, representing input and output objects.

Definition
A Moore automata 〈E, d, s〉 in K is an object E with morphisms d, s:

E E⊗ I ; Edoo s // O

Definition
A morphism of Moore automata between 〈E, d, s〉 and 〈T, d′, s′〉 is a
morphism f : E→ T making the following diagrams commute:

E

f
��

E⊗ Idoo

f⊗I
��

E

f
��

s // O

T T⊗ I
d′

oo T
s′

// O

• We denote the category of Moore automata as Moore(I,O). 3



Mealy automata

Definition
A Mealy automata in K is a span of two morphisms d and s:

E E⊗ Idoo s // O

Definition
A morphism of Mealy automata between 〈E, d, s〉 and 〈T, d′, s′〉 is a
morphism f : E→ T making the following diagram commute:

E

f
��

E⊗ Idoo

f⊗I
��

s // O

T T⊗ I
d′

oo
s′

// O

• Mealy automata arrange into categories Mealy(I,O), which are
actually the hom-categories of a bicategory!1
1: [Boccali, Laretto, Loregian, Luneia, 2023] 4



F-Moore and F-Mealy

• A natural generalization: replace −⊗ I in the domain with a
generic endofunctor F : K → K acting on the states.

• Idea: imagine F as providing an action context for the automaton.

Definition
A morphism of F-automata between 〈E, d, s〉 and 〈T, d′, s′〉 is a
morphism f : E→ T making the following diagrams commute:

Moore:

E
f
��

FEdoo

Ff
��

T FT
d′

oo

E

f
��

s // O

T
s′

// O
Mealy:

E

f
��

FEdoo

Ff
��

s // O

T FT
d′

oo
s′

// O

• We denote the category of F-Moore automata by F–Moore(O).
• A Moore machine is an F-Moore machine where F : K → K is the
functor −⊗ I := E 7→ E⊗ I. 5



Examples of F

• Different choices of F lead to different notions of automata
(e.g., sequential/tree/linear automata) [Adámek-Trnková, 1990].

• In particular, we take into consideration the case
where F has a right adjoint R.

E FEdoo s // O,

RE Edoo s // RO.

• In the case where F := I⊗−, this corresponds to the internal hom
R := [I,−], thus associating a ”transition map” to each state.

6



Completeness of categories of categorical automata

• We are interested in the following question:
When is the category of F-automata (co)complete?

• Our contribution: a conceptual proof that F–Moore(O) and
F–Mealy(O) are (co)complete when K is, based on the theory of
2-pullbacks in Cat and basic facts about limit-preserving functors.

• Proof sketch:
1 Present F–Moore(O) and F–Mealy(O) as 2-pullbacks in Cat.
2 Theorem [Mac Lane, 1998]: if the functors of the pullback satisfy
some conditions, then we can compute limits in the pullback.

3 The functors characterizing F–Moore(O) and F–Mealy(O) satisfy the
conditions, along with the fact that F is a left adjoint.

4 Hence, the categories are complete when the base category K also is.

7



Characterization of F-Moore and F-Mealy

Theorem
The categories F–Moore(O) and F–Mealy(O) can be characterized
as the following strict 2-pullbacks in Cat:

F–Moore(O)
U //

V
��

(K/O)

dom
��

Alg(F)
forget

// K

F–Mealy(O)
U //

V
��

(F ↓ O)

dom
��

Alg(F)
forget

// K

• Alg(F) is the category of algebras of F in K.
• forget is the canonical forgetful functor of F-algebras.
• (K/O) is the slice category of K over O.
• dom is the forgetful functor of comma categories on the domain.
• (F ↓ O) is the comma category defined by F and the constant
functor on the object O.

8



Intuition, F-Mealy as pullback

• Intution for the characterization of F–Mealy(O) as pullback in Cat:

↙

E

f
��

FEdoo

Ff
��

s // O

T FT
d′

oo
s′

// O
↘

Alg(F)

E
f
��

FEdoo

Ff
��

T FT
d′

oo

→

E
f
��

T

←

FE

Ff
��

s // O

FT
s′

// O
(F ↓ O)

9



Basic notions on limits

Definition
A functor F : A → B preserves limits of shape J : I → A when,
given a limit x in A, then F(x) is the limit of the composite diagram
I J−→ A F−→ B.

Definition
A functor F : A → B reflects limits of shape J : I → A when, given
a cone x in A such that F(x) is the limit of the composite diagram
I J−→ A F−→ B, then x was already a limit of J in A.

Definition
A functor F : A → B creates limits of shape J : I → A when it both
preserves and reflects them.

10



Pullbacks in Cat and limits

Theorem (Mac Lane 1998, V.6, Ex. 3)
Given a pullback diagram in Cat:

A H′
//

G′

��

Y

G
��

X
H

// Z

If H creates limits of shape J and G preserves them,
then H′ also creates limits of shape J .

Proposition (Riehl 2016, Prop. 3.3.8)
• The functor forget : Alg(F)→ K creates limits.
• The functor dom : K/O → K creates colimits and connected limits.

Proposition (Borceux 1994, Vol. 2, Prop. 4.3.2)
• Since F is a left adjoint, forget : Alg(F)→ K creates colimits.

11



Completeness of categories of automata

Theorem
• Let K admit colimits of shape J .
Then F–Moore(O) and F–Mealy(O) also admit them,
and they are computed as in K.

• Let K admit connected limits.
Then F–Moore(O) and F–Mealy(O) also admit them,
and they are computed as in K.

Proof. Immediate using the characterizations of F-Mealy/F-Moore.

Theorem
• Let K admit countable products and pullbacks.
Then F–Moore(O) and F–Mealy(O) admit products of any finite
cardinality (in particular, a terminal object),
but they are not computed as in K.

→ We must define discrete limits explicitly! (Terminal and products)
12



Behaviour extension

• If (K,⊗, 1) has countable coproducts preserved by each −⊗ I, a
Moore automata can be extended to a span:

E E⊗ I∗d∗
oo s∗ // O,

where I∗ :=
∑

n≥0 In is the freely generated monoid from I,
and the morphisms d∗, s∗ are defined inductively from components

dn, sn : E× In → E,O for n ≥ 0.

Similarly, Mealy automata can be extended to I+ :=
∑

n≥1 In as

E E⊗ I+d+
oo s+ // O.

• Intuition: extend the automata to act on strings of symbols
instead of single inputs.

13



Behaviour extension of a F-automata

• An F-Moore automata 〈E, d, s〉 can be similarly extended; given

E FE ; Edoo s // O

we define the family of morphisms sn : FnE→ O for n ≥ 0 as the
composites

s0 = E s−→ O
s1 = FE d−→ E s−→ O
s2 = FFE Fd−−→ FE d−→ E s−→ O

sn = FnE Fn−1d−−−−→ Fn−1E→ · · · FFd−−−→ FFE Fd−−→ FE d−→ E s−→ O

• In our assumption where F a R, each map is equivalent to its mate
sn : FnE→ O
s̄n : E→ RnO for n ≥ 0

obtained by iterating the adjunction structure.
14



Skip and behaviour maps

• Each morphism obtained like this

s̄n : E→ RnO

is called the n-th skip map, since it gives the dynamics of a state
after skipping n input steps.

• In case K has countable products, the family of all n-th skip maps
(sn | n ∈ N≥0) is equivalent to a single map

behE : E→
∏
n≥0

RnO

called the behaviour map of the automata E := 〈E, d, s〉.

15



Terminal object

• The behaviour map has a specific universal property:

Theorem (Terminal object of F-Moore)
The category F-Moore has a terminal object

o = 〈O∞, s∞, d∞〉, where O∞ =
∏
n≥0

RnO.

Explicitly, for any other F-Moore automata E := 〈E, d, s〉, the
behaviour map behE : E→ O∞ is the unique morphism making the
following diagrams commute:

E

behE
��

FEdoo

FbehE
��

E

behE
��

s // O

O∞ FO∞d∞

oo O∞ s∞
// O

16



Terminal object, explicitly

• The terminal object O∞ in a category of machines tends to be
”big”, since it can be obtained by Adámek’s theorem as the
terminal coalgebra for the functor

A 7→ O× RA for F–Moore(O),
A 7→ RO× RA for F–Mealy(O).

• The morphism d∞ is defined using the universal property of the
product by combining the family (di | i ≥ 0), given as

di :=

∏
n≥0 RnO

πi+1 // Ri+1O

F(
∏

n≥0 RnO)
π̄i+1 // RiO

, d∞ : F(
∏

n≥0 RnO)→
∏

n≥0 RnO

and s∞ is simply the first projection:

s∞ :=
∏

n≥0 RnO π0 // O

• Intuition: d∞ advances the behaviour by one step, and s∞ outputs.
17



Products in F-Moore and F-Mealy

Theorem (Products of F-automata)
Given F–Moore automata E := 〈E, d, s〉, T := 〈T, d′, s′〉, the pullback

P∞ //

��

T

behT
��

E
behE

// O∞

exhibits the carrier of an F–Moore automata p := 〈P∞, dP, sP〉 that
has the universal property of the product of E and T in F–Moore(O).

• Intuition: P∞ is the set of pairs of states (α, β) ∈ E× T such that
for every string of inputs behE(α) = behT(β), i.e., their behaviour
coincides: P∞ corresponds to a bisimulation object.

18



Adjoints to behaviour functors

• Our approach generalizes the one of Naudé:

Definition
Call an endofunctor F : K → K an input process if the forgetful
functor U : Alg(F)→ K has a left adjoint G; in simple terms, an
input process allows to define free F-algebras.

• Naudé [1977, 1979] concentrates on building an adjunction between
a category of machines and a category of their behaviours

L : Beh(F) //
⊥ Mach(F) : Eoo

where Mach(F) is the category obtained from the pullback

Mach(F) //

��

K→ ×K→

dom×cod
��

Alg(F)
forget

// K
∆

// K ×K

and Beh(F) is a certain comma category on G. 19



Adjoints to behaviour functors

• This theorem is conceptual enough to carry over to any category of
automata that can be presented as strict 2-pullback in Cat of
sufficiently well-behaved functors.

Theorem
There exist functors B and L, as follows:

B : Alg(F)/⟨O∞,d∞⟩
//

⊥ F–Moore(O) : Loo

where 〈O∞, d∞〉 is the terminal (behaviour) F-algebra given.

Theorem
This is part of a longer chain of adjoints obtained as follows:

K/O∞

G̃ //
⊥ Alg(F)/(O∞,d∞)

Ũ
oo

L //
⊥ F–Moore(O),
B

oo

where we denote with G̃ : K/UA ⇆ H/A : Ũ the “local” adjunction
obtained from G : K⇆ H : U, with Ũ(FA, f : FA→ A) = U f.

20



Agda formalization

• We have formalized the more technical parts of our
work in Agda, a dependently typed programming
language and proof assistant.

• Formalization work:
• Characterization of F–Moore(O)/F–Mealy(O) as pullbacks in Cat.
• Products and terminal objects in F–Moore(O), explicitly.
• Adjoints to behaviour functors, generalizing Naudé’s approach.
• Mealy(I,O) are the hom-categories of the bicategory Mealy.

• We use the agda-categories library as foundation to capture the
basic notions of category theory.

• (Almost 2000 lines of code!)
• Formalization is freely available online:

https://github.com/iwilare/categorical-automata

21

https://github.com/iwilare/categorical-automata


Conclusion and Future work

• Characterizing categories of structures as composition of simpler
categories can be a useful technique to compute limits.

• Bigger picture: the technology of category-theoretic approaches is
rapidly shifting towards 2-dimensional categories as foundations
for complex systems [Spivak et al. 2019], [Myers, 2021]

• Generalize other aspects of automata theory from the point of
view of higher category theory (e.g. Krohn-Rhodes theorem).

• Formalizing these results in a proof assistant might pave the way
for more concrete applications, where proofs act as programs to
produce and convert automata in a provably correct way.

22



Thank you!

23


