Aczel-Mendler Bisimulations in a Regular Category CALCO'23, Indiana University Bloomington

Jérémy Dubut
jeremy.dubut@aist.go.jp

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

June 20th

Let's Start Easy:

LTSs, Strong Bisimulations, and Composition

Transition Systems

Labelled Transition System:

A TS $T=(Q, \Delta)$ on the alphabet Σ is the following data:

- a set Q (of states) and
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.
- $\Sigma=\{a, b, c\}$,
- $Q=\{0,1,2,3\}$,
- $\Delta=\{(0, a, 0),(0, b, 1),(0, a, 2)$, $(1, c, 2),(2, b, 0),(2, a, 3)\}$.

Strong Bisimulations of Transition Systems

Strong Bisimulations [Park81]:

A strong bisimulation between $T_{1}=\left(Q_{1}, \Delta_{1}\right)$ and $T_{2}=\left(Q_{2}, \Delta_{2}\right)$ is a relation $R \subseteq Q_{1} \times Q_{2}$ such that:
(i) if $\left(q_{1}, q_{2}\right) \in R$ and $\left(q_{1}, a, q_{1}^{\prime}\right) \in \Delta_{1}$ then there is $q_{2}^{\prime} \in Q_{2}$ such that $\left(q_{2}, a, q_{2}^{\prime}\right) \in \Delta_{2}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$ and
(ii) if $\left(q_{1}, q_{2}\right) \in R$ and $\left(q_{2}, a, q_{2}^{\prime}\right) \in \Delta_{2}$ then there is $q_{1}^{\prime} \in Q_{1}$ such that $\left(q_{1}, a, q_{1}^{\prime}\right) \in \Delta_{1}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$.

Strong Bisimulations are Closed under Composition

R_{1} strong bisimulation between T_{1}, T_{2} and R_{2} strong bisimulation between T_{2}, T_{3}
$R_{1} ; R_{2}=\left\{\left(q_{1}, q_{3}\right) \mid \exists q_{2} .\left(q_{1}, q_{2}\right) \in R_{1} \wedge\left(q_{2}, q_{3}\right) \in R_{2}\right\}$ strong bisimulation between T_{1}, T_{3} :

Strong Bisimulations are Closed under Composition

R_{1} strong bisimulation between T_{1}, T_{2} and R_{2} strong bisimulation between T_{2}, T_{3}
$R_{1} ; R_{2}=\left\{\left(q_{1}, q_{3}\right) \mid \exists q_{2} .\left(q_{1}, q_{2}\right) \in R_{1} \wedge\left(q_{2}, q_{3}\right) \in R_{2}\right\}$ strong bisimulation between T_{1}, T_{3} :

Strong Bisimulations are Closed under Composition

R_{1} strong bisimulation between T_{1}, T_{2} and R_{2} strong bisimulation between T_{2}, T_{3}
$R_{1} ; R_{2}=\left\{\left(q_{1}, q_{3}\right) \mid \exists q_{2} .\left(q_{1}, q_{2}\right) \in R_{1} \wedge\left(q_{2}, q_{3}\right) \in R_{2}\right\}$ strong bisimulation between T_{1}, T_{3} :

Strong Bisimulations are Closed under Composition

R_{1} strong bisimulation between T_{1}, T_{2} and R_{2} strong bisimulation between T_{2}, T_{3} $R_{1} ; R_{2}=\left\{\left(q_{1}, q_{3}\right) \mid \exists q_{2} .\left(q_{1}, q_{2}\right) \in R_{1} \wedge\left(q_{2}, q_{3}\right) \in R_{2}\right\}$ strong bisimulation between T_{1}, T_{3} :

Strong Bisimulations are Closed under Composition

R_{1} strong bisimulation between T_{1}, T_{2} and R_{2} strong bisimulation between T_{2}, T_{3} $R_{1} ; R_{2}=\left\{\left(q_{1}, q_{3}\right) \mid \exists q_{2} .\left(q_{1}, q_{2}\right) \in R_{1} \wedge\left(q_{2}, q_{3}\right) \in R_{2}\right\}$ strong bisimulation between T_{1}, T_{3} :

Aczel-Mendler Bisimulations of Coalgebras

Transition systems, as coalgebras

Set of transitions, as functions:

There is a bijection between sets of transitions $\Delta \subseteq Q \times \Sigma \times Q$ and functions of type:

$$
\delta: Q \longrightarrow \mathcal{P}(\Sigma \times Q)
$$

where $\mathcal{P}(X)$ is the powerset $\{U \mid U \subseteq X\}$.

Coalgebras:

Given an endofunctor $G: \mathcal{C} \longrightarrow \mathcal{C}$, a coalgebra is the following data:

- an object $Q \in \mathcal{C}$ and
- a morphism $\delta: Q \longrightarrow G(Q)$ of \mathcal{C}.

For LTS: $\mathcal{C}=$ Set, $G=X \mapsto \mathcal{P}(\Sigma \times X)$

Relations in a Category

Subobjects:

There is a preorder on monos with codomain X given by:

$$
(u: U \succ X) \sqsubseteq(v: V \succ X) \quad \Leftrightarrow \quad \exists w: U \succ V . u=v \cdot w .
$$

A subobject of X is an equivalence class of monos $u: U \succ X$ modulo $\sqsubseteq \cap \sqsupseteq$.

Ex: in Set, subobjects are subsets, and \sqsubseteq is the inclusion

Relations:

A relation R from X to Y is a subobject of $X \times Y$.

Categories with Nice Relations: Regular Categories

Regular Categories:

A regular category is a finitely-complete category with a pullback-stable image factorization. In particular, it means it has a functorial pullback-stable (regular epi, mono)-factorization.

Ex: Set, any (quasi)topos, any abelian category, Stone, ...

Allegories of Relations:

Given a regular category \mathcal{C}, then objects of \mathcal{C} and relations between them form an allegory $\operatorname{Rel}(\mathcal{C})$, i.e.:

- it is a locally ordered 2-category,
- it has an anti-involution $\left({ }_{-}\right)^{\dagger}: \operatorname{Rel}(\mathcal{C})^{\mathrm{op}} \rightarrow \boldsymbol{\operatorname { R e l }}(\mathcal{C})$,
- local posets are meet-semilattices,
- it satisfies the modular law $(R ; S) \cap T \sqsubseteq\left(R \cap\left(T ; S^{\dagger}\right)\right)$; S.

Composition of Relations

Take two relations $m_{r}: R 孔 X \times Y$ and $m_{s}: S \longleftrightarrow Y \times Z$, the composition $m_{r ; s}: R ; S \longrightarrow X \times Z$ is given by:

In Set:

- $R \star S=\{(x, y, z) \mid(x, y) \in R \wedge(y, z) \in S\}$,
- $R \star S \rightarrow X \times Z$ is given by $(x, y, z) \mapsto(x, z)$, and
- the image $R ; S$ is $\{(x, z) \mid \exists y \in Y .(x, y) \in R \wedge(y, z) \in S\}$.

Aczel-Mendler Bisimulations

Aczel-Mendler Bisimulations:

A relation $r: R \succ X \times Y$ is an AM-bisimulation from $\alpha: X \longrightarrow F X$ to $\beta: Y \longrightarrow F Y$ if there is a morphism $W: R \longrightarrow F R$ (witness) such that:

In Set, for $F: X \mapsto \mathcal{P}(\Sigma \times X)$, AM-bisimulations are strong bisimulations:

- Fix $(x, y) \in R$, and $\left(a, x^{\prime}\right) \in \alpha(x)$.
- Commutativity means $\left(a, x^{\prime}\right) \in F\left(\pi_{1} \cdot r\right) \cdot W(x, y)$, that is, there is y^{\prime} such that $\left(a,\left(x^{\prime}, y^{\prime}\right)\right) \in W(x, y) \subseteq \Sigma \times R$, and $\left(x^{\prime}, y^{\prime}\right) \in R$.
- Commutativity means $\left(a, y^{\prime}\right) \in F\left(\pi_{2} \cdot r\right) \cdot W(x, y)=\beta(y)$.

AM-Bisimulations are Closed under Composition?

Closure under composition:
AM-bisimulations are closed under composition if:

AM-Bisimulations are Closed under Composition?

Closure under composition:
AM-bisimulations are closed under composition if:

- F preserves weak pullbacks and

AM-Bisimulations are Closed under Composition?

Closure under composition:
AM-bisimulations are closed under composition if:

- F preserves weak pullbacks and
- \mathcal{C} has the regular axiom of choice, i.e., every regular epis are split.

AM-Bisimulations are Closed under Composition?

Closure under composition:
AM-bisimulations are closed under composition if:

- F preserves weak pullbacks and
- \mathcal{C} has the regular axiom of choice, i.e., every regular epis are split.

That was a choice of an intermediate state!

Proof

Starting with

we want W such that

Proof

By definition of the composition

Proof

By definition of the composition and the regular axiom of choice

Proof

By definition of the composition and the regular axiom of choice

That was a choice of an intermediate state!

Proof

By definition of the composition, this is a (weak) pullback

Proof

By preservation of weak pullback, this is a weak pullback

Proof

Putting everything together, the following commutes

Proof

Then there is ϕ making the triangles commute

Proof

Choosing $W=F\left(e_{r 1 ; r 2}\right) \cdot \phi$ gives what we want:

From Picking to Collecting

Regular AM-Bisimulations

Picking vs Collecting

Picking vs Collecting

Picking vs Collecting

Pick one

Picking vs Collecting

Make the proof for this one

Pick one

Picking vs Collecting

Make the proof for this one

Pick one

Picking vs Collecting

Picking vs Collecting

Collect many

Picking vs Collecting

Collect many
(Make sure there is at least one)

Picking vs Collecting

Make the proof for all of them

Collect many
(Make sure there is at least one)

Picking vs Collecting

Make the proof for all of them

Collect many
(Make sure there is at least one)

How to do that, abstractly?

Instead of building a witness function:

$$
W: R \longrightarrow F R
$$

build a witness relation:

$$
w: W \multimap R \times F R
$$

Regular AM-Bisimulations

Regular Aczel-Mendler Bisimulations:

A relation $r: R \succ X \times Y$ is a regular AM-bisimulation from $\alpha: X \longrightarrow F X$ to $\beta: Y \longrightarrow F Y$ if there is a relation $w: W \succ F R \times R$ (witness) such that $\pi_{2} \cdot w$ is a regular epi and :

Basic Properties

Regular AM-Bisimulations Form a Dagger 2-Poset:

- Diagonals are regular AM-bisimulations.
- Regular AM-bisimulations are closed under inverse.
- When F covers pullbacks, regular AM-bisimulations are closed under composition.

Coincidence under the Axiom of Choice:

When \mathcal{C} has the regular axiom of choice, then regular AM-bisimulations coincide with AM-bisimulations.

Relationship with Other Coalgebraic Bisimulations:

- Regular AM-bisimulations coincide with Hermida-Jacobs bisimulations.
- When F covers pullbacks, then behavioral equivalences are AM-bisimulations.
- When \mathcal{C} has pushouts, every regular AM-bisimulation is included in a behavioral equivalence.

Example: Vietoris Bisimulations in Stone

Objects: Stone spaces, i.e., compact totally disconnected spaces
Morphisms: continuous functions
This is a regular category with pushouts
Subobjects: closed subsets
Vietoris functor $\mathcal{V}: X \mapsto$ set of closed subsets of X with a suitable topology
This endofunctor covers pullbacks (but do not preserve weak-pullbacks!)

[Bezhanishvili et al.'10]

Fix a Stone space A. Descriptive models coincide with $\mathcal{V}\left({ }_{-}\right) \times A$-coalgebras. Vietoris bisimulations coincide with HJ-bisimulations (so with regular AM too), but not with plain AM-bisimulations.

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

$2 n+1$	\circ
$2 n$	\circ
\vdots	\vdots
2	\circ
1	\circ
0	\circ

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	\bigcirc
.	.
:	.
$2 n+1$	\bigcirc
$2 n$	\bigcirc
-	-
-	
2	\bigcirc
1	\bigcirc
0	\bigcirc

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	\bigcirc	\bigcirc	\bigcirc
-	.	-	-
:	.	:	:
$2 n+1$	\bigcirc	\bigcirc	\bigcirc
$2 n$	\bigcirc	\bigcirc	\bigcirc
.	.	.	-
:	:	:	:
2	\bigcirc	\bigcirc	\bigcirc
1	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	\bigcirc	\bigcirc	\bigcirc
-	-	-	-
$2 n+1$	\bigcirc	\bigcirc	\bigcirc
$2 n$	\bigcirc	\bigcirc	\bigcirc
-	-	-	-
:	:	:	:
2	\bigcirc	\bigcirc	\bigcirc
1	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc
	1	2	3

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	\circ	\circ	\circ		\circ	\circ	\circ	∞
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots	\vdots
$2 n+1$	\circ	$2 n+1$						
$2 n$	\circ	\circ	\circ		\circ	\circ	\circ	$2 n$
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots	\vdots
2	\circ	2						
1	\circ	\circ	\circ		\circ	\circ	\circ	1
0	\circ	\circ	\circ		\circ	\circ	\circ	0
	1	2	3		1	2	3	

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	${ }_{i\}} \longrightarrow{ }^{\text {a }}$ (${ }^{\text {a }}$		∞
\vdots	\vdots	$\vdots \quad \vdots \quad \vdots$:
$2 n+1$	${ }_{\text {1 }} \widehat{马\{(2 n+1)+\}}$ (2n+1)-\}		$2 n+1$
$2 n$	$\underline{\}} \longrightarrow_{\{(2 n)+\}}{ }_{\{(2 n)-\}}$	$\widehat{\}} \widehat{\{(2 n)-\}}^{\{(2 n)+\}}$	$2 n$
引		$\vdots \quad \vdots \quad \vdots$	\vdots
2		$\underline{\underline{1}} \longrightarrow_{\{2-\}}{ }_{\{2+\}}$	2
1			1
0		$\underline{\{ } \longrightarrow\{0-\}$	0
	123	123	

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	$\xrightarrow{\}} \longrightarrow$ 价 ${ }_{\text {d\} }}$		∞
\vdots	$\vdots \quad \vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$	
$2 n+1$			$2 n+1$
$2 n$	$\underline{\text { ¢ }} \longrightarrow\left\{_{\text {(2n) })\}}{ }_{\{(2 n)-\}}\right.$	$\underline{\text { ¢ }} \widehat{¢\{(2 n)-\}}^{\{(2 n)+\}}$	$2 n$
引	\vdots	$\vdots \quad \vdots \quad \vdots$	
2		$\stackrel{\}}{ } \longrightarrow\{2-\} \longrightarrow\left\{\begin{array}{l} \{2+\} \\ \end{array}\right.$	2
1	$\underline{\}} \longrightarrow{ }_{\{1+\}}{ }_{\{1-\}}$	$\underline{\underline{\{ }} \longrightarrow{ }_{\{1+\}}{ }_{\{1-\}}$	1
0		$\underset{\}}{ } \longrightarrow\{0-\}$	0
	123	123	

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	${ }_{\{ \}} \longrightarrow{ }^{\text {a }}$		∞
;	$\vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$	\vdots
$2 n+1$			$2 n+1$
$2 n$	$\left\} \widehat{\{(2 n)+\}}^{\{(2 n)-\}}\right.$,	${ }_{\{ \}}{ }_{\{(2 n)-\}}{ }_{\{(2 n)+\}}$	$2 n$
\vdots	!	$\vdots \quad \vdots \quad \vdots$	\vdots
2	${ }_{\}\}}{ }_{\text {a } 2+\}}{ }_{\{2-\}}$		2
1			1
0		${ }_{6\}}{ }_{\{0-\}}{ }_{\{0+\}}$	0
	123	123	

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞	${ }_{\{ \}} \longrightarrow{ }^{\text {a }}$ (${ }_{\text {d\} }}$	${ }_{\{ \}} \longrightarrow{ }^{\text {a }}$	∞
:	: \quad :	: \quad :	
$2 n+1$		\{\} $\widehat{\{(2 n+1)+\}}$ \{(2n+1)-\}	$2 n+1$
$2 n$	$\left\} \widehat{C\{(2 n)+\}}^{\{(2 n)-\}}\right.$		$2 n$
!	$\vdots \quad \vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$	
2	$\}_{\}} \longrightarrow \xrightarrow{\{2+\}} \ldots \ldots \ldots \ldots \ldots$		2
1	$\}_{\}} \longrightarrow_{\{1+\}}{ }_{\{1-\}}$	$\}_{\}}{ }_{\{1+\}}{ }_{\{1-\}}$	1
0			0
	130	123	

Counter-example from [Bezhanishvili et al.'10]

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times\{+,-\})$ in Stone

∞			∞
\vdots	$\vdots \quad \vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$	
$2 n+1$	$\left.{ }_{\text {¢ }} \widehat{\rightarrow\{(2 n+1)+\}}{ }_{\text {d }}(2 n+1)-\right\}$	\{\} $\overbrace{\{(2 n+1)+\}}$ \{(2n+1)-\}	$2 n+1$
$2 n$	$\left\} \longrightarrow_{\{(2 n)+\}}{ }_{\{(2 n)-\}}\right.$	$\}_{6\}} \int_{\text {(2n)-\} }}{ }_{\{(2 n)+\}}$	$2 n$
;	$\vdots \quad \vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots$;
2			2
1	${ }_{\{ \}} \longrightarrow_{\{1+\}}{ }_{\{1-\}}$	${ }_{\{ } \longrightarrow{ }_{\{1+\}}{ }_{\{1-\}}$	1
0		${ }_{\}\}} \longrightarrow$ \{0-\} ${ }_{\text {ata }}$	0
	123	123	

Counter-example from [Bezhanishvili et al.'10]

Regular AM \neq AM

The following closed relation:

$$
\begin{aligned}
R=\left\{\left(i_{2}, i_{2}\right),\left(i_{3}, i_{3}\right) \mid i \in \mathbb{N} \text { odd }\right\} & \cup\left\{\left(i_{2}, i_{3}\right),\left(i_{3}, i_{2}\right) \mid i \in \mathbb{N} \text { even }\right\} \\
& \cup\left\{\left(i_{1}, i_{1}\right) \mid i \in \mathbb{N} \cup\{\infty\}\right\} \\
& \cup\left\{\left(\infty_{j}, \infty_{k}\right) \mid j, k \in\{2,3\}\right\}
\end{aligned}
$$

is a regular AM-bisimulation but not an AM-bisimulation.

Proof:

The following is a witness closed relation $W \subseteq R \times(\mathcal{V}(R) \times \mathcal{P}(\mathbb{N} \times\{+,-\}))$:

$$
\begin{aligned}
W= & \left\{\left(\left(i_{1}, i_{1}\right),\left\{\left(i_{2}, i_{2}\right),\left(i_{3}, i_{3}\right)\right\},\{ \}\right) \mid i \in \mathbb{N} \text { odd }\right\} \\
& \cup\left\{\left(\left(i_{1}, i_{1}\right),\left\{\left(i_{2}, i_{3}\right),\left(i_{3}, i_{2}\right)\right\},\{ \}\right) \mid i \in \mathbb{N} \text { even }\right\} \\
& \cup\left\{\left(\left(\infty_{1}, \infty_{1}\right),\left\{\left(\infty_{2}, \infty_{2}\right),\left(\infty_{3}, \infty_{3}\right)\right\},\{ \}\right)\right\} \\
& \cup\left\{\left(\left(\infty_{1}, \infty_{1}\right),\left\{\left(\infty_{2}, \infty_{3}\right),\left(\infty_{3}, \infty_{2}\right)\right\},\{ \}\right)\right\} \\
& \cup\left\{\left(\left(i_{j}, i_{k}\right), \varnothing, \lambda\left(i_{j}\right)\right) \mid i \in \mathbb{N} \cup\{\infty\} \wedge\left(i_{j}, i_{k}\right) \in R\right\}
\end{aligned}
$$

Counter-example from [Bezhanishvili et al.'10]

Regular AM \neq AM

The following closed relation:

$$
\begin{aligned}
R=\left\{\left(i_{2}, i_{2}\right),\left(i_{3}, i_{3}\right) \mid i \in \mathbb{N} \text { odd }\right\} & \cup\left\{\left(i_{2}, i_{3}\right),\left(i_{3}, i_{2}\right) \mid i \in \mathbb{N} \text { even }\right\} \\
& \cup\left\{\left(i_{1}, i_{1}\right) \mid i \in \mathbb{N} \cup\{\infty\}\right\} \\
& \cup\left\{\left(\infty_{j}, \infty_{k}\right) \mid j, k \in\{2,3\}\right\}
\end{aligned}
$$

is a regular AM-bisimulation but not an AM-bisimulation.

Proof:

The following is a witness closed relation $W \subseteq R \times(\mathcal{V}(R) \times \mathcal{P}(\mathbb{N} \times\{+,-\}))$:

$$
\begin{aligned}
W= & \left\{\left(\left(i_{1}, i_{1}\right),\left\{\left(i_{2}, i_{2}\right),\left(i_{3}, i_{3}\right)\right\},\{ \}\right) \mid i \in \mathbb{N} \text { odd }\right\} \\
& \cup\left\{\left(\left(i_{1}, i_{1}\right),\left\{\left(i_{2}, i_{3}\right),\left(i_{3}, i_{2}\right)\right\},\{ \}\right) \mid i \in \mathbb{N} \text { even }\right\}
\end{aligned}
$$

$\infty \cup\left\{\left(\left(\infty_{1}, \infty_{1}\right),\left\{\left(\infty_{2}, \infty_{2}\right),\left(\infty_{3}, \infty_{3}\right)\right\},\{ \}\right)\right\}$
$\left(\infty_{1}, \infty_{1}\right)$ has two witnesses $\left\{\begin{array}{l}\left\{\left(\left(\infty_{1}, \infty_{1}\right),\left\{\left(\infty_{2}, \infty_{2}\right),\left(\infty_{3}, \infty_{3}\right),\left\{\left(\infty_{2}, \infty_{3}\right),\left(\infty_{3}, \infty_{2}\right)\right\},\{ \}\right)\right\}\right.\end{array}\right.$
$\cup\left\{\left(\left(i_{j}, i_{k}\right), \varnothing, \lambda\left(i_{j}\right)\right) \mid i \in \mathbb{N} \cup\{\infty\} \wedge\left(i_{j}, i_{k}\right) \in R\right\}$

The Special Case of Toposes

Toposes, as Relation Classifiers

Topos:

A topos is a finitely complete category \mathcal{C} with power objects, that is, for every object X, there is a mono $\in_{X}: E_{X} \succ X \times \mathcal{P} X$ such that for every relation $r: R \longrightarrow X \times Y$ there is a unique morphism $\xi_{r}: Y \longrightarrow \mathcal{P} X$ such that there is a pullback of the form:

In Set: $\mathcal{P}=$ power set, $E_{X}=\{(x, U) \mid x \in U\}$
The subobject classifier is $\Omega=\mathcal{P} \mathbf{1}$ and $\mathcal{P} X=\Omega^{X}$
This formulation implies cartesian closure

Folklore and More

Folklore:

\mathcal{P} is a commutative monad whose Kleisli category is isomorphic to the category of relations of \mathcal{C}.
[Goy et al'21]

- For every endofunctor F of a topos \mathcal{C} and object X of \mathcal{C}, there is a canonical morphism

$$
\sigma_{F, X}: \quad F \mathcal{P} X \rightarrow \mathcal{P F X} .
$$

- When F preserves weak pullbacks and epis, this is a natural transformation.
- If F is additonally a monad whose multiplication is weak cartesian, σ_{F} is a weak distributive law.
- If additionally the unit is also weak cartesian, then σ_{F} is a distributive law.
- In particular, for any non-trivial topos, $\sigma_{\mathcal{P}}$ is a weak distributive law but not a strict one.

A Nicer Formulation of Regular AM-Bisimulations

Toposal Aczel-Mendler Bisimulations:

A relation $r: R \succ X \times Y$ is a toposal AM-bisimulation from $\alpha: X \longrightarrow F X$ to $\beta: Y \longrightarrow F Y$ if there is a morphism $W: R \longrightarrow \mathcal{P F R}$ (witness) such that:

Basically, F-toposal-AM $=\mathcal{P F}-\mathrm{AM}$

Toposal $=$ Regular

In a topos, toposal AM-bisimulations coincide with regular AM-bisimulations.

Conclusion

- In this talk:
- Plain AM-bisimulations work only with the axiom of choice.
- Replacing witness functions by relations \rightarrow regular AM-bisimulations
- They work without axiom of choice:
\star closure under composition,
* coincidence with HJ-bisimulations, behavioral equivalences.
- They are reworded nicely in toposes.
- Not in this talk, but in the paper:
- Allegory maps that are (toposal) AM-bisimulations are (\mathcal{P})F-coalgebra homomorphisms.
- Everything can be done for simulations too.
- More examples (toposes for name-passing, weighted systems in categories of modules)
- Future work:
- Relation with the $\neg \neg$-closure.
- Regular AM-bisimulations for continuous probabilistic systems?
- Regular AM-bisimulations in realizability toposes?

