
Amortized Analysis via Coinduction

Harrison Grodin, j.w.w. Robert Harper

June 19, 2023

Carnegie Mellon University

Funding

This material is based upon work supported by the United States Air

Force Office of Scientific Research under grant number FA9550-21-0009

(Tristan Nguyen, program manager) and the National Science

Foundation under grant number CCF-1901381. Any opinions, findings

and conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the AFOSR or

NSF.

1

Table of contents

Goal

Understand amortized analysis in call-by-push-value/calf, using

coinduction.

1. Call-By-Push-Value and calf

2. Abstract Data Types, Coinductively

3. Amortized Analysis

Renting

Queue

4. Conclusion

2

Call-By-Push-Value and calf

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::=

UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::= UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::=

FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Type Polarity

In call-by-push-value, types are separated into two sorts:

Positive/Value Types

A,B,C ::= UX

0 A+ B

1 A× B

µ(A. B(A))

Interpreted in Set.

Negative/Computation Types

X ,Y ,Z ::= FA

1 X × Y

A→ X

ν(X . Y (X))

Interpreted in SetT, for monad T.

3

Semantics of Computation Types

In SetT, an object X has a set UX and a map αX : T(UX)→ UX .

Definition (Free Algebra)

U(FA) = TA

αFA = TTA
µ−→ TA

Definition (Product Algebra)

U(X × Y) = UX × UY

αX×Y = T(UX × UY)→ T(UX)× T(UY)
αX×αY−−−−−→ UX × UY

Key Idea

Effects “flow over” computation types (accumulating at F types).

4

Semantics of Computation Types

In SetT, an object X has a set UX and a map αX : T(UX)→ UX .

Definition (Free Algebra)

U(FA) = TA

αFA = TTA
µ−→ TA

Definition (Product Algebra)

U(X × Y) = UX × UY

αX×Y = T(UX × UY)→ T(UX)× T(UY)
αX×αY−−−−−→ UX × UY

Key Idea

Effects “flow over” computation types (accumulating at F types).

4

Semantics of Computation Types

In SetT, an object X has a set UX and a map αX : T(UX)→ UX .

Definition (Free Algebra)

U(FA) = TA

αFA = TTA
µ−→ TA

Definition (Product Algebra)

U(X × Y) = UX × UY

αX×Y = T(UX × UY)→ T(UX)× T(UY)
αX×αY−−−−−→ UX × UY

Key Idea

Effects “flow over” computation types (accumulating at F types).

4

Semantics of Computation Types

In SetT, an object X has a set UX and a map αX : T(UX)→ UX .

Definition (Free Algebra)

U(FA) = TA

αFA = TTA
µ−→ TA

Definition (Product Algebra)

U(X × Y) = UX × UY

αX×Y = T(UX × UY)→ T(UX)× T(UY)
αX×αY−−−−−→ UX × UY

Key Idea

Effects “flow over” computation types (accumulating at F types).

4

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] =

ret(0)

sum (x :: l) =

n← sum l ;

step1(x + n)

5

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] =

ret(0)

sum (x :: l) =

n← sum l ;

step1(x + n)

5

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] =

ret(0)

sum (x :: l) =

n← sum l ;

step1(x + n)

5

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] = ret(0)

sum (x :: l) =

n← sum l ;

step1(x + n)

5

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] = ret(0)

sum (x :: l) = n← sum l ;

step1(x + n)

5

Cost as an Effect

In calf (based on CBPV), costs are annotated via an effect:

Γ ⊢ e : X

Γ ⊢ stepcX (e) : X

Here, monad T = N× (−).

Example (Summing a List)

Cost model: 1 cost per addition.

sum : list(N)→ F(N)

sum [] = ret(0)

sum (x :: l) = n← sum l ; step1(x + n)

5

Mixed Product

In calf (CBPV with writer monad), we have a “mixed product”:

A⋉ X

Definition (Mixed Product Algebra)

U(A⋉ X) = A× UX

αA⋉X = N× (A× UX) ∼= A× (N× UX)
idA×αX−−−−→ A× UX

Lemma

1⋉ X ∼= X

6

Mixed Product

In calf (CBPV with writer monad), we have a “mixed product”:

A⋉ X

Definition (Mixed Product Algebra)

U(A⋉ X) = A× UX

αA⋉X = N× (A× UX) ∼= A× (N× UX)
idA×αX−−−−→ A× UX

Lemma

1⋉ X ∼= X

6

Mixed Product

In calf (CBPV with writer monad), we have a “mixed product”:

A⋉ X

Definition (Mixed Product Algebra)

U(A⋉ X) = A× UX

αA⋉X = N× (A× UX) ∼= A× (N× UX)
idA×αX−−−−→ A× UX

Lemma

1⋉ X ∼= X

6

Abstract Data Types,

Coinductively

Abstract Data Types, Coinductively

Consider an operation signature:

op1 ⇝ A1

...

opn ⇝ An

Work with cofree comonad:

DX ≜ ν(Z . (quit : X)× (op1 : A1 ⋉ Z)× · · · × (opn : An ⋉ Z))

∼= (quit : X)× (op1 : A1 ⋉ DX)× · · · × (opn : An ⋉ DX)

Here, always let X = F1 ∼= (N, + : N× N→ N).

D ∼= (quit : F1)× (op1 : A1 ⋉ D)× · · · × (opn : An ⋉ D)

7

Abstract Data Types, Coinductively

Consider an operation signature:

op1 ⇝ A1

...

opn ⇝ An

Work with cofree comonad:

DX ≜ ν(Z . (quit : X)× (op1 : A1 ⋉ Z)× · · · × (opn : An ⋉ Z))

∼= (quit : X)× (op1 : A1 ⋉ DX)× · · · × (opn : An ⋉ DX)

Here, always let X = F1 ∼= (N, + : N× N→ N).

D ∼= (quit : F1)× (op1 : A1 ⋉ D)× · · · × (opn : An ⋉ D)

7

Abstract Data Types, Coinductively

Consider an operation signature:

op1 ⇝ A1

...

opn ⇝ An

Work with cofree comonad:

DX ≜ ν(Z . (quit : X)× (op1 : A1 ⋉ Z)× · · · × (opn : An ⋉ Z))

∼= (quit : X)× (op1 : A1 ⋉ DX)× · · · × (opn : An ⋉ DX)

Here, always let X = F1 ∼= (N, + : N× N→ N).

D ∼= (quit : F1)× (op1 : A1 ⋉ D)× · · · × (opn : An ⋉ D)

7

Abstract Data Types, Coinductively

Consider an operation signature:

op1 ⇝ A1

...

opn ⇝ An

Work with cofree comonad:

DX ≜ ν(Z . (quit : X)× (op1 : A1 ⋉ Z)× · · · × (opn : An ⋉ Z))

∼= (quit : X)× (op1 : A1 ⋉ DX)× · · · × (opn : An ⋉ DX)

Here, always let X = F1 ∼= (N, + : N× N→ N).

D ∼= (quit : F1)× (op1 : A1 ⋉ D)× · · · × (opn : An ⋉ D)

7

Abstract Data Types, Coinductively

Example (Queue)

enqueue[k : K]⇝ 1

dequeue⇝ K + 1

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Example (Renting an Apartment)

remain⇝ 1

R ∼= (quit : F1)× (remain : R)

8

Abstract Data Types, Coinductively

Example (Queue)

enqueue[k : K]⇝ 1

dequeue⇝ K + 1

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Example (Renting an Apartment)

remain⇝ 1

R ∼= (quit : F1)× (remain : R)

8

Abstract Data Types, Coinductively

Example (Queue)

enqueue[k : K]⇝ 1

dequeue⇝ K + 1

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Example (Renting an Apartment)

remain⇝ 1

R ∼= (quit : F1)× (remain : R)

8

Abstract Data Types, Coinductively

Example (Queue)

enqueue[k : K]⇝ 1

dequeue⇝ K + 1

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Example (Renting an Apartment)

remain⇝ 1

R ∼= (quit : F1)× (remain : R)

8

Object-Oriented Programming

Remark

These coinductive types look like object-oriented programming.

R ∼= (quit : F1)× (remain : R)

Example

Suppose r : R; then:

r .remain.remain.remain.quit : F1.

9

Object-Oriented Programming

Remark

These coinductive types look like object-oriented programming.

R ∼= (quit : F1)× (remain : R)

Example

Suppose r : R; then:

r .remain.remain.remain.quit : F1.

9

Amortized Analysis

In many uses of data structures, a sequence of operations, rather

than just a single operation, is performed, and we are interested

in the total time of the sequence, rather than in the times of the

individual operations. —Tarjan

10

Amortized Analysis

Renting

Payment Scheme: Daily

R ∼= (quit : F1)× (remain : R)

Daily Payment

daily : R

quit(daily) =

ret(⟨⟩)

remain(daily) =

step$20R (daily)

11

Payment Scheme: Daily

R ∼= (quit : F1)× (remain : R)

Daily Payment

daily : R

quit(daily) =

ret(⟨⟩)

remain(daily) =

step$20R (daily)

11

Payment Scheme: Daily

R ∼= (quit : F1)× (remain : R)

Daily Payment

daily : R

quit(daily) = ret(⟨⟩)
remain(daily) =

step$20R (daily)

11

Payment Scheme: Daily

R ∼= (quit : F1)× (remain : R)

Daily Payment

daily : R

quit(daily) = ret(⟨⟩)
remain(daily) = step$20R (daily)

11

Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) =

step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) =

step$600R (monthly 0)

remain(monthly d) =

monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far

12

Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) =

step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) =

step$600R (monthly 0)

remain(monthly d) =

monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far

12

Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) = step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) =

step$600R (monthly 0)

remain(monthly d) =

monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far

12

Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) = step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) = step$600R (monthly 0)

remain(monthly d) =

monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far

12

Payment Scheme: Monthly

R ∼= (quit : F1)× (remain : R)

Monthly Payment

monthly : N<30 → R

quit(monthly d) = step
Φ(d)
F1 (ret(⟨⟩))

remain(monthly 29) = step$600R (monthly 0)

remain(monthly d) = monthly (d + 1)

• d is the day of the month

• Φ(d) = $20d is the money owed for the month so far

12

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Coinductive Equivalence

Theorem

For all days of the month d, monthly d = step
Φ(d)
R (daily).

Proof.

By coinduction:

• In the quit case, both incur the same number of steps.

• In the remain case:

• If d = 29, both incur $600; peel off and use co-IH.

• Otherwise, push cost forward and use co-IH.

Essential: pushing cost over computation types.

13

Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2.

14

Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2.

14

Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2.

14

Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2.

14

Amortizing Full Stays

Definition (Full-Stay Evaluation)

eval : N→ UR → F1

eval 0 r = quit(r)

eval (n + 1) r = eval n (remain r)

Definition (Full-Stay Evaluation Equivalence)

Say r1 ≈ r2 iff for all n,

eval n r1 = eval n r2.

Theorem

For all r1 and r2, r1 = r2 iff r1 ≈ r2.

Proof.

By (⇒) induction on n and (⇐) coinduction on r1 = r2. 14

Amortized Analysis

Queue

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) =

ret(⟨⟩)

enqueue(spec l) =

λk . step1Q(spec (l ++ [k]))

dequeue(spec []) =

⟨none, spec []⟩

dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) =

ret(⟨⟩)

enqueue(spec l) =

λk. step1Q(spec (l ++ [k]))

dequeue(spec []) =

⟨none, spec []⟩

dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) = ret(⟨⟩)
enqueue(spec l) =

λk. step1Q(spec (l ++ [k]))

dequeue(spec []) =

⟨none, spec []⟩

dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) = ret(⟨⟩)
enqueue(spec l) = λk . step1Q(spec (l ++ [k]))

dequeue(spec []) =

⟨none, spec []⟩

dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) = ret(⟨⟩)
enqueue(spec l) = λk . step1Q(spec (l ++ [k]))

dequeue(spec []) = ⟨none, spec []⟩
dequeue(spec (k :: l)) =

⟨some(k), spec l⟩

15

Queue Implementation: Specification

Q ∼= (quit : F1)× (enqueue : K → Q)× (dequeue : (K + 1)⋉ Q)

Specification

spec : list(K)→ Q

quit(spec l) = ret(⟨⟩)
enqueue(spec l) = λk . step1Q(spec (l ++ [k]))

dequeue(spec []) = ⟨none, spec []⟩
dequeue(spec (k :: l)) = ⟨some(k), spec l⟩

15

Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K)→ list(K)→ Q

quit(batched bl fl) =

step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) =

λk. batched (k :: bl) fl

dequeue(batched bl []) =

step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) =

⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).

16

Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K)→ list(K)→ Q

quit(batched bl fl) = step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) =

λk. batched (k :: bl) fl

dequeue(batched bl []) =

step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) =

⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).

16

Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K)→ list(K)→ Q

quit(batched bl fl) = step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) = λk . batched (k :: bl) fl

dequeue(batched bl []) =

step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) =

⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).

16

Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K)→ list(K)→ Q

quit(batched bl fl) = step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) = λk . batched (k :: bl) fl

dequeue(batched bl []) = step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) =

⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).

16

Queue Implementation: Batched (Amortized)

Batched Queue

batched : list(K)→ list(K)→ Q

quit(batched bl fl) = step
Φ(bl,fl)
F1 (ret(⟨⟩))

enqueue(batched bl fl) = λk . batched (k :: bl) fl

dequeue(batched bl []) = step|bl|(−){
⟨none, batched [] []⟩ rev bl = []

⟨some(k), batched [] fl⟩ rev bl = k :: fl

dequeue(batched bl (k :: fl)) = ⟨some(k), batched bl fl⟩

Here, Φ(bl , fl) = |bl | (how much spec has already paid).

16

Coinductive Amortized Analysis

Theorem

For all bl , fl : list(K),

batched bl fl = step
Φ(bl,fl)
Q (spec (fl ++ rev bl)).

Proof.

By coinduction.

17

Coinductive Amortized Analysis

Theorem

For all bl , fl : list(K),

batched bl fl = step
Φ(bl,fl)
Q (spec (fl ++ rev bl)).

Proof.

By coinduction.

17

Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.

18

Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.

18

Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.

18

Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.

18

Amortizing Finite Sequences of Operations

Definition (Sequence of Operations, Free Monad)

P(A) ∼= (ret : A) + (enq : K × P(A)) + (deq : U(K + 1→ F(P(A))))

Definition (Sequence Evaluation)

eval : P(A)→ UQ → A⋉ F1

By induction on the operation sequence P(A).

Definition (Classic Amortized Equivalence)

Say q1 ≈ q2 iff for all A and p : P(A),

eval p q1 = eval p q2.

Theorem (Coinductive vs. Classic Amortized Analysis)

For all q1 and q2, q1 = q2 iff q1 ≈ q2.
18

Conclusion

Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).

19

Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).

19

Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).

19

Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).

19

Summary

1. In call-by-push-value, effects propagate through computation types,

including the mixed product in calf.

2. Sequential-use data structures are coinductive/object-oriented

“machines”.

3. Coinductive equivalence pushes cost forward, capturing amortized

analysis.

4. This coincides with the traditional sequence-of-operations

description of amortized analysis!

5. Results are formalized in calf/Agda (renting, batched queues, and

dynamically-resizing arrays).

19

Bonus

Coinductive Equivalence

Theorem

For all d, monthly d = stepΦ(d)(daily).

Proof.

Coinductive Equivalence

Theorem

For all d, monthly d = stepΦ(d)(daily).

Proof.
We prove by coinduction, showing:

1. quit(monthly d) = quit(stepΦ(d)(daily))

2. remain(monthly d) = remain(stepΦ(d)(daily))

Coinductive Equivalence

Theorem

For all d, monthly d = stepΦ(d)(daily).

Proof.

quit(daily) = ret(⟨⟩)

quit(monthly d) = step
Φ(d)
F1 (ret(⟨⟩))

We show:

quit(monthly d) = stepΦ(d)(ret(⟨⟩))
= stepΦ(d)(quit(daily))

= quit(stepΦ(d)(daily))

Coinductive Equivalence

Theorem

For all d, monthly d = stepΦ(d)(daily).

Proof.

remain(daily) = step$20R (daily)

remain(monthly 29) = step$600R (monthly 0)

We show:

remain(monthly 29) = step$600(monthly 0)

= step$600(daily) (co-IH)

= stepΦ(29)(step$20(daily))

= stepΦ(29)(remain(daily))

= remain(stepΦ(29)(daily))

Coinductive Equivalence

Theorem

For all d, monthly d = stepΦ(d)(daily).

Proof.

remain(daily) = step$20R (daily)

remain(monthly d) = monthly (d + 1)

We show:

remain(monthly d) = monthly (d + 1)

= stepΦ(d+1)(daily) (co-IH)

= stepΦ(d)(step$20(daily))

= stepΦ(d)(remain(daily))

= remain(stepΦ(d)(daily))

References

References i

A. Balan and A. Kurz.

On Coalgebras over Algebras.

Electronic Notes in Theoretical Computer Science, 264(2):47–62,

Aug. 2010.

W. R. Cook.

Object-oriented programming versus abstract data types.

In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors,

Foundations of Object-Oriented Languages, Lecture Notes in

Computer Science, pages 151–178, Berlin, Heidelberg, 1991.

Springer.

References ii

W. R. Cook.

On understanding data abstraction, revisited.

In Proceedings of the 24th ACM SIGPLAN Conference on Object

Oriented Programming Systems Languages and Applications,

OOPSLA ’09, pages 557–572, New York, NY, USA, Oct. 2009.

Association for Computing Machinery.

B. Jacobs.

Mongruences and cofree coalgebras.

In V. S. Alagar and M. Nivat, editors, Algebraic Methodology and

Software Technology, Lecture Notes in Computer Science, pages

245–260, Berlin, Heidelberg, 1995. Springer.

References iii

B. Jacobs.

Objects And Classes, Co-Algebraically.

In B. Freitag, C. B. Jones, C. Lengauer, and H.-J. Schek, editors,

Object Orientation with Parallelism and Persistence, The Kluwer

International Series in Engineering and Computer Science, pages

83–103. Springer US, Boston, MA, 1996.

P. B. Levy.

Call-By-Push-Value.

PhD thesis, University of London, 2001.

Y. Niu, J. Sterling, H. Grodin, and R. Harper.

A cost-aware logical framework.

Proceedings of the ACM on Programming Languages,

6(POPL):9:1–9:31, Jan. 2022.

References iv

J. Power and O. Shkaravska.

From Comodels to Coalgebras: State and Arrays.

Electronic Notes in Theoretical Computer Science, 106:297–314,

Dec. 2004.

R. E. Tarjan.

Amortized Computational Complexity.

SIAM Journal on Algebraic Discrete Methods, 6(2):306–318, Apr.

1985.

	Call-By-Push-Value and calf
	Abstract Data Types, Coinductively
	Amortized Analysis
	Renting
	Queue

	Conclusion
	Appendix

