
A Language for Evaluating Derivatives of
Functionals Using Automatic Differentiation

Pietro Di Gianantonio 1 Abbas Edalat 2 Ran Gutin 2

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation1 / 22

Introduction

Sparkled by ML, a recent flourishing of functional languages with
derivative operators has occurred

Here is a short list of works most related to our present study:

Abadi, Plotkin. A simple differentiable programming language, 2021
Ehrhard, Regnier, The differential lambda-calculus, 2003
Huot, Staton, Vakar. Higher order automatic differentiation of higher
order functions, 2022
Manzyuk, A simply typed λ-calculus of forward automatic
differentiation, 2012
Mazza, Pagani, Automatic differentiation in PCF, 2021
Sherman, Michel, Carbin. Computable semantics for differentiable
programming with higher-order functions and datatypes, 2021

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation2 / 22

Commonalities among these studies:

A simple functional (imperative) programming language
A derivative operator implemented using forward (or reverse) mode
automatic differentiation
Definition of an operational (denotational) semantics
Discussion of the correctness of the derivative operator
Result expressivity

All these are also present in our work.

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation3 / 22

Differences in our approach

We start by studing the derivative operator in Domain theory and exact
real number computation

We have developed a language with a derivative operator for its own
interest, with:

Di Gianantonio, P. and A. Edalat, A language for differentiable
functions, (2013)
The operational semantics of derivative given in terms of symbolic
computation
The idea from automatic differentiation used only at the level of
denotational semantics

Since we approach from a different perspective, we consider different
problems

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation4 / 22

Key aspects of our solution

In our study, we use automatic differentiation in a language
implementing:

Exact real number computation where real numbers are obtained
as limit of their approximations (finite elements) and rational
intervals
Results that are always correct, including handling the if-then-else
constructor
Fixed point operator
Derivative of functionals and higher order functions in general
Semantics given using domain theory
Definability of (domain) computable elements

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation5 / 22

The language

Our language is a simply typed lambda calculus:

e ::= c | xτ | e1e2 | λxτ .e

With a basic type for real π and dual number δ:

τ ::= o | ν | π | δ | τ → τ

Constants include
arithmetic operations, min, max,
integration on the interval [0,1], and
a directional derivative operator for second-order function types,
τ = ~τ → δ, Lτ : ((τ → ~τπ → ~τπ → π),
a recursive operator Y ,
and more. . .

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation6 / 22

Dual numbers

Automatic differentiation (forward mode), for simplicity, uses:

Dual numbers: numbers in the form x + εy where ε is an
infinitesimal value, such that ε ∗ ε = 0.

Using this equality, arithmetic operations, and in general a function f
on reals, can naturally extend to dual numbers with the property:

f (x + εy) = f (x) + εy · f ′(x)

where f ′ is the derivative of f

This provides a neat reformulation of forward mode automatic
differentiation

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation7 / 22

Exact computation

Exact computation is rarely considered in automatic differentiation

We use a sort interval analysis, and rational intervals to
approximate reals.

An advantage is that intervals naturally represent the (directional)
derivative even for non-smooth functions like the absolute value.

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation8 / 22

Derivative of functionals

Our functional language contains some second-order primitives, such
as integration and the maximum of a function on the unit interval [0,1].

How should these primitives act on the infinitesimal part?

How the infinitesimal part be used to evaluate the derivatives of
functionals?

We also deal with partial elements and non-smooth functions

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation9 / 22

Directional derivative

We exploit the fact that a function space on reals is also a topological
vector space

Definition
Given a vector space X and a function on the real line f : X → R, the
domain-theoretic directional derivative L f : X × X → IR evaluated at
x ∈ X in the direction x ′ ∈ X is defined as the interval:

L f (x , x ′) :=

 lim inf
y→x,z→x′

r→0+

f (y + rz)− f (y)
r

, lim sup
y→x,z→x′

r→0+

f (y + rz)− f (y)
r



Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation10 / 22

Derivative of non-smooth functions

For example, the absolute value:

L (λx .|x |)(0,1) = [−1,1]

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation11 / 22

Clarke gradient

On Banach spaces (normed vector spaces), the domain-theoretic
directional derivative coincides with the Clarke gradient, which is a
mathematical generalization of the derivative to non-smooth functions.

However, the domain-theoretic directional derivative can be applied to
topological vector spaces, to function spaces with the compact-open
topology

Most other approaches deal only with smooth functions

differential λ-calculus,

or use partial functions as derivatives

Clarke gradient are used in

Sherman, Michel, Carbin. Computable semantics for differentiable
programming with higher-order functions and datatypes, 2021

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation12 / 22

If-then-else

if-then-else creates discontinuous functions which are not
differentiable even with generalized derivatives.

In our approach, differentiable functions are restricted in their use of
if-then-else

there are no functions from dual to boolean

if b then f else g

A dual value cannot appear in the guard b.

We prove that if-then-else can be replaced by min,max.

Proposition
Every differentiable, Scott-computable function can be expressed using
min, max in place of if-then-else.

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation13 / 22

Recursive operator

Surprisingly, few formal functional languages introduce fixed point
operators.

Here’s a fancy recursive definition of the identity without a base case:

g = Y (λfx . (x + (fx))/2)

Unfolding it:

g = λx . (x + (x + (gx))/2)/2

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation14 / 22

Example

The 3rd unfolding of g gives a function equivalent to:

λx . ((15x + (gx))/16

If g(x) and g’(x) are known to be bounded by the interval [−1,1],

the 3-th unfolding of g on the values 1/2 + ε returns the values
[7/16,1/2] + ε[7/8,1].

By repeated unfolding, we get a better approximation of the value and
derivative of the identity function on 1/2.

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation15 / 22

Bounds on derivative

Bounds on the return values and derivative of g are necessary.

It is possible to bound the output of a function to a given interval by
composing it with a projection function
The same trick does not work with derivatives

Solution: allow only non-expansive primitives inside recursive
definitions.

The fixed point will be a non-expansive function and its derivative should
be contained in the interval [-1,1].

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation16 / 22

Results: adequacy

Operational semantics

Denotational semantics

Proof of adequacy

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation17 / 22

Result: Automatic Differentiation evaluates directional
derivatives

We introduce a family of derivative operators Lτ with operational
semantics:

Lτ Ffg → In F (f +τ ετg)

Theorem
The language’s derivative operators Lτ are sound w.r.t. the
domain-theoretic directional derivative L. That is, for any second-order
function F , and first-order functions f , g, if F , f , g define total functionals
and functions on reals, then:

EJLτ F f gK v L(EJF K)s((EJf K)s, (EJgK)s)

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation18 / 22

Consistency of infinitesimal information

We need to establish, even for high order functionals or partially defined
functionals, when the infinitesimal is consistent with appreciable parts.

The right notion is the one of the directional derivative.

We prove that consistency holds for any definable function of the
language.

This problem is not obvious due to higher order primitives in the
language, such as integration, and fixed points of functionals. The
solution lies in logical relations.

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation19 / 22

Definability

Is the language complete?

Computable functions can be defined through Scott-domains

In any computable function (and functional) definable in the language?

There’s a positive answer for functions and linear functionals

However, it remains an open problem for general functionals

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation20 / 22

Examples

The directional derivative of

G = λg. λx . x + g(x)2

at f = λu.u2

in the direction k

Lδ→δ, δG(λu.u2) y k 0→ In(G(λu.u2 + εk (u))(y + ε0))

→ In(λx . x + (x2 + εk (x)) ∗ (x2 + εk (x)))(y + ε0))

→ In(y + (y4 + ε2y2k (y)))→ 2y2k (y)

Birkisson, A. and T. A. Driscoll, Automatic Frechet differentiation for
the numerical solution of boundary-value problems,

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation21 / 22

Examples

Initial value problem,

ẏ ′(x) = v (y (x)), y (0) = 0

v : O → R defined on an open neighbourhood O ⊂ R
let ev : π → π, be an expression defining the function v .
the solution of IVP is given by the expression:

Y (λf . λx . intλt . x ∗ prM (ev (f (t ∗ x))))

Pietro Di Gianantonio 1, Abbas Edalat 2, Ran Gutin 2A Language for Evaluating Derivatives of Functionals Using Automatic Differentiation22 / 22

