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Motivation | — What is a proof?

Theorem 1. There exist x,y ¢ Q such that x” € Q.
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Motivation | — What is a proof?

crAPTER 1 ()

THE GELFOND-SCHNEIDER THEOREM

1. Hilbert’s seventh problem. In 1900 and H.\l—
bert d a list of twenty-th
sotved prablems. The seventh problem was settled by the
publication of the following result in 1934 by A. O. Gel-
fond, which was followed by an independent proof by
Th. Schneider in 1935.

TaeoreM 10.1. If « and B are algebraic numbers with
a#0, a1, and if § is not a real rational number, then
any value of o 1s transcendendal.

Remarks. The hypothesis that “8 is not a real ra-
tional number” is usually stated in the form “g is irra-
tional.” Our wording is an attempt to avoid the sugges-
tion that g must be a real number. Such a number as
8 = 2 + 3i, sometimes called a “complex rational num-
ber,”” satisfies the hypotheses of the theorem. Thus the
theorem establishes the transcendence of such numbers as
2° and 2V2. In general, o = exp {8log e} is multiple-
valued, and this is the reason for the phrase “any value
of” in the statement of Theorem 10.1. One value of
72 = exp {—2ilog i} is €7, and so this is transcendental
according to the theorem.

Before proceeding to the proof of Theorem 10.1, we
state an alternative form of the result.

134

Font: Irrational numbers, lvan Niven.
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Motivation | — What is a proof?

136 THE GELFOND-SCHNEIDER THEOREM Ch. 10

Schneider theorem, and they will be given with proofs in
the next section.

Lemma 10.3. Consider a delerminant with the non-zero
element pf in the j-th row and 1 + a-th column, with j = 1, 2,

o tanda=0,1, -+, t — 1. This is called a Vander-
monde determinant, and it vanishes if and only if p; = py
Sor some distinct pair of subscripts j, k.

This can be found in J. V. Uspensky, Theory of Equa-
tions, McGraw-Hull, p, 214. The next four lemmas are in
Harry Pollard, The Theory of Algebraic Numbers, John
Wiley, p. 53, p. 60. pp. 63-66, p. 72.

Lemma 10.4. Let « and B be algebraic numbers in a
field K of degree h over the rationals. If the conjugales of
o for K are a = ay, ag, *-+, a and for B are = fy, By,

**y By, then the conjugates of of and o + B are cufy, -+,
bpand ay + By, -+, an+ Bh

Lesma 10.5. If a 48 an algebraic number, then there is
a positive rational integer T such that ra is an algebraic in-
teger.

Lmvoa 106, If K s an algebraic number field of degree
h over the rationals, then there exist integers By, Ba, *++, Ba
methwmteqarmwauu’bk unigquely as
a Unear combination gif; + - -+ gaBy with rational inte-
gral coefficients. The numbers g; are called an iniegral basis
for K, and the discriminant of such a basis is a non-zero

rational integer.
Lmanaa 10.7. Ifananalpdmncnumbzrm a field K of
dagres h over the rationals, then the norm ), defined as

the product of « and its conjugales, umﬁutheubtm
N(ag) = N(a)-N(8). AlsoN(a) = 0if and only if @ = 0.
If o i an algebraic inieger, MN(u)uamtwmllmloger
If ais rational, then N(a) =

Font: Irrational numbers, lvan Niven.
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Motivation | — What is a proof?

Sec. 3 TWO LEMMAS 137

Finally, from complex variable theory we need the con-
cept of entire function, i.e., a function that is analytic in
the whole complex plane, and Cauchy’s residue theorem.
These ideas can be found, for example, in K. Knopp’s
Theory of Functions, vol. I, Dover, p. 112ff. and p. 130.

3. Two lemmas. Lemma 10.8. Consider the m equa-
tions in n unknowns
(10.1)
a2y + GraZe + - o+ AGnZn = 0, k=12 -
with rational integral coefficients ai;, and with 0 < m < n.
Let the positive integer A be an upper bound of the absolute
values of all coefficients; thus A 2 |ag| for all i and j.
Then there is a non-trivial solution Ty, Tz, -, 2n i 1
integers of equations (10.1) such that

5l <14+ @A™, je1,2,n

Proof. Write yx for axs1 + - - - + araZn S0 that to each
point z = (g1, 2z, -+ -, T) there corresponds & point y =
(W1, Y2, *++, Ym). A point such as z is said to be a lattice
point if its coordinates z; are rational integers. If z is &
lattice point, then the corresponding point y is also a lat-~
tice point because the a;; are rational integers. Let ¢ be
any positive integer. Let z range over the (2g + 1)" lat~
tice points inside or on the n-dimensional cube defined by
|2;] < g for all j. Then the
values of yy satisfy

) My

luel =

- " s
Y| S Dlayl -z s X Ag = ndg.
J=1 d=1 =1

Thus, as = ranges over the (2¢ + 1)* lattice points as
indicated, the corresponding lattice points y have co-
ordinates y, which are integers among the 2ndgq + 1

Font: Irrational numbers, lvan Niven.
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Motivation | — What is a proof?

Bec. 3 TWO LEMMAS 139

Leama 10.9.  Consider the p equations in g wunknowns
(10.4)
apdy + argbs + 0o+ aighy = 0, k=12 -p
with coefficients a,; which are integers in an algebraic num~
ber field K of finite degree. Assume that 0 < p <gq. Let
A 2 1 be an upper bound for the absolute values of ihe co-
efficients and their conjugates for K, thus A 2 || s || for all
iandj. Then there exists a positive conslant ¢ depending on
the field K but independent of ;. p, and g, such that lhe
equations (10.4) have a non-irivial solution £, &5, -+, &q
in integers of the field K satisfying

&1l < ¢+ elegdy?’ @, =152

Proof. Let h be the degree of K over the field of ra-
tional numbers, and let By, By, - - -, B be an integral basis
for the field. If  is any integer of K, then by Lemma 10 8
We can express « uniquely as a linear combination of the
integral basis,

@ = giB1 + gaBz + -+ D,

with rational integral coefficients a,. Denote the conju-
gates of a for K by @ = a®, a®, -+, o™, and similarly
for the ;. Taking conjugatws in the La.ac equation, by
Lemma 10.4 we getl,
a® = 0 g 4okl Pm12h
The determi |8 is the discriminant of the basis,
and it is not zero by Lemma 10.6. Hence we can solve
these equations for the g; as linear combinalions of the
&, with coefficients dependent only on the basis. Tak-
ing absolute values throughout these solutions, we can
write

105) g5l <erllall, i=1,2 b

Font: Irrational numbers, lvan Niven.
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Motivation | — What is a proof?

Sec. 4 PROOF OF GELFOND-SCHNEIDER THEOREM 149

2
[§1 < flogal~ .g. o2

< {2cs]log a| H}Ppr@—mI2
= P2,

With this estimate for [¢|, and that of Lemma 10.12 for
its conjugates, we write, by (10.10),

INQ)| < BpPE™2ep?)* = (e )Pp? = Bp ™2,
where ¢y = ¢oc*~!. This and Lemma 10.11 imply that
gp™? > C7?, Ceo > p,

for some positive constants independent of n and p. But
this is & contradiction, because p Z n, and we can choose
n arbitrarily large.

Notes on Chapter 10

The special case of Theorem 10.1 for any imaginary quadratic
irrational # was established by A. O. Gelfond, Gompt. Rend. Acad.
Sei. Paris, 189 (1929), 124-12%6. The original papers establish-

ing Theorem 10.1 are: A. O. Gelfond, Doklady Akad. Nauk S.S.5.R.,
2 (1984), 1-4; Th. Scbnelder, J. rene angew. Moth, 173 (1585), 85-

Mat. Nouk (N.S.), 4, no. 4 (32), 1049 (1949). There is an exposi-
tion of Gelfond’s proof by E. Hille, Amer. Math. Monthly, 49 (1942),
654-661.

‘The proof of Theorem 10.1 given here is based on a simplification
of Gel!ond’s proof by C. L. Siegel, Transcendental Numbers, Princo-
ton, p

Kithough the mettods of Chapters 9 and 10 establish the trans-
cendence of wide classes of numbers, there are many unsolved prob-

Font: Irrational numbers, lvan Niven.
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Motivation |l — What is ecumenism?

The terms ecumenism and ecumenical come from the Greek oikoumene, which
means “the whole inhabited world” .
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The terms ecumenism and ecumenical come from the Greek oikoumene, which
means “the whole inhabited world” .

Ecumenism: the search process for unicity, where different thoughts, ideas or
points of view can harmonically co-exist.

» What (really) are ecumenical systems?

» What are they good for?

» Why should anyone be interested in ecumenical systems?

» What is the real motivation behind the definition and development of
ecumenical systems?

Prawitz: what makes a connective classical or intuitionistic?
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Philosophical motivation

Logical inferentialism:

» the meaning of the logical constants can be specified by the rules that
determine their correct use;

» proof-theoretical requirements on admissible logical rules: harmony and
separability;

» pure logical systems: negation is not used in premises.

4/43



Logical motivation (dialogue by Luiz Carlos)

» IL: if what you mean by (AV B) is =(—=A A =B), then | can accept the
validity of (A vV —A)!

5/43



Logical motivation (dialogue by Luiz Carlos)

>

| g

IL: if what you mean by (AV B) is =(—A A =B), then | can accept the
validity of (A vV —A)!

CL: but | do not mean —=(=A A =—A) by (AV —A). One must distinguish
the excluded-middle from the the principle of non-contradiction. When |
say that Goldbach's conjecture is either true or false, | am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!
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Logical

motivation (dialogue by Luiz Carlos)

IL: if what you mean by (AV B) is =(—=A A =B), then | can accept the
validity of (A vV —A)!

CL: but | do not mean —=(=A A =—A) by (AV —A). One must distinguish
the excluded-middle from the the principle of non-contradiction. When |
say that Goldbach's conjecture is either true or false, | am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!

IL: but you must realize that, at the end of the day, you just have one
logical operator, like the Quine's dagger (a.k.a. NOR).

CL: But this is not at all true! The fact that we can define one operator in
terms of other operators does not imply that we don't have different
operators!

It is true that we can prove - (A V. B) < =(=A A =B) in the ecumenical
system, but this does not mean that we don't have three different
operators: =, V¢ and A.
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Mathematical motivation (example by Emerson Sales)

if x+y=2zthenx>zory>z
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Mathematical motivation (example by Emerson Sales)

not (not (if x + y = 2z then; x > z or; y > z)).
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Mathematical motivation (example by Emerson Sales)
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Mathematical motivation (example by Emerson Sales)

if x+y=2ztheni x>zorcy > z.

@O
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classical mathematician ®
intuitionistic mathematician © ©
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In this talk

What makes logical connectives (including modalities) classical or intuitionistic?
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In this talk

What makes logical connectives (including modalities) classical or intuitionistic?

How about ecumenical typing and verification?
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Outline

Proof Theory

Ecumenism

The quest for purity

Modalities

Achieving purity

Some discussion
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What is Proof Theory?
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What is Proof Theory?

MATAEAATI (AL [o6i(

— — — _ —
— — _ _ —
discipline | mathematical objects | (some) tools
set theory sets functions
model theory models & theories definable & type-definable sets
complexity theory algorithms time & memory
recursion theory computable functions algorithms
proof theory proofs formalisms
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Proof theory according to Sonia Marin

It is all about proofs:
> are they equal? (by the way, what is equal??)
» can we transform one proof into another?

» can we identify patterns?
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Proof theory according to Sonia Marin

It is

vV vV V

A\

all about proofs:

are they equal? (by the way, what is equal??)
can we transform one proof into another?
can we identify patterns?

for answering all this: formalisation of proofs in a purely mathematical
language;

discipline: proof theory;

> Applications: automatic theorem provers/checkers; extract algorithms

from a proof; extract counter-examples from failed proof-search (proof
mining); extract proof systems from counter-examples; determine which
axioms are required to prove which theorems (reverse mathematics);
determine sizes of the proofs (proof complexity).
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Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of AA B is given by presenting a proof of A and a proof of B.

A B
ANB

Al

H2 A proof of AV B is given by presenting either a proof of A or a proof of B.

A B
AV B Vh AVEB Vh

H3 A proof of A — B is a construction which permits us to transform any
proof of A into a proof of B.
(Al

B
A—B

— 1
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Reasoning about Brouwer-Heyting-Kolmogorov conditions

H1 A proof of AA B is given by presenting a proof of A and a proof of B.

A B
ANB

Al

H2 A proof of AV B is given by presenting either a proof of A or a proof of B.

A B
AV B Vh AVEB Vh

H3 A proof of A — B is a construction which permits us to transform any
proof of A into a proof of B.
(Al

B —
A—B

/

Elimination rules: use the inversion principle.
Derivation: tree with vertices labelled by formulas.

Another problems: harmony, pure systems, etc...
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Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

Ao A

B A A B

>

where I = Ay, ..., A, is the context.
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Some locality: sequents keep track of open assumptions

Ao A

B Al A B

>

where I = Ay, ..., A, is the context.

» Rules: right = introduction rules; left = re-reading elimination rules.
» Derivation: tree with vertices labelled by sequents.
» Analyticity = cut-elimination.
r=A AA=C
A= C

cut

> Analyticity ~ sub-formula property: induces a structure on the proofs (in
terms of the end formula).

» Thus, proof structure can be exploited to formalize reasoning, investigate
meta-logical properties of the logic e.g. consistency, decidability,
complexity and interpolation, and develop automated deduction

procedures.
13/43
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What is behind Ecumenism?

For a classical logician Av —A is a theorem.
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What is behind Ecumenism?

For a classical logician Av —A is a theorem.

For an intuitionistic logician it is not.

But why (and where) do they disagree?

——— init ?
jA,T—/\AA ~R %;ij -R
’ VR,

~Av-a VR ZaAv-a

A solution: They are not talking about the same connective(s) (Prawitz 2015)
“The classical logician is not asserting what the intuitionistic logician
denies: The classical logician asserts

AV, A

to which the intuitionist does not object; He objects to the universal

validity of
AV —|A,

which is not asserted by the classical logician.”
15/43



Prawitz's ecumenical natural deduction system

[A]

=3

— —-int

A B .
AnB

A(a/x)

VA V-int

Shared

(Prawitz 2015)
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Prawitz's ecumenical natural deduction system

[A,—B]
n
1 . [A]
A . B —>c -Int n
.
[—\A,—|B] —-A —-mn
n
. A B Acint
7A V. B Ve-int ANB -1n
- A(a/x
[Vx.—A] (a/x) Veint
n Vx.A
1 .
XA Je-int
Classical Shared

(Prawitz 2015)
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Prawitz's ecumenical natural deduction system

[A, —B]
n
L

—c -int
A—=cB ¢

[_‘A7 _'B]
n
m Ve-int
[VX.ﬁA]
N
Je-int

1
Jex.A

Classical

— —-int

A B .
AnB

A(a/x)

VA V-int

Shared

[A]
M
B

— -int
A—; B !

Aj j
A \/,--Int

A1 Vi A

A(a/x)

GxA Crint

Intuitionistic

(Prawitz 2015)
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Our ecumenical sequent system LE

A= 1
r=-A

r=A =B

r=Aang /'R

= Aly/x]
= Vx.A

Shared

VR

(Pimentel, Pereira, de Paiva 2021)
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Our ecumenical sequent system LE

r7A,_‘B:>L R F,A:>J_
Fr=A_.B ¢ r=-a K
r-A-B= 1 r=A =B
r= Av.B V<F r—ang R
Mvx.—A= L r= Aly/x
, Vx 3R [v/x] R
M= 3.x.A M= Vx.A
Classical Shared

(Pimentel, Pereira, de Paiva 2021)
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Our ecumenical sequent system LE

MnA-B=_1

r>AS. B °F

M-A-B=_1

r= Av.B VR

Mvx-A= 1

M= 3.x.A AR

Classical

r=A =B

MNMA= _1
[= -A

-

r=Aang /'R

= Aly/x]
= Vx.A

Shared

VR

F=A— B

NA=B
—i R

I':>Aj

- 4 \/iR'
= A1 VA J

I = Ala/x]
= 3dix.A

Intuitionistic

JiR

(Pimentel, Pereira, de Paiva 2021)
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Back to our mathematical motivation

x<z,y<z=x+y#2z x+y=2zx+y#2z=1
x+y=2zx<z,y<z=1 ¢
X+y=2z=x>zVcy>z
=>X+y=2z—=x>zN.y>z

ut

VeR

i
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Ecumenical proofs

Theorem
I = Ais provable in LE iff H g AT —; A.

» The ecumenical entailment is intuitionistic!

» That is, even though some formulas carry with them the notion of classical
truth, the logical consequence is intrinsically intuitionist.
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Ecumenical proofs

Theorem
I = Ais provable in LE iff H g AT —; A.

» The ecumenical entailment is intuitionistic!

» That is, even though some formulas carry with them the notion of classical
truth, the logical consequence is intrinsically intuitionist.

» As it should be, since the ecumenical system embeds the classical behavior
into intuitionistic logic.

» But if A is classical, the entailment can be read classically.

» And this justifies, proof-theoretically, the ecumenical view of entailments
in Prawitz’s original proposal.

19/43



Outline

The quest for purity
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Pure systems

The definition of classical connectives depend on other connectives:

[Vx.—A]

n

Lo T¥xoAs L
I x.A = 3xA ¢
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Pure systems

The definition of classical connectives depend on other connectives:

[Vx.—A]
I
1 oo F,VX.—|A:>J_3R
Fx.A 't F=3xA —°
Purifying systems:
» Polarities
M=A4A,P o= A2Q r=AN IT=AM
= AL0,PAQ ' F F=AMAN N
» Stoup
= A;P D M= AN;- .
F= AP r=A N o€

21/43



Ecumenical rules with stoup — NE

[ Al
M
A, B;-

7A;A—>C B —rc -Int

AAB;-

AAv.B VM

A, 3cx.A; A(a/x)

A;dcx.A

Classical

The idea:

Fne Ml =AY ff

[ A
n

A oA —-int

A; A Ay B
AL D AAB NN

DiAGY)
AvxA Nt

Shared

[ A]
I
A: B

7A;A—>; B —i -Int

A A i
A ALV A Vi-int

A AGIY)
A dxA it

Intuitionistic

(Pereira & Pimentel 2023)

FLe r,—\A E>>
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A study case: Peirce's Law

Typical proof:

[~A]? (AP ;
—-elim
3o it [(A— B) = AL .
A —-elim Al
2 pN
A .
—-Int

(A->B)—A)—A

—-elim
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A study case: Peirce's Law

Ecumenical stoup:

[ Al
AB-. der [ A
A= B) = AP P TAAS.B M T4 der
—c-elim

A

3 (A5 B) = A) . A

—>c-int
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A study case: Peirce's Law

Ecumenical stoup:

[ Al
A B [ AP
Ao B) AP P AAS.B M T4 der
2 A —rc-€elim
3 . —e-int

((A—=c B) =c A) = A

More interestingly:
Fre (A= B) = A) = A

with j, k € {i, c}.

23/43



Application I: term calculus

The design of the proof system is not only a matter of taste: adequate
proposals for extensions and/or applications.
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Application I: term calculus

The design of the proof system is not only a matter of taste: adequate
proposals for extensions and/or applications.

Michel Parigot (trying to establish a link between control operators and
classical constructs):

“The difficulties met in trying to use =—A — A (or the classical absur-
dity rule) as a type for control operators is not really due to classical
logic, but much more to the deduction system in which it is expressed.
It is not easy to find a satisfactory notion of reduction in usual natural
deduction because of the restriction to one conclusion which forbids
the most natural transformations of proofs.”

24/43



Application I: term calculus

The design of the proof system is not only a matter of taste: adequate
proposals for extensions and/or applications.

Michel Parigot (trying to establish a link between control operators and
classical constructs):

“The difficulties met in trying to use =—A — A (or the classical absur-
dity rule) as a type for control operators is not really due to classical
logic, but much more to the deduction system in which it is expressed.
It is not easy to find a satisfactory notion of reduction in usual natural
deduction because of the restriction to one conclusion which forbids
the most natural transformations of proofs.”

Parigot’s solution: adopt a system with stoup!

24/43
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Ecumenical term calculus

—ax
Te:AFax:A; A
Tyz:AFt:B; A
'kXe.t: A—; B; A
F.I:A)—C:L;AU{Q:B}I_
Tk pu(z,a).c: A=, B; A

I'tt:A—;B;A Tts:A;A T,x:Bkr:C; A
I-— E

-

THt(s,ar):C; A
I'tt:A—.B;A Tks:A;A T,z:BFec:L1;A
E

Trtls,z.cl:L; A
THt:A; A T'ke:L; A

der _—W;
Tkla]t: L; AU{a: A} Tk#c:B; A

c

__)(',
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Application II: verification

Rewriting Logic (Maude)
rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G)
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a semantic and logical framework. (José Meseguer)

27 /43



Application II: verification

Rewriting Logic (Maude)
rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G)

Gap between what is represented and its representation

Rewriting Logic can rightfully be said to have “e-representational distance” as
a semantic and logical framework. (José Meseguer)

Rewriting logic: Equational theory + rewriting rules

27/43



Application II: verification

Rewriting Logic (Maude)
rl [tensorR] : Gamma, Delta |- F x G => (Gamma |- F) , (Delta |-G)

Gap between what is represented and its representation

Rewriting Logic can rightfully be said to have “e-representational distance” as
a semantic and logical framework. (José Meseguer)

Rewriting logic: Equational theory + rewriting rules

L-framework (invertibility):
e Case rule V;R1

. —
hy : Ag F Ag@Fy VR hy : Ag F Ag@Fy

_— - =, ~ 2 "% 2 height

ohy : A F Ag@Fy V; F5  © ohy : Ap - Ag@Fy 9

e Case rule V;R2

hy i Ag - Ag@Fg - an
_—  — V,R2 e hy : Ag = Ag@F,
ohy : Ao Ag@Fy V; F5  © oh1 B2 3%

27 /43



Outline

Modalities
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What is Modal Logic?

Carlos handsome.
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /V’ hﬂoWVb tO % handsome. (bdé, ‘Mb)

\

epistemic interpretation
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /M Ld“'“‘dt to be handsome. ( b?, wa)
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doxastic interpretation
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /VS O'wjld, tOj,o handsome.
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /V’ 9wjld' tO.LO handsome.
e L
erbH"o/Lz

deontic interpretation

29/43



What is Modal Logic?

Modal logic: qualifies truth

Carlos M Tw handsome.
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What is Modal Logic?

Modal logic: qualifies truth

Carlos M Tow handsome.

will bo

\

temporal interpretation
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Modalities and propositions

Alethic interpretation

Carlos ,/1'/3 W“MM% handsome.

30/43



Modalities and propositions

Alethic interpretation
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Modalities and propositions

Alethic interpretation

p= Carlos/./) handsome

'ru.umml&}p
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Modalities and propositions

Alethic interpretation

p= GarlosM handsome

Clp
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Modalities and propositions

Alethic interpretation

WH?, Carlos M handsome.
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Modalities and propositions

Alethic interpretation

p= Car\os//’ handsome

ponitly, 7
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Modalities and propositions

Alethic interpretation

p= CarIOS/M handsome

Or
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Relational models

Truth table
A|B|A-B
1|1 1
1|0 0
011 1
010 1
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Relational models

Truth table
plalr—aq
1 1 1
110 0
0o 1
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Truth tables
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Relational models

Generalizing
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Relational models

M= (W,R,V) @

W /Qq

®
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Relational models

M = (W,R,V)/ng
w.p

W is a non-empty set of possible worlds.
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Relational models

M= (W,R, V) o

/C)q
. wRy VRv

®,

R is the relative accessibility relation:

from the point of view of w, v is possible.
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Relational models

— Vv
M=WRV) @y vig=1
Vi O
W vRv
®,
V(p) =1

V assigns a truth value to a propositional
variable at a world.
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Relational models

M= (W,R,V) ‘D

g Vig=1
m
W VRv

.P
Vip)=1
For non-atomic propositional formulas:

Just check the truth table
in each world!
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Relational models

M= (W,R,V) ‘@, vig=1
Vi O
W VRv

Vip) =1

M,w Fp—q M, vEDP—q
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Relational models

M = (W,R,V) ‘s

/C)q Vig)=1
. wRv VRY

e,
Vip)=1

How about modal formulas”?
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Relational models

M= (W,R,V) '©

g Vigg=1
m
w VRy

.P
V(p) = 1

A is necessary at a world u provided A
is true at every possible world from u.
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Relational models

_ v
M=WRY) @ vig=1
Vi O
W VvRv
®,
V) =1

A is possible at a world u provided A

is true at some possible world from u.
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Relational models

M = (W,R,

V) ‘@, V=1
ye
w VRvy

®,
Vip) =1

A,w F[p M,v E[p
A,wE g A,vE[qg

MowEP = q) Ay EP = q)
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Relational models

M,wl-p iff p € V(w);

M w ik L never holds;

M, w - -A iff Yv>wM vIFA
M,wi-AANB iff M,wlFAand M,w I B;
M,wl-AVB iff M,wli-Aor M,wl- B;
M,wi-FA— B iff M,wlf Aor M,w - B;

M, w DA iff for all v. wRv implies M, v I A;

M,ywlFOCA iff there exists v. wRv and M, v |- A.
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])

M,w E=DOA iff for all v such that wRv, M,v = A.
M, w = OA iff there exists v such that wRv and M, v E A.

R(x, y) represents the accessibility relation R in a Kripke frame.
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])

For A iff b Vx.JAl

» ML = classical logic ~ OL = classical modal logic K.
» ML = intuitionistic logic ~ OL = intuitionistic modal logic IK.
» ML = Ecumenical logic ~ OL = Ecumenical modal logic EK.
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Ecumenical modalities

(DAL = Vy(R(x, ) =i [Aly)
[CIAlL = Fiy (RO y) ATAL)  [OALR = 3ey(R(x, y) A LAY)

@O

A

33/43



Ecumenical modalities

[DA]S = Vy(R(x,y) =i [Al})

[CiAlL = Fiy (R ) ATAL)  [OALR = Fey(R(x,y) A ALY)

> OA i —O-A but O/A 4 —[-A.
» Restricted to the classical fragment: [0 and <. are duals.
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Ecumenical Modal Logic

> Formulas: A:u=pj|p.| L|ANA|AViA|AVCA|A—=AJA—=CA|
DA | OA| OA

» Independence of the modalities

» Axioms: ecumenical propositional logic and

ki: O(A—i B) =i (DA —;0OB)  EK (Marin et al. 2020)
ko : D(A — B) —> (O,’A — O,‘B)

ks: <>;(A Vi B) —i (<>A Vi <>B)

kg : (<>,'A —i \]B) —>i D(A —i B)

k5: ﬁ<>,'J_

A A—B L
» Rules: modus ponens: — 5 necessitation: pvry

» Semantics: Ecumenical Birelational structures (W, R, <)
R

a non-empty set W of worlds; (F) o v (R) o v
a binary relation R C W x W; < < < <
a preorder < on W. u—"L v u—F
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Ecumenical Modal Logic

» Formulas: Au=pj|p.| L|ANA|AViA|AVCAIA= AIA—=CA|

OA| OiA|OA

» Independence of the modalities

» Axioms: ecumenical propositional logic and
ki: O(A —; B) - (DA —;0OB)  EK (Marin et al. 2020)
kz: D(A —i B) —>i (<>,'A —i <>,‘B)
ks : O,‘(A Vi B) —i (<>A Vi <>B)
ke: (O;A —; OB) —; 0O(A —; B)
k5: —|<>,'J_

A A—B L A
» Rules: modus ponens: —5 necessitation: =

» Semantics: Ecumenical Birelational structures (W, R, <)

a non-empty set W of worlds;
a binary relation R C W x W;
a preorder < on W.

M,w e QA Iff Vv >wIuv(KoRo<)u, M,uke A
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Ecumenical modal proof theory

Labeled modal rules:

xRy, TFy: A

N-x:0A Uk
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Ecumenical modal proof theory

Labeled modal rules:

x:O0-ATkFx: L

OcR xRy, TFy: A

xRy, Ty A

MN=x:0A OoRrR xRy, I Fx:OiA
c TFx:0A Y '
Extensions:
Axiom Condition First-Order Formula
T: A=, ANA —; OA Reflexivity Vx.R(x, x)
4: OA —; OOAA QO 0A —; OA Transitivity Vvx,y,z.(R(x,y) N R(y, z)) —; R(x, z)
5: OA —; O0,AAN O;LA —; O;A Euclideaness Vx,y,z.(R(x,y) A R(x, z)) —; R(y, z)
B: A—; U0AANQ LA —; A Symmetry Vx,y.R(x,y) —; R(y, x)
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Ecumenic

al modal proof theory

Labeled modal rules:

x:O0-ATkFx: L ] xRy, Ty A
T oA CR L MBITY A L Ry, T x OA
X = a— X X i
c TFx:0A Y '
Extensions:
Axiom Condition First-Order Formula
T: A=, ANA —; OA Reflexivity Vx.R(x, x)
4: OA —; OOAA QO 0A —; OA Transitivity Vvx,y,z.(R(x,y) N R(y, z)) —; R(x, z)
5: OA —; O0,AAN O;LA —; O;A Euclideaness Vx,y,z.(R(x,y) A R(x, z)) —; R(y, z)
B: A—; U0AANQ LA —; A Symmetry Vx,y.R(x,y) —; R(y, x)

Rules:

xRx,TFw:C
r-w:cC

yRz,TFw:C

xRy, xRz, T +w: C

xRz, T+w:C A
xRy,yRz,T = w: C

yRx,TFw:C
xRy, TFw: C

OiR
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Outline

Achieving purity
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Getting rid of negation

r-AFC
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Getting rid of negation

_ LCE
M-AFC M-A;C
nACB MA-AB
-A— B T-M5A— B

rA-BF L
—c R

rMN-A—cB
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Getting rid of negation

r-AkFC
rAFB

TFA— B
rA-BF L

Tras.B <R

LCE

FT-A;C
MAFA;B
T-AA— B
MAFB,A;-

i

FTFAS.B,A- ¢

R

R
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Getting rid of negation

[LE] - LCE
r-AFC rEA;C
rA-B . MAFA:B .

-A— B T-M5A— B

rA-BrL [ Ak B,A;- .

FrFAS.B ¢ FTFAS.B,A- ¢
labEK

x:O0-ATl=x:1

M= x:0A OcR
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Getting rid of negation

s LCE
Ak C FEA:C
rAFB . FAFA:B .
FrFA—. B FTFAA— B
LA-BFL FAFB,A:- .
FrFAS.B ¢ FTFAS.B,A- ¢
labEK - Pure labEK
x:O0-ATl=x:1 xRy, TEy:Ax:OAA;- O.R

N=x:<0A OcR xRy, T x:OAA; -
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A derivation example

XRy,y : Ay x:—O-AF x:OA Yy L A;- |<r>1|tR
XRy,y : A,x: "O0-AF x 1 OA; - N
XRy,x : "O0-AF x: C A y: —A ~R

x:—O0-AF x:OA x:O-A OR
x:O0-AF x:OAA;-

—
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Getting rid of labels

» Polarities:

N
P

pC‘J_‘A\/cA|A—>CA|<>CA
p,"A\/,‘A|—|A‘A—),‘A‘A/\A‘<>,'A|DA
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Getting rid of labels

» Polarities:

N
P

pC‘J_‘A\/CA|A—>CA|<>CA
p,"A\/,‘A|—\A‘A—);A‘A/\A‘<>,'A|DA

» Harmony:

FrEA;x: P x:P,TEA;N N FEAx:N; T x:N,TEAN ¢
FEA cuti FEAM ctite

where 1" is either empty or some y : P € A
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Getting rid of labels

» Polarities:
N = p|L|AVCA|A—= A OCA
P = p,"A\/,‘A|—\A‘A—);A‘A/\A‘<>,'A|DA
» Harmony:
FrEA;x: P x:P,TEA;N N FEAx:N; T x:N,TEAN ¢
TF A cuti AN ctte

where 1" is either empty or some y : P € A

» Internal nested systems — no labels! nEK (Marin et al. 2021).
xRy, xRz,z: CAND = x:CAy:-B

corresponds to the tree of sequents with stoup
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Outline

Some discussion
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QO Subjects dear to me O — Part |

Ecumenical systems may help us to have a better understanding of the relation
between classical logic and intuitionistic logics.
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intrinsically intuitionistic, classical or independent;
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Q Subjects dear to me O — Part |

Ecumenical systems may help us to have a better understanding of the relation
between classical logic and intuitionistic logics.

>

| 2
>

discuss the precise detection of the parts of a mathematical proof that are
intrinsically intuitionistic, classical or independent;

other approaches: how about negation?

ecumenical nature of atoms.

Nothing is said about the basic relations used for generating atomic
formulas.

Should atoms be primitive relations or be defined?

Moreover: the presence of classical and intuitionistic “interpretations’ of
predicates entails a double-negation flavor to the system!

Recent work with Luiz Carlos and Valeria: ecumenical systems with no
such interpretations. The constructive interpretation interpolates the
Godel-Gentzen translation:

[1° &
g
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Q Subjects dear to me O — Part |

Ecumenical systems may help us to have a better understanding of the relation

between classical logic and intuitionistic logics.

>

VVVYVYVYY

discuss the precise detection of the parts of a mathematical proof that are

intrinsically intuitionistic, classical or independent;

other approaches: how about negation?

ecumenical nature of atoms.

algebraic ecumenical models?

Model-theoretic semantics: truth x Proof-theoretic semantics: proof
Emphasizes the fundamental nature of proofs.

Satisfiability of an atomic formula p at a state w in a Kripke model:

wlkp iff w € V(p)
Validity w.r.t. a set of atomic rules S in proof-theoretic semantics:
IFs p iff Fsp

Recent work with Victor and Luiz Carlos: proof-theoretic semantics for
ecumenical logical systems. Main motto:

Classical proof + monotonicity = intuitionistic proof of double nega-
tion.
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Q Subjects dear to me © — Part Il

What can we say about modal ecumenical systems?
» constructive modal logic and beyond;
» algebraic ecumenical models?
» ecumenical typing: fragments as well known typed modal systems;
» ecumenical nature of atoms.
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Q Subjects dear to me © — Part Il

What can we say about modal ecumenical systems?

>
>
>
>

constructive modal logic and beyond;

algebraic ecumenical models?

ecumenical typing: fragments as well known typed modal systems;
ecumenical nature of atoms.

Connectedness property:

If R

(Conny) aRbV bRa (Conny) —(a=b) — aRbV bRa
is reflexive, then

ik Conna — Conny but t; Connp — Conmy

Background logic = classical logic = the same characterization of 54.3 by
using Conny or Conns.

Background logic = intuitionistic logic = two different modal extensions.

Alberto Naibo: “Would this make any difference at the level of the modal
systems that we can characterize using an intuitionistic background logic?”
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Thanks!!!

Obrigadall!

Mercilll

Gracias!!!
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