Aczel-Mendler Bisimulations in a Regular Category CALCO'23, Indiana University Bloomington

> Jérémy Dubut jeremy.dubut@aist.go.jp

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

June 20th

Let's Start Easy:

LTSs, Strong Bisimulations, and Composition

Transition Systems

Labelled Transition System:

A **TS** $T = (Q, \Delta)$ on the alphabet Σ is the following data:

- a set Q (of states) and
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.

- $Q = \{0, 1, 2, 3\},\$
- $\Delta = \{(0, a, 0), (0, b, 1), (0, a, 2), (1, c, 2), (2, b, 0), (2, a, 3)\}.$

Strong Bisimulations of Transition Systems

Strong Bisimulations [Park81]:

A strong bisimulation between $T_1 = (Q_1, \Delta_1)$ and $T_2 = (Q_2, \Delta_2)$ is a relation $R \subseteq Q_1 \times Q_2$ such that:

- (i) if $(q_1, q_2) \in R$ and $(q_1, a, q'_1) \in \Delta_1$ then there is $q'_2 \in Q_2$ such that $(q_2, a, q'_2) \in \Delta_2$ and $(q'_1, q'_2) \in R$ and
- (ii) if $(q_1, q_2) \in R$ and $(q_2, a, q'_2) \in \Delta_2$ then there is $q'_1 \in Q_1$ such that $(q_1, a, q'_1) \in \Delta_1$ and $(q'_1, q'_2) \in R$.

 R_1 strong bisimulation between T_1 , T_2 and R_2 strong bisimulation between T_2 , T_3

 R_1 strong bisimulation between T_1 , T_2 and R_2 strong bisimulation between T_2 , T_3

 R_1 strong bisimulation between T_1 , T_2 and R_2 strong bisimulation between T_2 , T_3

 R_1 strong bisimulation between T_1 , T_2 and R_2 strong bisimulation between T_2 , T_3

 R_1 strong bisimulation between T_1 , T_2 and R_2 strong bisimulation between T_2 , T_3

Aczel-Mendler Bisimulations of Coalgebras

Transition systems, as coalgebras

Set of transitions, as functions:

There is a bijection between sets of transitions $\Delta \subseteq Q \times \Sigma \times Q$ and functions of type:

$$\delta: Q \longrightarrow \mathcal{P}(\Sigma \times Q)$$

where $\mathcal{P}(X)$ is the powerset $\{U \mid U \subseteq X\}$.

Coalgebras:

Given an endofunctor $G : \mathcal{C} \longrightarrow \mathcal{C}$, a **coalgebra** is the following data:

- an object $Q \in \mathcal{C}$ and
- a morphism $\delta: Q \longrightarrow G(Q)$ of \mathcal{C} .

For LTS:
$$C =$$
Set, $G = X \mapsto \mathcal{P}(\Sigma \times X)$

Relations in a Category

Subobjects:

There is a preorder on monos with codomain X given by:

 $(u : U \rightarrowtail X) \sqsubseteq (v : V \rightarrowtail X) \quad \Leftrightarrow \quad \exists w : U \rightarrowtail V. \ u = v \cdot w.$

A subobject of X is an equivalence class of monos $u : U \rightarrow X$ modulo $\sqsubseteq \cap \sqsupseteq$.

Ex: in **Set**, subobjects are subsets, and \sqsubseteq is the inclusion

Relations:

A relation R from X to Y is a subobject of $X \times Y$.

Categories with Nice Relations: Regular Categories

Regular Categories:

A regular category is a finitely-complete category with a pullback-stable image factorization. In particular, it means it has a functorial pullback-stable (regular epi, mono)-factorization.

Ex: Set, any (quasi)topos, any abelian category, Stone, ...

Allegories of Relations:

Given a regular category C, then objects of C and relations between them form an allegory Rel(C), i.e.:

- it is a locally ordered 2-category,
- it has an anti-involution $(_)^{\dagger}$: $\mathbf{Rel}(\mathcal{C})^{\mathsf{op}} \to \mathbf{Rel}(\mathcal{C})$,
- local posets are meet-semilattices,
- it satisfies the modular law $(R; S) \cap T \sqsubseteq (R \cap (T; S^{\dagger})); S$.

Composition of Relations

Take two relations $m_r : R \rightarrow X \times Y$ and $m_s : S \rightarrow Y \times Z$, the composition $m_{r;s} : R; S \rightarrow X \times Z$ is given by:

In Set:

- $R \star S = \{(x, y, z) \mid (x, y) \in R \land (y, z) \in S\},\$
- $R \star S \to X \times Z$ is given by $(x, y, z) \mapsto (x, z)$, and
- the image R; S is $\{(x,z) \mid \exists y \in Y. (x,y) \in R \land (y,z) \in S\}$.

Aczel-Mendler Bisimulations

Aczel-Mendler Bisimulations:

A relation $r : R \rightarrow X \times Y$ is an AM-bisimulation from $\alpha : X \longrightarrow FX$ to $\beta : Y \longrightarrow FY$ if there is a morphism $W : R \longrightarrow FR$ (witness) such that:

In Set, for $F : X \mapsto \mathcal{P}(\Sigma \times X)$, AM-bisimulations are strong bisimulations:

- Fix $(x, y) \in R$, and $(a, x') \in \alpha(x)$.
- Commutativity means $(a, x') \in F(\pi_1 \cdot r) \cdot W(x, y)$, that is, there is y' such that $(a, (x', y')) \in W(x, y) \subseteq \Sigma \times R$, and $(x', y') \in R$.
- Commutativity means $(a, y') \in F(\pi_2 \cdot r) \cdot W(x, y) = \beta(y)$.

Closure under composition:

AM-bisimulations are closed under composition if:

Closure under composition:

AM-bisimulations are closed under composition if:

• F preserves weak pullbacks and

Closure under composition:

AM-bisimulations are closed under composition if:

- F preserves weak pullbacks and
- $\bullet \ \mathcal{C}$ has the regular axiom of choice, i.e., every regular epis are split.

Closure under composition:

AM-bisimulations are closed under composition if:

- F preserves weak pullbacks and
- $\bullet \ \mathcal{C}$ has the regular axiom of choice, i.e., every regular epis are split.

That was a choice of an intermediate state!

Jérémy Dubut (AIST)

Starting with

we want W such that

By definition of the composition

By definition of the composition and the regular axiom of choice

By definition of the composition and the regular axiom of choice

That was a choice of an intermediate state!

Jérémy Dubut (AIST)

By definition of the composition, this is a (weak) pullback

By preservation of weak pullback, this is a weak pullback

Putting everything together, the following commutes

Then there is ϕ making the triangles commute

Choosing $W = F(e_{r1;r2}) \cdot \phi$ gives what we want:

From Picking to Collecting Regular AM-Bisimulations

June 20th 15 / 25

Pick one

Make the proof for this one

Pick one

Make the proof for this one

Pick one

June 20th 15 / 25

Collect many

Picking vs Collecting

Collect many (Make sure there is at least one)

Picking vs Collecting

Make the proof for all of them

Collect many (Make sure there is at least one)

Picking vs Collecting

Make the proof for all of them

Collect many (Make sure there is at least one) How to do that, abstractly?

Instead of building a witness function:

$$W: R \longrightarrow FR$$

build a witness relation:

 $w : W \rightarrowtail R \times FR$

Regular AM-Bisimulations

Regular Aczel-Mendler Bisimulations:

A relation $r : R \rightarrow X \times Y$ is a regular AM-bisimulation from $\alpha : X \rightarrow FX$ to $\beta : Y \rightarrow FY$ if there is a relation $w : W \rightarrow FR \times R$ (witness) such that $\pi_2 \cdot w$ is a regular epi and :

Basic Properties

Regular AM-Bisimulations Form a Dagger 2-Poset:

- Diagonals are regular AM-bisimulations.
- Regular AM-bisimulations are closed under inverse.
- When F covers pullbacks, regular AM-bisimulations are closed under composition.

Coincidence under the Axiom of Choice:

When ${\cal C}$ has the regular axiom of choice, then regular AM-bisimulations coincide with AM-bisimulations.

Relationship with Other Coalgebraic Bisimulations:

- Regular AM-bisimulations coincide with Hermida-Jacobs bisimulations.
- When F covers pullbacks, then behavioral equivalences are AM-bisimulations.
- When C has pushouts, every regular AM-bisimulation is included in a behavioral equivalence.

Example: Vietoris Bisimulations in **Stone**

Objects: Stone spaces, i.e., compact totally disconnected spaces

Morphisms: continuous functions

This is a regular category with pushouts

Subobjects: closed subsets

Vietoris functor \mathcal{V} : $X \mapsto$ set of closed subsets of X with a suitable topology

This endofunctor covers pullbacks (but do not preserve weak-pullbacks!)

[Bezhanishvili et al.'10]

Fix a Stone space A. Descriptive models coincide with $\mathcal{V}(_) \times A$ -coalgebras. Vietoris bisimulations coincide with HJ-bisimulations (so with regular AM too), but not with plain AM-bisimulations.

:	:	
2n + 1	0	
2 <i>n</i>	0	
•	:	
2	0	
1	0	
0	0	

∞	0	
:	:	
2n + 1	0	
2 <i>n</i>	0	
:	:	
2	0	
1	0	
0	0	

∞	0	0	0	
÷	÷	÷	÷	
2n+1	0	0	0	
2 <i>n</i>	0	0	0	
÷	÷	÷	÷	
2	0	0	0	
1	0	0	0	
0	0	0	0	

∞	0	0	0	
:	:	÷	÷	
2n + 1	0	0	0	
2 <i>n</i>	0	0	0	
:	÷	:	÷	
2	0	0	0	
1	0	0	0	
0	0	0	0	
	1	2	3	

∞	0	0	0	 	0	0	0	∞
÷	÷	:	÷		÷	÷	÷	÷
2n+1	0	0	0		0	0	0	2n+1
2 <i>n</i>	0	0	0		0	0	0	2 <i>n</i>
÷	÷	÷	÷		÷	÷	÷	÷
2	0	0	0		0	0	0	2
1	0	0	0		0	0	0	1
0	0	0	0		0	0	0	0
	1	2	3		1	2	3	

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times \{+,-\})$ in **Stone**

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times \{+, -\})$ in **Stone**

Counter-example from [Bezhanishvili et al.'10] We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times \{+, -\})$ in **Stone**

Jérémy Dubut (AIST)

We want to construct two coalgebras $X \mapsto \mathcal{V}(X) \times \mathcal{P}(\mathbb{N} \times \{+, -\})$ in **Stone**

Regular AM \neq AM

The following closed relation:

$$R = \{(i_2, i_2), (i_3, i_3) \mid i \in \mathbb{N} \text{ odd}\} \cup \{(i_2, i_3), (i_3, i_2) \mid i \in \mathbb{N} \text{ even}\} \\ \cup \{(i_1, i_1) \mid i \in \mathbb{N} \cup \{\infty\}\} \\ \cup \{(\infty_j, \infty_k) \mid j, k \in \{2, 3\}\}$$

is a regular AM-bisimulation but not an AM-bisimulation.

Proof:

The following is a witness closed relation $W \subseteq R \times (\mathcal{V}(R) \times \mathcal{P}(\mathbb{N} \times \{+,-\}))$: $W = \{((i_1, i_1), \{(i_2, i_2), (i_3, i_3)\}, \{\}) \mid i \in \mathbb{N} \text{ odd} \}$ $\cup \{((i_1, i_1), \{(i_2, i_3), (i_3, i_2)\}, \{\}) \mid i \in \mathbb{N} \text{ even} \}$ $\cup \{((\infty_1, \infty_1), \{(\infty_2, \infty_2), (\infty_3, \infty_3)\}, \{\})\}$ $\cup \{((\infty_1, \infty_1), \{(\infty_2, \infty_3), (\infty_3, \infty_2)\}, \{\})\}$ $\cup \{((i_j, i_k), \emptyset, \lambda(i_j)) \mid i \in \mathbb{N} \cup \{\infty\} \land (i_j, i_k) \in R\}$

Regular AM \neq AM

The following closed relation:

$$R = \{(i_2, i_2), (i_3, i_3) \mid i \in \mathbb{N} \text{ odd}\} \cup \{(i_2, i_3), (i_3, i_2) \mid i \in \mathbb{N} \text{ even}\} \\ \cup \{(i_1, i_1) \mid i \in \mathbb{N} \cup \{\infty\}\} \\ \cup \{(\infty_j, \infty_k) \mid j, k \in \{2, 3\}\}$$

is a regular AM-bisimulation but not an AM-bisimulation.

Proof:

The following is a witness closed relation $W \subseteq R \times (\mathcal{V}(R) \times \mathcal{P}(\mathbb{N} \times \{+, -\}))$: $W = \{((i_1, i_1), \{(i_2, i_2), (i_3, i_3)\}, \{\}) \mid i \in \mathbb{N} \text{ odd}\}$ $\cup \{((i_1, i_1), \{(i_2, i_3), (i_3, i_2)\}, \{\}) \mid i \in \mathbb{N} \text{ even}\}$ $\{ \bigcup \{((\infty_1, \infty_1), \{(\infty_2, \infty_2), (\infty_3, \infty_3)\}, \{\})\}$ $\cup \{(((\infty_1, \infty_1), \{(\infty_2, \infty_3), (\infty_3, \infty_2)\}, \{\})\}$ $\cup \{((i_j, i_k), \emptyset, \lambda(i_j)) \mid i \in \mathbb{N} \cup \{\infty\} \land (i_j, i_k) \in R\}$

The Special Case of Toposes

Toposes, as Relation Classifiers

Topos:

A topos is a finitely complete category C with **power objects**, that is, for every object X, there is a mono $\in_X : E_X \rightarrow X \times \mathcal{P}X$ such that for every relation $r : R \rightarrow X \times Y$ there is a unique morphism $\xi_r : Y \longrightarrow \mathcal{P}X$ such that there is a pullback of the form:

In Set: \mathcal{P} = power set, $E_X = \{(x, U) \mid x \in U\}$

The subobject classifier is $\Omega = \mathcal{P}\mathbf{1}$ and $\mathcal{P}X = \Omega^X$

This formulation implies cartesian closure

Jérémy Dubut (AIST)

Folklore and More

Folklore:

 ${\mathcal P}$ is a commutative monad whose Kleisli category is isomorphic to the category of relations of ${\mathcal C}.$

[Goy et al'21]

• For every endofunctor F of a topos C and object X of C, there is a canonical morphism

$$\sigma_{F,X}: F\mathcal{P}X \to \mathcal{P}FX.$$

- When F preserves weak pullbacks and epis, this is a natural transformation.
- If F is additionally a monad whose multiplication is weak cartesian, σ_F is a weak distributive law.
- If additionally the unit is also weak cartesian, then σ_F is a distributive law.
- In particular, for any non-trivial topos, $\sigma_{\mathcal{P}}$ is a weak distributive law but not a strict one.

A Nicer Formulation of Regular AM-Bisimulations

Toposal Aczel-Mendler Bisimulations:

A relation $r : R \rightarrow X \times Y$ is a toposal AM-bisimulation from $\alpha : X \longrightarrow FX$ to $\beta : Y \longrightarrow FY$ if there is a morphism $W : R \longrightarrow \mathcal{P}FR$ (witness) such that:

Basically, F-toposal-AM = $\mathcal{P}F$ -AM

Toposal = Regular

In a topos, toposal AM-bisimulations coincide with regular AM-bisimulations.

Jérémy Dubut (AIST)

Conclusion

- In this talk:
 - Plain AM-bisimulations work only with the axiom of choice.
 - \blacktriangleright Replacing witness functions by relations \rightarrow regular AM-bisimulations
 - They work without axiom of choice:
 - closure under composition,
 - * coincidence with HJ-bisimulations, behavioral equivalences.
 - They are reworded nicely in toposes.
- Not in this talk, but in the paper:
 - ► Allegory maps that are (toposal) AM-bisimulations are (*P*)F-coalgebra homomorphisms.
 - Everything can be done for simulations too.
 - More examples (toposes for name-passing, weighted systems in categories of modules)
- Future work:
 - ▶ Relation with the ¬¬-closure.
 - Regular AM-bisimulations for continuous probabilistic systems?
 - Regular AM-bisimulations in realizability toposes?