A tour on ecumenical systems - CALCO 2023

Elaine Pimentel
Luiz Carlos Pereira, Victor Nascimento, Valeria de Paiva, Sonia Marin, Carlos Olarte, Delia Kesner, Mariana Milicich and Emerson Sales

UCL, UK
UERJ, TOPOS, University of Birmingham, Paris Sorbonne Nord, IRIF and Gran Sasso

Motivation I - What is a proof?

Theorem 1. There exist $x, y \notin \mathbb{Q}$ such that $x^{y} \in \mathbb{Q}$.

Motivation I - What is a proof?

Theorem 1. There exist $x, y \notin \mathbb{Q}$ such that $x^{y} \in \mathbb{Q}$.
Proof. Consider $a=\sqrt{2}^{\sqrt{2}}$.
If $a \in \mathbb{Q}$, then take $x=y=\sqrt{2}$.
If $a \notin \mathbb{Q}$, then take $x=a$ and $y=\sqrt{2}$. Then

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2
$$

Motivation I - What is a proof?

Theorem 1. There exist $x, y \notin \mathbb{Q}$ such that $x^{y} \in \mathbb{Q}$.
Proof. Consider $a=\sqrt{2}^{\sqrt{2}}$.
If $a \in \mathbb{Q}$, then take $x=y=\sqrt{2}$.
If $a \notin \mathbb{Q}$, then take $x=a$ and $y=\sqrt{2}$. Then

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2
$$

Classical mathematician: cool!!! $)$

Motivation I - What is a proof?

Theorem 1. There exist $x, y \notin \mathbb{Q}$ such that $x^{y} \in \mathbb{Q}$.
Proof. Consider $a=\sqrt{2}^{\sqrt{2}}$.
If $a \in \mathbb{Q}$, then take $x=y=\sqrt{2}$.
If $a \notin \mathbb{Q}$, then take $x=a$ and $y=\sqrt{2}$. Then

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2
$$

Classical mathematician: cool!!! Θ
Intuitionistic mathematician: but $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$ or $\sqrt{2}^{\sqrt{2}} \notin \mathbb{Q}$??? \mathcal{O}

Motivation I - What is a proof?

chapter 10

THE GELFOND-SCHNEIDER THEOREM

1. Hilbert's seventh problem. In 1900 David Hilbert announced a list of twenty-three outstanding unsolved problems. The seventh problem was settled by the publication of the following result in 1934 by A. O. Gelfond, which was followed by an independent proof by Th. Schneider in 1935.

Theorem 10.1. If α and β are algebraic numbers with $\alpha \neq 0, \alpha \neq 1$, and if β is not a real rational number, then any value of α^{β} is transcendental.
Remarks. The hypothesis that " β is not a real rational number" is usually stated in the form " β is irrational." Our wording is an attempt to avoid the suggestion that β must be a real number. Such a number as $\beta=2+3 i$, sometimes called a "complex rational number," satisfies the hypotheses of the theorem. Thus the theorem establishes the transcendence of such numbers as 2^{i} and $2^{\sqrt{2}}$. In general, $\alpha^{\beta}=\exp \{\beta \log \alpha\}$ is multiplevalued, and this is the reason for the phrase "any value of" in the statement of Theorem 10.1. One value of $i^{-2 i}=\exp \{-2 i \log i\}$ is e^{π}, and so this is transcendental according to the theorem.
Before proceeding to the proof of Theorem 10.1, we state an alternative form of the result.

134

Motivation I - What is a proof?

Schneider theorem, and they will be given with proofs in the rext section.

Lemma 10.3. Consider a determinant with the non-zero element ρ_{j}^{a} in the j-th row and $1+a$-th column, with $j=1,2$, \cdots, t and $a=0,1, \cdots, t-1$. This is called a Vandermonde determinant, and it vanishes if and only if $\rho_{j}=\rho_{k}$ for some distinct pair of subscripts j, k.

This can be found in J. V. Uspensky, Theory of Equations, McGraw-Hill, p. 214. The next four lemmas are in Harry Pollard, The Theory of Algebraic Numbers, John Wiley, p. 53, p. 60. pp. 63-66, p. 72.

Lemma 10.4. Let α and β be algebraic numbers in a field K of degree h over the rationals. If the conjugates of α for K are $\alpha=\alpha_{1}, \alpha_{2}, \cdots, \alpha_{h}$ and for β are $\beta=\beta_{1}, \beta_{2}$, \cdots, β_{h}, then the conjugates of $\alpha \beta$ and $\alpha+\beta$ are $\alpha_{1} \beta_{1}, \cdots$, $\alpha_{h} \beta_{h}$ and $\alpha_{1}+\beta_{1}, \cdots, \alpha_{h}+\beta_{h}$.

Lemma 10.5. If α is an algebraic number, then there is a positive rational integer r such that $r \alpha$ is an algebraic integer.

Lemma 10.6. If K is an algebraic number field of degree h over the rationals, then there exist integers $\beta_{1}, \beta_{2}, \cdots, \beta_{h}$ in K such that every integer in K is expressible uniquely as a linear combination $g_{1} \beta_{1}+\cdots+g_{h} \beta_{h}$ with rational integral coefficients. The numbers β_{j} are called an integral basis for K, and the discriminant of such a basis is a non-zero rational integer.

Leman 10.7. If α is an algebraic number in a field K of degree h over the rationals, then the norm $N(\alpha)$, defined as the product of α and its conjugates, satisfies the relation $N(\alpha \beta)=N(\alpha) \cdot N(\beta)$. Also $N(\alpha)=0$ if and only if $\alpha=0$. If α is an algebraic integer, then $N(\alpha)$ is a rational integer: If α is rational, then $N(\alpha)=\alpha^{h}$.

Motivation I - What is a proof?

Sec. 3
TWO LEMMAS 137

Finally, from complex variable theory we need the concept of entire function, i.e., a function that is analytic in the whole complex plane, and Cauchy's residue theorem. These ideas can be found, for example, in K. Knopp's Theory of Functions, vol. I, Dover, p. 112ff. and p. 130.
3. Two lemmas. Lemma 10.8. Consider the m equations in n unknowns
(10.1)
$a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n}=0, \quad k=1,2, \cdots, m$,
with rational integral coefficients $a_{i j}$, and with $0<m<n$. Let the positive integer A be an upper bound of the absolute values of all coefficients; thus $A \geqq\left|a_{i j}\right|$ for all i and j. Then there is a non-trivial solution $x_{1}, x_{2}, \cdots, x_{n}$ in rational integers of equations (10.1) such that

$$
\left|x_{j}\right|<1+(n A)^{m /(n-m)}, \quad j=1,2, \cdots, n
$$

Proof. Write y_{k} for $a_{k 1} x_{1}+\cdots+a_{k n} x_{n}$ so that to each point $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ there corresponds a point $y=$ ($y_{1}, y_{2}, \cdots, y_{m}$). A point such as x is said to be a lattice point if its coordinates x_{j} are rational integers. If x is a lattice point, then the corresponding point y is also a lattice point because the $a_{i j}$ are rational integers. Let q be any positive integer. Let x range over the $(2 q+1)^{n}$ lattice points inside or on the n-dimensional cube defined by $\left|x_{j}\right| \leqq q$ for all subscripts j. Then the corresponding values of y_{k} satisfy

$$
\left|y_{k}\right|=\left|\sum_{j=1}^{n} a_{k j} x_{j}\right| \leqq \sum_{j=1}^{n}\left|a_{k j}\right| \cdot\left|x_{j}\right| \leqq \sum_{j=1}^{n} A q=n A q
$$

Thus, as x ranges over the $(2 q+1)^{n}$ lattice points as indicated, the corresponding lattice points y have coordinates y_{k} which are integers among the $2 n A q+1$

Motivation I - What is a proof?

Lemma 10.9. Consider the p equations in q unkinowns
$\alpha_{k 1} \xi_{1}+\alpha_{k 2} \xi_{2}+\cdots+\alpha_{k q} \xi_{q}=0, \quad k=1,2, \cdots, p$,
with coefficients $\alpha_{i j}$ which are integers in an algebraic number field K of finite degree. Assume that $0<p<q$. Let $A \geqq 1$ be an upper bouid for the absolute values of the coefficients and their conjugates for K, thus $A \geqq\left\|\alpha_{i j}\right\|$ for all i and j. Then there exists a positive constant c depending on the field K but independent of $\alpha_{i j} . p$, and y, such that lhe equations (10.4) have a non-triviul solution $\xi_{1}, \xi_{2}, \cdots, \xi_{q}$ in integers of the field K satisfying

$$
\left\|\xi_{k}\right\|<c+c(c q A)^{p /(\varphi-p)}, \quad k=1,2, \cdots, p .
$$

Proof. Let h be the degree of K over the field of rational numbers, and let $\beta_{1}, \beta_{2}, \cdots, \beta_{h}$ be an integral basis for the field. If α is any integer of K, then by Lemma 106 we can express α uniquely as a linear combination of the integral basis,

$$
\alpha=g_{1} \beta_{1}+g_{2} \beta_{2}+\cdots+g_{h} \beta_{h}
$$

with rational integral coefficients g_{g}. Denote the conjugates of α for K by $\alpha=\alpha^{(1)}, \alpha^{(2)}, \cdots, \alpha^{(k)}$, and similarly for the β_{j}. Taking conjugaves in the last equation, by Lemma 10.4 we get
$\alpha^{(i)}=g_{1} \beta_{1}^{(i)}+g_{2} \beta_{2}^{(i)}+\cdots+g_{h} \beta_{1}^{(i)}, \quad i=1,2, \cdots, h$. The determinant $\left|\beta_{j}^{()}\right|$is the discriminant of the basis, and it is not zero by Lemma 10.6. Hences we can solve these equations for the g_{j} as linear cumbinations of the $\alpha^{(i)}$, with coefficients dependent only on the basis. Taking absolute values throughout these solutions, we can write

$$
\begin{equation*}
\left|g_{j}\right|<c_{1}\|\alpha\|, \quad j=1,2, \cdots, h \tag{10.5}
\end{equation*}
$$

Motivation I - What is a proof?

Sec. 4 proof of gelfond-Schneider theorem

$$
\begin{aligned}
|\zeta| & <|\log \alpha|^{-p} \cdot \frac{p}{q} \cdot c_{8}^{p} p^{p(3-m) / 2} \cdot \frac{2 q}{p} \\
& <\left\{2 c_{8}|\log \alpha|^{-1}\right\}^{p} p^{p(3-m) / 2} \\
& =c_{9}^{p} p^{p(3-m) / 2}
\end{aligned}
$$

With this estimate for $|\zeta|$, and that of Lemma 10.12 for its conjugates, we write, by (10.10),

$$
|N(\zeta)|<c_{3}^{p} p^{p(3-m) 2}\left(c^{p} p^{p}\right)^{h-1}=\left(c_{9} c^{h-1}\right)^{p} p^{-p}=c_{b}^{p} p^{-p}
$$

where $c_{0}=c_{9} c^{n-1}$. This and Lemma 10.11 imply that

$$
c_{5}^{p} p^{-p}>C^{-p}, \quad C c_{0}>p
$$

for some positive constants independent of n and p. But this is a contradiction, because $p \geqq n$, and we can choose n arbitrarily large.

Notes on Chapter 10

The special case of Theorem 10.1 for any imaginary quadratic irrational β was established by A. O. Gelfond, Compt. Rend. Acad. Sci. Paris, 189 (1929), 1224-1226. The original papers establishing Theorem 10.1 are: A. O. Gelfond, Doklady Akad. Nauk S.S.S.R., 2 (1934), 1-6; Th. Schneider, J. retne angew. Math., 172 (1935), 6569. The American Mathematical Society has provided an English translation (Translation Number 65) of an advanced expository paper by A. O. Gelfond, The approximation of algebraic numbers by algebraic numbers and the theory of transcendental numbers, Uspehi Mat. Nauk (N.S.), 4, no. 4 (32), 19-49 (1949). There is an exposition of Gelfond's proof by E. Hille, Amer. Math. Monthly, 49 (1942), 654-661.
The proof of Theorem 10.1 given here is based on a simplification of Gelfond's proof by C. L. Siegel, Transcendental Numbers, Princeton, pp. 80-83.
Although the methods of Chapters 9 and 10 establish the trangcendence of wide classes of numbers, there are many unsolved prob-

Motivation II - What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which means "the whole inhabited world".

Motivation II - What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which means "the whole inhabited world".

Ecumenism: the search process for unicity, where different thoughts, ideas or points of view can harmonically co-exist.

Motivation II - What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which means "the whole inhabited world".

Ecumenism: the search process for unicity, where different thoughts, ideas or points of view can harmonically co-exist.

- What (really) are ecumenical systems?
- What are they good for?
- Why should anyone be interested in ecumenical systems?
- What is the real motivation behind the definition and development of ecumenical systems?

Motivation II - What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which means "the whole inhabited world".

Ecumenism: the search process for unicity, where different thoughts, ideas or points of view can harmonically co-exist.

- What (really) are ecumenical systems?
- What are they good for?
- Why should anyone be interested in ecumenical systems?
- What is the real motivation behind the definition and development of ecumenical systems?

Prawitz: what makes a connective classical or intuitionistic?

Philosophical motivation

Logical inferentialism:

- the meaning of the logical constants can be specified by the rules that determine their correct use;
- proof-theoretical requirements on admissible logical rules: harmony and separability;
- pure logical systems: negation is not used in premises.

Logical motivation (dialogue by Luiz Carlos)

- IL: if what you mean by $(A \vee B)$ is $\neg(\neg A \wedge \neg B)$, then I can accept the validity of $(A \vee \neg A)$!
- IL: if what you mean by $(A \vee B)$ is $\neg(\neg A \wedge \neg B)$, then I can accept the validity of $(A \vee \neg A)$!
- CL: but I do not mean $\neg(\neg A \wedge \neg \neg A)$ by $(A \vee \neg A)$. One must distinguish the excluded-middle from the the principle of non-contradiction. When I say that Goldbach's conjecture is either true or false, I am not saying that it would be contradictory to assert that it is not true and that it is not the case that it is not true!
- IL: if what you mean by $(A \vee B)$ is $\neg(\neg A \wedge \neg B)$, then I can accept the validity of $(A \vee \neg A)$!
- CL: but I do not mean $\neg(\neg A \wedge \neg \neg A)$ by $(A \vee \neg A)$. One must distinguish the excluded-middle from the the principle of non-contradiction. When I say that Goldbach's conjecture is either true or false, I am not saying that it would be contradictory to assert that it is not true and that it is not the case that it is not true!
- IL: but you must realize that, at the end of the day, you just have one logical operator, like the Quine's dagger (a.k.a. NOR).
- IL: if what you mean by $(A \vee B)$ is $\neg(\neg A \wedge \neg B)$, then I can accept the validity of $(A \vee \neg A)$!
- CL: but I do not mean $\neg(\neg A \wedge \neg \neg A)$ by $(A \vee \neg A)$. One must distinguish the excluded-middle from the the principle of non-contradiction. When I say that Goldbach's conjecture is either true or false, I am not saying that it would be contradictory to assert that it is not true and that it is not the case that it is not true!
- IL: but you must realize that, at the end of the day, you just have one logical operator, like the Quine's dagger (a.k.a. NOR).
- CL: But this is not at all true! The fact that we can define one operator in terms of other operators does not imply that we don't have different operators!

It is true that we can prove $\vdash\left(A \vee_{c} B\right) \leftrightarrow \neg(\neg A \wedge \neg B)$ in the ecumenical system, but this does not mean that we don't have three different operators: \neg, \vee_{c} and \wedge.

Mathematical motivation (example by Emerson Sales)

$$
\text { if } x+y=2 z \text { then } x \geq z \text { or } y \geq z \text {. }
$$

Mathematical motivation (example by Emerson Sales)

if $x+y=2 z$ then $_{i} x \geq z$ or $y \geq z$.

Mathematical motivation (example by Emerson Sales)

$$
\begin{aligned}
& \text { if } x+y=2 z \text { then }_{i} x \geq z \text { or } y \geq z \text {. } \\
& \text { classical mathematician }
\end{aligned}
$$

Mathematical motivation (example by Emerson Sales)

$$
\text { not }\left(\text { not }\left(\text { if } x+y=2 z \text { then }_{i} x \geq z \text { or }{ }_{i} y \geq z\right)\right. \text {). }
$$

Mathematical motivation (example by Emerson Sales)

if $x+y=2 z$ then $_{c} x \geq z$ or $_{c} y \geq z$.

Mathematical motivation (example by Emerson Sales)

Mathematical motivation (example by Emerson Sales)

$$
\text { if } x+y=2 z \operatorname{then}_{i} x \geq z \text { or } r_{c} y \geq z \text {. }
$$

Mathematical motivation (example by Emerson Sales)

if $x+y=2 z$ then $_{i} x \geq z$ or ${ }_{c} y \geq z$.

classical mathematician intuitionistic mathematician

What makes logical connectives (including modalities) classical or intuitionistic?

What makes logical connectives (including modalities) classical or intuitionistic?

How about ecumenical typing and verification?

Outline

Proof Theory

Ecumenism

The quest for purity

Modalities

Achieving purity

Some discussion

Outline

Proof Theory

Ecumenism

The quest for purity

Modalities

Achieving purity

Some discussion

What is Proof Theory?
MATAENATICAL LOGIC

What is Proof Theory?

MATEENATICAL LOGIC

What is Proof Theory?

Martenlaticll Logic

Proof theory according to Sonia Marin

It is all about proofs:

- are they equal? (by the way, what is equal??)
- can we transform one proof into another?
- can we identify patterns?

Proof theory according to Sonia Marin

It is all about proofs:

- are they equal? (by the way, what is equal??)
- can we transform one proof into another?
- can we identify patterns?
- for answering all this: formalisation of proofs in a purely mathematical language;
- discipline: proof theory;

Proof theory according to Sonia Marin

It is all about proofs:

- are they equal? (by the way, what is equal??)
- can we transform one proof into another?
- can we identify patterns?
- for answering all this: formalisation of proofs in a purely mathematical language;
- discipline: proof theory;
- Applications: automatic theorem provers/checkers; extract algorithms from a proof; extract counter-examples from failed proof-search (proof mining); extract proof systems from counter-examples; determine which axioms are required to prove which theorems (reverse mathematics); determine sizes of the proofs (proof complexity).

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Elimination rules: use the inversion principle.

$$
\frac{A \rightarrow B \quad A}{B} \rightarrow E
$$

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Elimination rules: use the inversion principle.
Derivation: tree with vertices labelled by formulas.

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Elimination rules: use the inversion principle.
Derivation: tree with vertices labelled by formulas.

$$
\frac{[A]}{A \rightarrow A} \rightarrow 1
$$

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Elimination rules: use the inversion principle.
Derivation: tree with vertices labelled by formulas.
A problem: prove analyticity! (called normalization)

Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of $A \wedge B$ is given by presenting a proof of A and a proof of B.

$$
\frac{A \quad B}{A \wedge B} \wedge I
$$

H2 A proof of $A \vee B$ is given by presenting either a proof of A or a proof of B.

$$
\frac{A}{A \vee B} \vee I_{1} \quad \frac{B}{A \vee B} \vee I_{2}
$$

H3 A proof of $A \rightarrow B$ is a construction which permits us to transform any proof of A into a proof of B.

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{B}{A \rightarrow B} \rightarrow I
\end{gathered}
$$

Elimination rules: use the inversion principle.
Derivation: tree with vertices labelled by formulas.
Another problems: harmony, pure systems, etc...

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.

$$
\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow R \quad \frac{\Gamma \Rightarrow A \quad \Gamma, B \Rightarrow C}{\Gamma, A \rightarrow B \Rightarrow C} \rightarrow L
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labelled by sequents.

$$
\frac{\overline{A \Rightarrow A} \text { init }}{\Rightarrow A \rightarrow A} \rightarrow R
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labelled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \Rightarrow A \quad \Delta, A \Rightarrow C}{\Gamma, \Delta \Rightarrow C} \mathrm{cut}
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labelled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \Rightarrow A \quad \Delta, A \Rightarrow C}{\Gamma, \Delta \Rightarrow C} \mathrm{cut}
$$

- Analyticity \leadsto sub-formula property: induces a structure on the proofs (in terms of the end formula).

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labelled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \Rightarrow A \quad \Delta, A \Rightarrow C}{\Gamma, \Delta \Rightarrow C} \mathrm{cut}
$$

- Analyticity \sim sub-formula property: induces a structure on the proofs (in terms of the end formula).
- Thus, proof structure can be exploited to formalize reasoning, investigate meta-logical properties of the logic e.g. consistency, decidability, complexity and interpolation, and develop automated deduction procedures.

Outline

Proof Theory

Ecumenism

The quest for purity

Modalities

Achieving purity

Some discussion

What is behind Ecumenism?

For a classical logician $A \vee \neg A$ is a theorem.

What is behind Ecumenism?

For a classical logician $A \vee \neg A$ is a theorem.
For an intuitionistic logician it is not.

What is behind Ecumenism?

For a classical logician $A \vee \neg A$ is a theorem.
For an intuitionistic logician it is not.

But why (and where) do they disagree?

$$
\begin{array}{ll}
\frac{\overline{A \Rightarrow A} \text { init }}{\frac{?}{\Rightarrow A, \neg A} \neg R} & \stackrel{A}{\Rightarrow} \\
\frac{\Rightarrow \neg A}{\Rightarrow} \neg R \\
\Rightarrow A \vee \neg A \\
\Rightarrow A \vee \neg A
\end{array} \quad \Rightarrow R_{2}
$$

What is behind Ecumenism?

For a classical logician $A \vee \neg A$ is a theorem.
For an intuitionistic logician it is not.

But why (and where) do they disagree?

$$
\begin{array}{ll}
\frac{\overline{A \Rightarrow A} \text { init }}{\frac{?}{\Rightarrow A, \neg A} \neg R} & \stackrel{A}{\Rightarrow} \\
\frac{\Rightarrow \neg A}{\Rightarrow} \neg R \\
\Rightarrow A \vee \neg A \\
\Rightarrow A \vee \neg A
\end{array} \quad \Rightarrow R_{2}
$$

A solution: They are not talking about the same connective(s) (Prawitz 2015)

What is behind Ecumenism?

For a classical logician $A \vee \neg A$ is a theorem.
For an intuitionistic logician it is not.

But why (and where) do they disagree?

$$
\begin{array}{ll}
\frac{\overline{A \Rightarrow A} \text { init }}{\frac{?}{\Rightarrow A, \neg A} \neg R} & \stackrel{A}{\Rightarrow} \\
\frac{\Rightarrow \neg A}{\Rightarrow} \neg R \\
\Rightarrow A \vee \neg A \\
\Rightarrow A \vee \neg A
\end{array} R_{2}
$$

A solution: They are not talking about the same connective(s) (Prawitz 2015)
"The classical logician is not asserting what the intuitionistic logician denies: The classical logician asserts

$$
A \vee_{c} \neg A
$$

to which the intuitionist does not object; He objects to the universal validity of

$$
A \vee_{i} \neg A
$$

which is not asserted by the classical logician."

Prawitz's ecumenical natural deduction system

$$
\begin{aligned}
& {[A]} \\
& \Pi \\
& \frac{\perp}{\neg A} \neg-\mathrm{int}
\end{aligned}
$$

$$
\frac{A \quad B}{A \wedge B} \wedge-\mathrm{int}
$$

$$
\frac{A(a / x)}{\forall x \cdot A} \forall \text {-int }
$$

Shared

Intuitionistic

Prawitz's ecumenical natural deduction system

$$
\begin{array}{ll}
\begin{array}{l}
{[A, \neg B]} \\
\square \\
\perp \\
A \rightarrow c B
\end{array} \rightarrow_{c} \text {-int } & {[A]} \\
{[\neg A, \neg B]} & \Pi \\
\square & \frac{\perp}{\neg A} \neg \text {-int } \\
\frac{\perp}{A \vee_{c} B} \vee_{c} \text {-int } & \frac{A \quad B}{A \wedge B} \wedge \text {-int } \\
{[\forall x . \neg A]} & \frac{A(a / x)}{\forall x \cdot A} \forall \text {-int } \\
\frac{\square}{\perp} \exists_{c} \text {-int } & \\
\exists_{c} x \cdot A & \text { Shared }
\end{array}
$$

Classical

Intuitionistic

Prawitz's ecumenical natural deduction system

$$
\begin{aligned}
& {[A, \neg B]} \\
& \begin{array}{l}
\square \\
\frac{\perp}{A \rightarrow c} B
\end{array} \rightarrow_{c} \text {-int } \\
& {[\neg A, \neg B]} \\
& \square \\
& \frac{\perp}{A \vee_{c} B} \vee_{c} \text {-int } \\
& {[\forall x . \neg A]} \\
& \Pi \\
& \frac{\perp}{\exists_{c} x \cdot A} \exists_{c} \text {-int }
\end{aligned}
$$

Classical

$$
\begin{aligned}
& {[A]} \\
& \sqcap \\
& \frac{\perp}{\neg A} \neg-\mathrm{int}
\end{aligned}
$$

$$
\frac{A \quad B}{A \wedge B} \wedge-\mathrm{int}
$$

$$
\frac{A(a / x)}{\forall x \cdot A} \forall \text {-int }
$$

Shared
[A]

$$
\begin{gathered}
\Pi \\
\frac{B}{A \rightarrow{ }_{i} B} \rightarrow_{i} \text {-int }
\end{gathered}
$$

$$
\frac{A_{j}}{A_{1} \vee_{i} A_{2}} \vee_{i}^{j}-\text { int }
$$

$$
\frac{A(a / x)}{\exists_{i} x \cdot A} \exists_{i-\mathrm{int}}
$$

Intuitionistic

Our ecumenical sequent system LE

$$
\begin{array}{cc}
\Gamma, A, \neg B \Rightarrow \perp \\
\Gamma \Rightarrow A \rightarrow_{c} B & \frac{\Gamma, A \Rightarrow \perp}{\Gamma \Rightarrow \neg A} \neg R \\
\Gamma, \neg A, \neg B \Rightarrow \perp \\
\Gamma \Rightarrow A \vee_{c} B \\
V_{c} R & \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R \\
\frac{\Gamma, \forall x \rightarrow A \Rightarrow \perp}{\Gamma \Rightarrow \exists_{c} \times . A} \exists_{c} R & \frac{\Gamma \Rightarrow A[y / x]}{\Gamma \Rightarrow \forall x \cdot A} \forall R \\
\text { Classical } & \text { Shared }
\end{array}
$$

(Pimentel, Pereira, de Paiva 2021)

Our ecumenical sequent system LE

$$
\begin{array}{cc}
\frac{\Gamma, A, \neg B \Rightarrow \perp}{\Gamma \Rightarrow A \rightarrow_{c} B} \rightarrow_{c} R & \frac{\Gamma, A \Rightarrow \perp}{\Gamma \Rightarrow \neg A} \neg R \\
\frac{\Gamma, \neg A, \neg B \Rightarrow \perp}{\Gamma \Rightarrow A \vee_{c} B} \vee_{c} R & \frac{\Gamma \Rightarrow A \wedge \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R \\
\frac{\Gamma, \forall x \cdot \neg A \Rightarrow \perp}{\Gamma \Rightarrow \exists_{c} x \cdot A} \exists_{c} R & \frac{\Gamma \Rightarrow A[y / x]}{\Gamma \Rightarrow \forall x \cdot A} \forall R \\
\text { Classical } & \text { Shared }
\end{array}
$$

Intuitionistic
(Pimentel, Pereira, de Paiva 2021)

Our ecumenical sequent system LE

$$
\begin{array}{ccc}
\frac{\Gamma, A, \neg B \Rightarrow \perp}{\Gamma \Rightarrow A \rightarrow \rightarrow_{c} B} \rightarrow_{c} R & \frac{\Gamma, A \Rightarrow \perp}{\Gamma \Rightarrow \neg A} \neg R & \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow_{i} B} \rightarrow_{i} R \\
\frac{\Gamma, \neg A, \neg B \Rightarrow \perp}{\Gamma \Rightarrow A \vee_{c} B} \vee_{c} R & \frac{\Gamma \Rightarrow A \wedge \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R & \frac{\Gamma \Rightarrow A_{j}}{\Gamma \Rightarrow A_{1} \vee_{i} A_{2}} \vee_{i} R_{j} \\
\frac{\Gamma, \forall x, \neg A \Rightarrow \perp}{\Gamma \Rightarrow \exists_{c} x \cdot A} \exists_{c} R & \frac{\Gamma \Rightarrow A[y / x]}{\Gamma \Rightarrow \forall x \cdot A} \forall R & \frac{\Gamma \Rightarrow A[a / x]}{\Gamma \Rightarrow \exists_{i} x \cdot A} \exists_{i} R \\
\text { Classical } & \text { Shared } & \text { Intuitionistic }
\end{array}
$$

Back to our mathematical motivation

$$
\begin{gathered}
\frac{\overline{x<z, y<z \Rightarrow x+y \neq 2 z} \quad \overline{\overline{x+y=2 z, x+y \neq 2 z \Rightarrow \perp}}}{} \text { cut } \\
\frac{x+y=2 z, x<z, y<z \Rightarrow \perp}{x+y=2 z \Rightarrow x \geq z \vee_{c} y \geq z} \vee_{c} R \\
\Rightarrow x+y=2 z \rightarrow_{i} x \geq z \vee_{c} y \geq z
\end{gathered} \rightarrow_{i} R \text { t }
$$

Ecumenical proofs

Theorem
$\Gamma \Rightarrow A$ is provable in LE iff $\vdash_{\text {LE }} \wedge \Gamma \rightarrow_{i} A$.

- The ecumenical entailment is intuitionistic!
- That is, even though some formulas carry with them the notion of classical truth, the logical consequence is intrinsically intuitionist.

Ecumenical proofs

Theorem
$\Gamma \Rightarrow A$ is provable in LE iff $\vdash_{\mathrm{LE}} \wedge \Gamma \rightarrow_{i} A$.

- The ecumenical entailment is intuitionistic!
- That is, even though some formulas carry with them the notion of classical truth, the logical consequence is intrinsically intuitionist.
- As it should be, since the ecumenical system embeds the classical behavior into intuitionistic logic. :)

Ecumenical proofs

Theorem
$\Gamma \Rightarrow A$ is provable in LE iff $\vdash_{\mathrm{LE}} \bigwedge \Gamma \rightarrow_{i} A$.

- The ecumenical entailment is intuitionistic!
- That is, even though some formulas carry with them the notion of classical truth, the logical consequence is intrinsically intuitionist.
- As it should be, since the ecumenical system embeds the classical behavior into intuitionistic logic. -
- But if A is classical, the entailment can be read classically.
- And this justifies, proof-theoretically, the ecumenical view of entailments in Prawitz's original proposal.

Outline

Proof Theory
\section*{Ecumenism}

The quest for purity

Modalities

Achieving purity

Some discussion

Pure systems

The definition of classical connectives depend on other connectives:

$$
\begin{aligned}
& {[\forall x . \neg A]} \\
& \begin{array}{l}
\stackrel{\perp}{\perp} \\
\exists_{c} x \cdot A \\
\exists_{c} \text {-int }
\end{array} \quad \frac{\Gamma, \forall x . \neg A \Rightarrow \perp}{\Gamma \Rightarrow \exists_{c} x \cdot A} \exists_{c} R
\end{aligned}
$$

Pure systems

The definition of classical connectives depend on other connectives:

$$
\begin{aligned}
& {[\forall x . \neg A]} \\
& \quad \begin{array}{l}
\perp \\
\exists_{c} x \cdot A \\
\exists_{c}-\text { int }
\end{array} \quad \frac{\Gamma, \forall x . \neg A \Rightarrow \perp}{\Gamma \Rightarrow \exists_{c} x \cdot A} \exists_{c} R
\end{aligned}
$$

Purifying systems:

- Polarities

$$
\frac{\Gamma_{1} \Rightarrow \Delta_{1}, P \quad \Gamma_{2} \Rightarrow \Delta_{2}, Q}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}, P \wedge Q} \wedge_{P} \quad \frac{\Gamma \Rightarrow \Delta, N \quad \Gamma \Rightarrow \Delta, M}{\Gamma \Rightarrow \Delta, M \wedge N} \wedge_{N}
$$

- Stoup

$$
\frac{\Gamma \Rightarrow \Delta ; P}{\Gamma \Rightarrow \Delta, P ; \cdot} \quad \mathrm{D} \quad \frac{\Gamma \Rightarrow \Delta, N ; \cdot}{\Gamma \Rightarrow \Delta ; N} \text { store }
$$

Ecumenical rules with stoup - NE

$$
\begin{array}{cc}
{[\because A]} & {[\cdot ; A]} \\
\Pi & \Pi \\
\frac{\Delta, B ; \cdot}{\Delta ; A \rightarrow_{c} B} \rightarrow_{c} \text {-int } & \frac{\Delta ; \cdot}{\Delta ; \neg A} \neg-\mathrm{int} \\
\frac{\Delta, A, B ; \cdot}{\Delta ; A \vee_{c} B} \vee_{c} \text {-int } & \frac{\Delta_{1} ; A \quad \Delta_{2} ; B}{\Delta_{1}, \Delta_{2} ; A \wedge B} \wedge \text {-int } \\
\frac{\Delta, \exists_{c} x \cdot A ; A(a / x)}{\Delta ; \exists_{c} x . A} \exists_{c} \text {-int } & \frac{\Delta ; A(a / x)}{\Delta ; \forall x . A} \forall \text {-int } \\
\text { Classical } & \text { Shared }
\end{array}
$$

Classical

$$
\begin{gathered}
{[\because A]} \\
\Pi \\
\frac{\Delta ; B}{\Delta ; A \rightarrow_{i} B} \rightarrow_{i}-\mathrm{int}
\end{gathered}
$$

$$
\frac{\Delta ; A_{j}}{\Delta ; A_{1} \vee_{i} A_{2}} \vee_{i}^{j}-i n t
$$

$$
\frac{\Delta ; A(a / x)}{\Delta ; \exists_{i} x . A} \exists_{i-\mathrm{int}}
$$

Intuitionistic

The idea:

$$
\vdash_{\mathrm{NE}} \Gamma \Rightarrow \Delta ; \Sigma \quad \text { iff } \quad \vdash_{\mathrm{LE}} \Gamma, \neg \Delta \Rightarrow \Sigma
$$

A study case: Peirce's Law

Typical proof:

$$
\begin{aligned}
& \frac{[\neg A]^{2} \quad[A]^{3}}{3 \frac{\frac{\perp}{B} \mathrm{DN}}{A \rightarrow B} \rightarrow \text {-elim }} \\
& \frac{A \quad[\neg A]^{2}}{1 \frac{2 \frac{\perp}{A} \mathrm{DN}}{((A \rightarrow B) \rightarrow A) \rightarrow A} \rightarrow \text {-elint }} \text { (Am }
\end{aligned}
$$

A study case: Peirce's Law

Ecumenical stoup:

$$
2 \frac{\left[\because\left(A \rightarrow_{c} B\right) \rightarrow_{c} A\right]^{3}}{} \quad 1 \frac{\frac{[\because A]^{1}}{A, B ; \cdot}}{A ; A \rightarrow_{c} B} \rightarrow_{c} \text {-int } \quad \frac{[\because A]^{2}}{A ; \cdot} \operatorname{der} \rightarrow_{c} \text {-elim }
$$

A study case: Peirce's Law

Ecumenical stoup:

$$
2 \frac{\left[\because\left(A \rightarrow_{c} B\right) \rightarrow_{c} A\right]^{3} \quad 1 \frac{\frac{[\because ; A]^{1}}{A, B ; \cdot} \operatorname{der}}{A ; A \rightarrow_{c} B} \rightarrow_{c} \text {-int } \quad \frac{[\because A]^{2}}{A ; \cdot} \operatorname{der}}{3 \frac{A ; \cdot}{\left.\left.r_{c}-\operatorname{l(} A \rightarrow_{c} B\right) \rightarrow_{c} A\right) \rightarrow_{c} A} \rightarrow_{c} \text {-int }}
$$

More interestingly:

$$
\vdash_{\mathcal{L E}} \cdot ;\left(\left(A \rightarrow_{j} B\right) \rightarrow_{k} A\right) \rightarrow_{c} A
$$

with $j, k \in\{i, c\}$.

Application I: term calculus

The design of the proof system is not only a matter of taste: adequate proposals for extensions and/or applications.

Application I: term calculus

The design of the proof system is not only a matter of taste: adequate proposals for extensions and/or applications.

Michel Parigot (trying to establish a link between control operators and classical constructs):
"The difficulties met in trying to use $\neg \neg A \rightarrow A$ (or the classical absurdity rule) as a type for control operators is not really due to classical logic, but much more to the deduction system in which it is expressed. It is not easy to find a satisfactory notion of reduction in usual natural deduction because of the restriction to one conclusion which forbids the most natural transformations of proofs."

Application I: term calculus

The design of the proof system is not only a matter of taste: adequate proposals for extensions and/or applications.

Michel Parigot (trying to establish a link between control operators and classical constructs):
"The difficulties met in trying to use $\neg \neg A \rightarrow A$ (or the classical absurdity rule) as a type for control operators is not really due to classical logic, but much more to the deduction system in which it is expressed. It is not easy to find a satisfactory notion of reduction in usual natural deduction because of the restriction to one conclusion which forbids the most natural transformations of proofs."

Parigot's solution: adopt a system with stoup!

PARIGOT's $\lambda \mu$

$$
\begin{aligned}
& \frac{u: A^{x}, \Gamma \vdash B, \Sigma}{\lambda x \cdot u: \Gamma \vdash A \rightarrow B, \Sigma} \\
& \frac{t: \Gamma \vdash A, \Sigma}{[\alpha] t: \Gamma \vdash A^{\alpha}, \Sigma} \\
& \frac{t: \Gamma \vdash 4 \rightarrow B, \Sigma \quad u: \Gamma^{\prime} \vdash A, \Sigma^{\prime}}{(t u): \Gamma, \Gamma^{\prime} \vdash B, \Sigma, \Sigma^{\prime}} \\
& \frac{5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \mu \alpha \cdot e: \Gamma \vdash A, \Sigma
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { This is } \\
\text { dereliction }
\end{array}\right\} \\
& \text { (this adds }{ }_{\text {any formula }}^{\stackrel{\Sigma}{\downarrow}} \\
& \text { tithe classical } \begin{array}{c}
\text { WE ANOn } \\
\text { MANTis }
\end{array} \\
& \text { context }
\end{aligned}
$$

Ecumenical term calculus

$$
\begin{aligned}
& \overline{\Gamma, x: A \vdash x: A ; \Delta}{ }^{\mathrm{x}} \\
& \frac{\Gamma, x: A \vdash t: B ; \Delta}{\Gamma \vdash \lambda x . t: A \rightarrow_{i} B ; \Delta} \mathrm{I} \rightarrow_{i} \quad \frac{\Gamma \vdash t: A \rightarrow_{i} B ; \Delta \quad \Gamma \vdash s: A ; \Delta \quad \Gamma, x: B \vdash r: C ; \Delta}{\Gamma \vdash t(s, x . r): C ; \Delta} \mathrm{E} \rightarrow_{i} \\
& \frac{\Gamma, x: A \vdash c: \perp ; \Delta \cup\{\alpha: B\}}{\Gamma \vdash \mu(x, \alpha) . c: A \rightarrow_{c} B ; \Delta} \mathrm{I} \rightarrow_{c} \quad \frac{\Gamma \vdash t: A \rightarrow_{c} B ; \Delta \quad \Gamma \vdash s: A ; \Delta \quad \Gamma, x: B \vdash c: \perp ; \Delta}{\Gamma \vdash t[s, x . c]: \perp ; \Delta} \mathrm{E}-\rightarrow_{c} \\
& \frac{\Gamma \vdash t: A ; \Delta}{\Gamma \vdash[\alpha] t: \perp ; \Delta \cup\{\alpha: A\}} \operatorname{der} \quad \frac{\Gamma \vdash c: \perp ; \Delta}{\Gamma \vdash \# c: B ; \Delta} \mathrm{W}_{i}
\end{aligned}
$$

Application II: verification

Rewriting Logic (Maude)

rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G).

Application II: verification

Rewriting Logic (Maude)

rl [tensorR] : Gamma, Delta |- F x G => (Gamma |-F) , (Delta |-G).

Gap between what is represented and its representation
Rewriting Logic can rightfully be said to have " ϵ-representational distance" as a semantic and logical framework. (José Meseguer)

Application II: verification

Rewriting Logic (Maude)

rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G).

Gap between what is represented and its representation
Rewriting Logic can rightfully be said to have " ϵ-representational distance" as a semantic and logical framework. (José Meseguer)

Rewriting logic: Equational theory + rewriting rules

Application II: verification

Rewriting Logic (Maude)
rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G) .

Gap between what is represented and its representation
Rewriting Logic can rightfully be said to have " ϵ-representational distance" as a semantic and logical framework. (José Meseguer)

Rewriting logic: Equational theory + rewriting rules
L-framework (invertibility):

- Case rule $\vee_{i} R 1$

$$
\frac{\mathrm{h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4}}{\bullet \mathrm{~h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4} \vee_{i} \mathrm{~F}_{5}} \vee_{i} R 1 \quad \leadsto \quad \frac{\mathrm{~h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4}}{\mathrm{~h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4}} \text { height }
$$

- Case rule $\vee_{i} R 2$

$$
\frac{\mathrm{h}_{1}: \Delta_{2} \vdash \Delta_{3} @_{5}}{\bullet \mathrm{~h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4} \vee_{i} \mathrm{~F}_{5}} \vee_{i} R 2 \quad \leadsto \quad \overline{\mathrm{~h}_{1}: \Delta_{2} \vdash \Delta_{3} @ \mathrm{~F}_{4}} \text { fail }
$$

Outline

Proof Theory
Ecumenism
The quest for purity

Modalities

Achieving purity

Some discussion

What is Modal Logic?

Carlos \qquad handsome.

What is Modal Logic?

Classical logic: truth

Carlos _is_ handsome.

What is Modal Logic?

Classical logic: truth

Carlos__ is not handsome.

What is Modal Logic?

Modal logic: qualifies truth
Carlos_is necessarily handsome.

What is Modal Logic?

Modal logic: qualifies truth
Carlos in necessarily handsome.

What is Modal Logic?

Modal logic: qualifies truth

What is Modal Logic?

Modal logic: qualifies truth
Carlos_is known to be handsome.

What is Modal Logic?

Modal logic: qualifies truth
Carlos_is known to be handsome. (by me)

What is Modal Logic?

Modal logic: qualifies truth
Carlos is believed to be handsome. (by me)

What is Modal Logic?

Modal logic: qualifies truth
Carlos is obleged to be handsome.

What is Modal Logic?

Modal logic: qualifies truth
Carlos_ is obliged to be handsome.
permission
prohibition
deontic interpretation

What is Modal Logic?

Modal logic: qualifies truth

Carlos _i_ is now handsome.

What is Modal Logic?

Modal logic: qualifies truth

Modalities and propositions

Alethic interpretation

Carlos is necessarily handsome.

Modalities and propositions

Alethic interpretation
necessarily Carlos is handsome.

Modalities and propositions

Alethic interpretation

$$
p=\text { Carlos } \text { is handsome }
$$

necessarily p

Modalities and propositions

Alethic interpretation

$p=$ Carlos is handsome

$$
\square p
$$

Modalities and propositions

Alethic interpretation

Carlos is possibly handsome.

Modalities and propositions

Alethic interpretation

possibly Carlos is handsome.

Modalities and propositions

Alethic interpretation

$p=$ Carlos is handsome

$$
\text { possibly } p
$$

Modalities and propositions

Alethic interpretation
$p=$ Carlos is handsome
$\diamond p$

Relational models

Truth table

A	B	$A \rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

Relational models

Truth table

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Relational models

Truth tables

w | p | q | $p \rightarrow q$ |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 1 |
| 0 | 0 | 1 |

Relational models
Generalizing

w| p | q | $p \rightarrow q$ |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 1 |
| 0 | 0 | 1 |

v	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Relational models

Relational models

Relational models

Relational models

W is a non-empty set of possible worlds.

Relational models

R is the relative accessibility relation: from the point of view of w, v is possible.

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle
$$

V assigns a truth value to a propositional variable at a world.

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle \underbrace{v}_{v R v} q V(q)=1
$$

For non-atomic propositional formulas: Just check the truth table in each world!

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle
$$

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle \bigodot_{\substack{w \\ V(p)=1}}^{v} V(q)=1
$$

How about modal formulas?

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle \underbrace{v}_{v R v} q V(q)=1
$$

A is necessary at a world u provided A
is true at every possible world from \boldsymbol{u}.

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle \bigcup_{v R v}^{v} V(q)=1
$$

A is possible at a world u provided A
is true at some possible world from \boldsymbol{u}.

Relational models

$$
\mathscr{M}=\langle W, R, V\rangle
$$

Relational models

$$
\begin{array}{lll}
\mathcal{M}, w \Vdash p & \text { iff } & p \in V(w) ; \\
\mathcal{M}, w \Vdash \perp & & \text { never holds; } \\
\mathcal{M}, w \Vdash \neg A & \text { iff } & \forall v \geq w \cdot \mathcal{M}, v \Vdash A ; \\
\mathcal{M}, w \Vdash A \wedge B & \text { iff } & \mathcal{M}, w \Vdash A \text { and } \mathcal{M}, w \Vdash B ; \\
\mathcal{M}, w \Vdash A \vee B & \text { iff } & \mathcal{M}, w \Vdash A \text { or } \mathcal{M}, w \Vdash B ; \\
\mathcal{M}, w \Vdash A \rightarrow B & \text { iff } & \mathcal{M}, w \Vdash A \text { or } \mathcal{M}, w \Vdash B ; \\
\mathcal{M}, w \Vdash \square A & \text { iff } & \text { for all } v . w R v \text { implies } \mathcal{M}, v \Vdash A ; \\
\mathcal{M}, w \Vdash \diamond A & \text { iff } & \text { there exists } v . w R v \text { and } \mathcal{M}, v \Vdash A .
\end{array}
$$

Ecumenical modalities

$$
[\square A]_{x}=\forall y\left(R(x, y) \rightarrow[A]_{y}\right) \quad[\diamond A]_{x}=\exists y\left(R(x, y) \wedge[A]_{y}\right)
$$

Ecumenical modalities

$$
[\square A]_{x}=\forall y\left(R(x, y) \rightarrow[A]_{y}\right) \quad[\diamond A]_{x}=\exists y\left(R(x, y) \wedge[A]_{y}\right)
$$

$\mathcal{M}, w \vDash \square A \quad$ iff \quad for all v such that $w R v, \mathcal{M}, v \vDash A$.
$\mathcal{M}, w \models \diamond A \quad$ iff \quad there exists v such that $w R v$ and $\mathcal{M}, v \vDash A$.
$R(x, y)$ represents the accessibility relation R in a Kripke frame.

Ecumenical modalities

$$
\begin{gathered}
{[\square A]_{x}=\forall y\left(R(x, y) \rightarrow[A]_{y}\right) \quad[\diamond A]_{x}=\exists y\left(R(x, y) \wedge[A]_{y}\right)} \\
\vdash_{O L} A \quad \text { iff } \\
\vdash_{M L} \forall x \cdot[A]_{x}
\end{gathered}
$$

- ML = classical logic $\leadsto \mathrm{OL}=$ classical modal logic K .
- $\mathrm{ML}=$ intuitionistic logic $\leadsto \mathrm{OL}=$ intuitionistic modal logic IK.
- ML $=$ Ecumenical logic $\sim \mathrm{OL}=$ Ecumenical modal logic EK.

Ecumenical modalities

$$
\begin{gathered}
{[\square A]_{x}^{e}=\forall y\left(R(x, y) \rightarrow_{i}[A]_{y}^{e}\right)} \\
{\left[\diamond_{i} A\right]_{x}^{e}=\exists_{i} y\left(R(x, y) \wedge[A]_{y}^{e}\right) \quad\left[\diamond_{c} A\right]_{x}^{e}=\exists_{c} y\left(R(x, y) \wedge[A]_{y}^{e}\right)}
\end{gathered}
$$

Ecumenical modalities

$$
\begin{gathered}
{[\square A]_{x}^{e}=\forall y\left(R(x, y) \rightarrow_{i}[A]_{y}^{e}\right)} \\
{\left[\diamond_{i} A\right]_{x}^{e}=\exists_{i} y\left(R(x, y) \wedge[A]_{y}^{e}\right) \quad\left[\diamond_{c} A\right]_{x}^{e}=\exists_{c} y\left(R(x, y) \wedge[A]_{y}^{e}\right)}
\end{gathered}
$$

$-\diamond_{c} A \leftrightarrow_{i} \neg \square \neg A$ but $\diamond_{i} A \leftrightarrow_{i} \neg \square \neg A$.

- Restricted to the classical fragment: \square and \diamond_{c} are duals.

Ecumenical Modal Logic

- Formulas: $A::=p_{i}\left|p_{c}\right| \perp|A \wedge A| A \vee_{i} A\left|A \vee_{c} A\right| A \rightarrow_{i} A\left|A \rightarrow_{c} A\right|$ $\square A\left|\diamond_{i} A\right| \diamond_{c} A$
- Independence of the modalities
- Axioms: ecumenical propositional logic and

$$
\begin{aligned}
& \mathrm{k}_{1}: \square\left(A \rightarrow_{i} B\right) \rightarrow_{i}\left(\square A \rightarrow_{i} \square B\right) \quad \text { EK (Marin et al. 2020) } \\
& \mathrm{k}_{2}: \square\left(A \rightarrow_{i} B\right) \rightarrow_{i}\left(\diamond_{i} A \rightarrow_{i} \diamond_{i} B\right) \\
& \mathrm{k}_{3}: \diamond_{i}\left(A \vee_{i} B\right) \rightarrow_{i}\left(\diamond A \vee_{i} \diamond B\right) \\
& \mathrm{k}_{4}:\left(\diamond_{i} A \rightarrow_{i} \square B\right) \rightarrow_{i} \square\left(A \rightarrow_{i} B\right) \\
& \mathrm{k}_{5}: \neg \diamond_{i} \perp
\end{aligned}
$$

- Rules: modus ponens: $\frac{A A \rightarrow B}{B}$ necessitation: $\frac{A}{\square A}$
- Semantics: Ecumenical Birelational structures (W, R, \leq)
a non-empty set W of worlds;
a binary relation $R \subseteq W \times W$;
a preorder \leq on W.

Ecumenical Modal Logic

- Formulas: $A::=p_{i}\left|p_{c}\right| \perp|A \wedge A| A \vee_{i} A\left|A \vee_{c} A\right| A \rightarrow_{i} A\left|A \rightarrow_{c} A\right|$ $\square A\left|\diamond_{i} A\right| \diamond_{c} A$
- Independence of the modalities
- Axioms: ecumenical propositional logic and

$$
\begin{aligned}
& \mathrm{k}_{1}: \square\left(A \rightarrow_{i} B\right) \rightarrow_{i}\left(\square A \rightarrow_{i} \square B\right) \quad \text { EK (Marin et al. 2020) } \\
& \mathrm{k}_{2}: \square\left(A \rightarrow_{i} B\right) \rightarrow_{i}\left(\diamond_{i} A \rightarrow_{i} \diamond_{i} B\right) \\
& \mathrm{k}_{3}: \diamond_{i}\left(A \vee_{i} B\right) \rightarrow_{i}\left(\diamond A \vee_{i} \diamond_{B}\right. \\
& \mathrm{k}_{4}:\left(\diamond_{i} A \rightarrow_{i} \square B\right) \rightarrow_{i} \square\left(A \rightarrow_{i} B\right) \\
& \mathrm{k}_{5}: \neg \diamond_{i} \perp
\end{aligned}
$$

- Rules: modus ponens: $\frac{A A \rightarrow B}{B}$ necessitation: $\frac{A}{\square A}$
- Semantics: Ecumenical Birelational structures (W, R, \leq)
a non-empty set W of worlds;
a binary relation $R \subseteq W \times W$;
a preorder \leq on W.
$\mathcal{M}, w \models_{\mathrm{E}} \diamond_{c} A$ iff $\forall v \geq w . \exists u . v(\leq \circ R \circ \leq) u, \mathcal{M}, u \models_{\mathrm{E}} A$

Ecumenical modal proof theory

Labeled modal rules:
$\stackrel{x}{\Gamma \vdash x: \Gamma \vdash x: \perp} \diamond_{c} R \quad \frac{x R y, \Gamma \vdash y: A}{\Gamma \vdash x: \square A} \square R$

Ecumenical modal proof theory

Labeled modal rules:
$\frac{x: \square \neg A, \Gamma \vdash x: \perp}{\Gamma \vdash x: \diamond_{c} A} \diamond_{c} R \quad \frac{x R y, \Gamma \vdash y: A}{\Gamma \vdash x: \square A} \square R$

Ecumenical modal proof theory

Labeled modal rules:
$\frac{x: \square \neg A, \Gamma \vdash x: \perp}{\Gamma \vdash x: \diamond_{c} A} \diamond_{c} R \quad \frac{x R y, \Gamma \vdash y: A}{\Gamma \vdash x: \square A} \square R \quad \frac{x R y, \Gamma \vdash y: A}{x R y, \Gamma \vdash x: \diamond_{i} A} \diamond_{i} R$

Ecumenical modal proof theory

Labeled modal rules:

$$
\frac{x: \square \neg A, \Gamma \vdash x: \perp}{\Gamma \vdash x: \diamond_{c} A} \diamond_{c} R \quad \frac{x R y, \Gamma \vdash y: A}{\Gamma \vdash x: \square A} \square R \quad \frac{x R y, \Gamma \vdash y: A}{x R y, \Gamma \vdash x: \diamond_{i} A} \diamond_{i} R
$$

Extensions:

Axiom	Condition	First-Order Formula
$\mathrm{T}: \square A \rightarrow_{i} A \wedge A \rightarrow_{i} \diamond_{i} A$	Reflexivity	$\forall x \cdot R(x, x)$
$4: \square A \rightarrow_{i} \square \square A \wedge \diamond_{i} \diamond_{i} A \rightarrow_{i} \diamond_{i} A$	Transitivity	$\forall x, y, z \cdot(R(x, y) \wedge R(y, z)) \rightarrow_{i} R(x, z)$
$5: \square A \rightarrow_{i} \square \diamond_{i} A \wedge \diamond_{i} \square A \rightarrow_{i} \diamond_{i} A$	Euclideaness	$\forall x, y, z \cdot(R(x, y) \wedge R(x, z)) \rightarrow_{i} R(y, z)$
$\mathrm{B}: A \rightarrow_{i} \square \diamond_{i} A \wedge \diamond_{i} \square A \rightarrow_{i} A$	Symmetry	$\forall x, y \cdot R(x, y) \rightarrow_{i} R(y, x)$

Ecumenical modal proof theory

Labeled modal rules:

$$
\frac{x: \square \neg A, \Gamma \vdash x: \perp}{\Gamma \vdash x: \diamond_{c} A} \diamond_{c} R \quad \frac{x R y, \Gamma \vdash y: A}{\Gamma \vdash x: \square A} \square R \quad \frac{x R y, \Gamma \vdash y: A}{x R y, \Gamma \vdash x: \diamond_{i} A} \diamond_{i} R
$$

Extensions:

Axiom	Condition	First-Order Formula
$\mathrm{T}: \square A \rightarrow_{i} A \wedge A \rightarrow_{i} \diamond_{i} A$	Reflexivity	$\forall x \cdot R(x, x)$
$4: \square A \rightarrow_{i} \square \square A \wedge \diamond_{i} \diamond_{i} A \rightarrow_{i} \diamond_{i} A$	Transitivity	$\forall x, y, z \cdot(R(x, y) \wedge R(y, z)) \rightarrow_{i} R(x, z)$
$5: \square A \rightarrow_{i} \square \diamond_{i} A \wedge \diamond_{i} \square A \rightarrow_{i} \diamond_{i} A$	Euclideaness	$\forall x, y, z \cdot(R(x, y) \wedge R(x, z)) \rightarrow_{i} R(y, z)$
$\mathrm{B}: A \rightarrow_{i} \square \diamond_{i} A \wedge \diamond_{i} \square A \rightarrow_{i} A$	Symmetry	$\forall x, y . R(x, y) \rightarrow_{i} R(y, x)$

Rules:

$$
\begin{array}{ll}
\frac{x R x, \Gamma \vdash w: C}{\Gamma \vdash w: C} \top & \frac{x R z, \Gamma \vdash w: C}{x R y, y R z, \Gamma \vdash w: C} 4 \\
\frac{y R z, \Gamma \vdash w: C}{x R y, x R z, \Gamma \vdash w: C} 5 & \frac{y R x, \Gamma \vdash w: C}{x R y, \Gamma \vdash w: C} \mathrm{~B}
\end{array}
$$

Outline

Proof Theory
Ecumenism
The quest for purity
Modalities

Achieving purity

Some discussion

Getting rid of negation

$$
\begin{gathered}
\mathrm{LE} \\
\Gamma, \neg \Delta \vdash C
\end{gathered}
$$

Getting rid of negation

$$
\begin{array}{cc}
\boxed{\mathrm{LE}} & \longrightarrow \\
\Gamma, \neg \Delta \vdash C & \\
\hline \mathrm{LCE} \\
& \\
\Gamma \vdash \Delta ; C
\end{array}
$$

Getting rid of negation

$$
\begin{array}{cc}
\boxed{\mathrm{LE}} & \boxed{\mathrm{LCE}} \\
\begin{array}{c}
\Gamma, \neg \Delta \vdash C \\
\Gamma, A \vdash B \\
\Gamma \vdash A \rightarrow_{i} B
\end{array} \rightarrow_{i} R & \\
\Gamma \vdash \Delta ; C
\end{array}
$$

Getting rid of negation

$$
\begin{array}{ccc}
\boxed{\mathrm{LE}} & & \boxed{\mathrm{LCE}} \\
\Gamma, \neg \Delta \vdash C & & \Gamma \vdash \Delta ; C \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow_{i} B} \rightarrow_{i} R & & \frac{\Gamma, A \vdash \Delta ; B}{\Gamma \vdash \Delta ; A \rightarrow i B} \rightarrow_{i} R
\end{array}
$$

Getting rid of negation

$$
\begin{aligned}
& \text { LE } \\
& \Gamma, \neg \Delta \vdash C \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow{ }_{i} B} \rightarrow_{i} R \\
& \frac{\Gamma, A \vdash \Delta ; B}{\Gamma \vdash \Delta ; A \rightarrow i B} \rightarrow_{i} R \\
& \frac{\Gamma, A, \neg B \vdash \perp}{\Gamma \vdash A \rightarrow{ }_{c} B} \rightarrow_{c} R
\end{aligned}
$$

Getting rid of negation

$$
\begin{aligned}
& \text { LE } \\
& \Gamma, \neg \Delta \vdash C \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow i B} \rightarrow_{i} R \\
& \frac{\Gamma, A, \neg B \vdash \perp}{\Gamma \vdash A \rightarrow{ }_{c} B} \rightarrow{ }_{c} R \\
& \text { LCE } \\
& \Gamma \vdash \Delta ; C \\
& \frac{\Gamma, A \vdash \Delta ; B}{\Gamma \vdash \Delta ; A \rightarrow i B} \rightarrow_{i} R \\
& \frac{\Gamma, A \vdash B, \Delta ; \cdot}{\Gamma \vdash A \rightarrow_{c} B, \Delta ; \cdot} \rightarrow_{c} R
\end{aligned}
$$

Getting rid of negation

$$
\begin{aligned}
& \mathrm{LE} \quad \longrightarrow \quad \mathrm{LCE} \\
& \ulcorner, \neg \Delta \vdash C \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow{ }_{i} B} \rightarrow_{i} R \\
& \frac{\Gamma, A, \neg B \vdash \perp}{\Gamma \vdash A \rightarrow{ }_{c} B} \rightarrow_{c} R \\
& \text { labEK } \\
& \frac{x: \square \neg A, \Gamma \Rightarrow x: \perp}{\Gamma \Rightarrow x: \diamond_{c} A} \diamond_{c} R
\end{aligned}
$$

Getting rid of negation

$$
\begin{aligned}
& \mathrm{LE} \quad \longrightarrow \quad \mathrm{LCE} \\
& \Gamma, \neg \Delta \vdash C \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow{ }_{i} B} \rightarrow_{i} R \\
& \frac{\Gamma, A, \neg B \vdash \perp}{\Gamma \vdash A \rightarrow{ }_{c} B} \rightarrow{ }_{c} R \\
& \text { labEK } \\
& \frac{x: \square \neg A, \Gamma \Rightarrow x: \perp}{\Gamma \Rightarrow x: \diamond_{c} A} \diamond_{c} R \\
& \Gamma \vdash \Delta ; C \\
& \frac{\Gamma, A \vdash \Delta ; B}{\Gamma \vdash \Delta ; A \rightarrow i B} \rightarrow_{i} R \\
& \frac{\Gamma, A \vdash B, \Delta ; \cdot}{\Gamma \vdash A \rightarrow_{c} B, \Delta_{;} \cdot} \rightarrow_{c} R \\
& \text { Pure labEK } \\
& \frac{x R y, \Gamma \vdash y: A, x: \diamond_{c} A, \Delta ; \cdot}{x R y, \Gamma \vdash x: \diamond_{c} A, \Delta ; \cdot} \diamond_{c} R
\end{aligned}
$$

A derivation example

$$
\begin{aligned}
& \overline{x R y, y: A, x: \neg \square \neg A \vdash x: \diamond_{c} A, y: A_{;}}{ }^{\prime}{ }^{n i t} \\
& x R y, y: A, x: \neg \square \neg A \vdash x: \diamond_{c} A_{;} \cdot \quad \diamond_{c} R \\
& \frac{\frac{x R y, x: \neg \square \neg A \vdash x: \diamond_{c} A ; y: \neg A}{x, \neg \square \neg A \vdash x: \diamond_{c} A ; x: \square \neg A} \square R}{\frac{x: \neg \square}{x: \neg \square \neg A \vdash x: \diamond_{c} A ; \cdot}} \neg L
\end{aligned}
$$

Getting rid of labels

- Polarities:

$$
\begin{aligned}
& N:=p_{c}|\perp| A \vee_{c} A\left|A \rightarrow_{c} A\right| \diamond_{c} A \\
& P:=p_{i}\left|A \vee_{i} A\right| \neg A\left|A \rightarrow_{i} A\right| A \wedge A\left|\diamond_{i} A\right| \square A
\end{aligned}
$$

Getting rid of labels

- Polarities:

$$
\begin{aligned}
& N:=p_{c}|\perp| A \vee_{c} A\left|A \rightarrow_{c} A\right| \diamond_{c} A \\
& P:=p_{i}\left|A \vee_{i} A\right| \neg A\left|A \rightarrow_{i} A\right| A \wedge A\left|\diamond_{i} A\right| \square A
\end{aligned}
$$

- Harmony:

$$
\frac{\Gamma \vdash \Delta ; x: P \quad x: P, \Gamma \vdash \Delta ; \Pi}{\Gamma \vdash \Delta ; \Pi} \operatorname{cut}_{i} \quad \frac{\Gamma \vdash \Delta, x: N ; \Pi^{*} x: N, \Gamma \vdash \Delta ; \Pi}{\Gamma \vdash \Delta ; \Pi} \operatorname{cut}_{c}
$$

where Π^{*} is either empty or some $y: P \in \Delta$

Getting rid of labels

- Polarities:

$$
\begin{aligned}
& N:=p_{c}|\perp| A \vee_{c} A\left|A \rightarrow_{c} A\right| \diamond_{c} A \\
& P:=p_{i}\left|A \vee_{i} A\right| \neg A\left|A \rightarrow_{i} A\right| A \wedge A\left|\diamond_{i} A\right| \square A
\end{aligned}
$$

- Harmony:

$$
\frac{\Gamma \vdash \Delta ; x: P \quad x: P, \Gamma \vdash \Delta ; \Pi}{\Gamma \vdash \Delta ; \Pi} \operatorname{cut}_{i} \quad \frac{\Gamma \vdash \Delta, x: N ; \Pi^{*} \quad x: N, \Gamma \vdash \Delta ; \Pi}{\Gamma \vdash \Delta ; \Pi} \operatorname{cut}_{c}
$$

where Π^{*} is either empty or some $y: P \in \Delta$

- Internal nested systems - no labels! nEK (Marin et al. 2021).

$$
x R y, x R z, z: C \wedge D \Rightarrow x: \diamond_{c} A ; y: \neg B
$$

corresponds to the tree of sequents with stoup

Outline

Proof Theory
Ecumenism
The quest for purity
\section*{Modalities}
\section*{Achieving purity}

Some discussion

\bigcirc Subjects dear to me $\odot-$ Part I

Ecumenical systems may help us to have a better understanding of the relation between classical logic and intuitionistic logics.

\bigcirc Subjects dear to me \bigcirc - Part I

Ecumenical systems may help us to have a better understanding of the relation between classical logic and intuitionistic logics.

- discuss the precise detection of the parts of a mathematical proof that are intrinsically intuitionistic, classical or independent;
- other approaches: how about negation?
- ecumenical nature of atoms.

Ecumenical systems may help us to have a better understanding of the relation between classical logic and intuitionistic logics.

- discuss the precise detection of the parts of a mathematical proof that are intrinsically intuitionistic, classical or independent;
- other approaches: how about negation?
- ecumenical nature of atoms.
- Nothing is said about the basic relations used for generating atomic formulas.
- Should atoms be primitive relations or be defined?
- Moreover: the presence of classical and intuitionistic "interpretations" of predicates entails a double-negation flavor to the system!
- Recent work with Luiz Carlos and Valeria: ecumenical systems with no such interpretations. The constructive interpretation interpolates the Gödel-Gentzen translation:

\bigcirc Subjects dear to me \bigcirc - Part I

Ecumenical systems may help us to have a better understanding of the relation between classical logic and intuitionistic logics.

- discuss the precise detection of the parts of a mathematical proof that are intrinsically intuitionistic, classical or independent;
- other approaches: how about negation?
- ecumenical nature of atoms.
- algebraic ecumenical models?

Ecumenical systems may help us to have a better understanding of the relation between classical logic and intuitionistic logics.

- discuss the precise detection of the parts of a mathematical proof that are intrinsically intuitionistic, classical or independent;
- other approaches: how about negation?
- ecumenical nature of atoms.
- algebraic ecumenical models?
- Model-theoretic semantics: truth \times Proof-theoretic semantics: proof
- Emphasizes the fundamental nature of proofs.
- Satisfiability of an atomic formula p at a state w in a Kripke model:

$$
w \Vdash p \quad \text { iff } \quad w \in V(p)
$$

Validity w.r.t. a set of atomic rules S in proof-theoretic semantics:

$$
\Vdash_{s} p \quad \text { iff } \quad \vdash s p
$$

- Recent work with Victor and Luiz Carlos: proof-theoretic semantics for ecumenical logical systems. Main motto:
Classical proof + monotonicity $=$ intuitionistic proof of double negation.

\bigcirc Subjects dear to me \odot - Part II

What can we say about modal ecumenical systems?

- constructive modal logic and beyond;
- algebraic ecumenical models?
- ecumenical typing: fragments as well known typed modal systems;
- ecumenical nature of atoms.

What can we say about modal ecumenical systems?

- constructive modal logic and beyond;
- algebraic ecumenical models?
- ecumenical typing: fragments as well known typed modal systems;
- ecumenical nature of atoms.

Connectedness property:

$$
\left(\text { Conn }_{1}\right) \quad a R b \vee b R a \quad\left(\text { Conn }_{2}\right) \quad \neg(a=b) \rightarrow a R b \vee b R a
$$

If R is reflexive, then

$$
\vdash_{\mathrm{LK}} \text { Conn }_{2} \rightarrow \text { Conn }_{1} \text { but } \vdash_{\mathrm{LJ}} \text { Conn }_{2} \rightarrow \text { Conn }_{1}
$$

- Background logic $=$ classical logic \Rightarrow the same characterization of $S 4.3$ by using Conn 1 or Conn 2 .
- Background logic $=$ intuitionistic logic \Rightarrow two different modal extensions.
- Alberto Naibo: "Would this make any difference at the level of the modal systems that we can characterize using an intuitionistic background logic?"

Thanks!!!

Obrigada!!!

Merci!!!

Gracias!!!
-

