Integrating Cost and Behavior in Type Theory

Robert Harper June 21, 2023

Computer Science Department Carnegie Mellon University This talk represents joint work with

- Harrison Grodin (Carnegie Mellon)
- Runming Li (Carnegie Mellon)
- Yue Niu (Carnegie Mellon)
- Parth Shastri (Carnegie Mellon)
- Jon Sterling (Cambridge)

Sponsored by AFOSR awards A210038S0002 and A210038S0002 (Tristan Nguyen, PM) and by NSF award CCF1901381.

Motivation

Dependent type theory is a natural setting for specification and verification of functional programs.

- Essentially, the propositions-as-types principle in action, formulating Brouwer's intuitionism.
- cf Martin-Löf's Constructive Mathematics and Computer Programming, and Constable, et al's NuPRL System.
- cf Agda viewed as a programming language.

However, as a logic of programs it leaves evaluation order undetermined!

- Advantage: compatible with "any" choice.
- Disadvantage: completely unspecified.

Informally, we may define

- isort : seq \rightarrow seq (insertion sort)
- <code>msort</code> : seq \rightarrow seq (merge sort)

Extensionally these are equal as functions, because they both sort their inputs:

 $\texttt{isort} \doteq \texttt{msort} : \texttt{s} : \texttt{seq} \rightarrow (\texttt{s}' : \texttt{seq} \times \texttt{sorted}(\texttt{s}) \times \texttt{perm}(\texttt{s}, \texttt{s}'))$

The choice of types and their associated induction principles complicates matters, but these issues have been well-developed. Levy's call-by-push-value type theory constrains evaluation order.

- Positive types A classify values: "data is."
- Negative types X classify computations: "programs do."
- Modalities link them: F(A) and U(X).

Pedrot's and Tabareau's $\partial CBPV$ extends Levy's framework to the dependent case.

- Type families are indexed by value types.
- Polarity imposes order on chaos to permit effects.

Calf also includes mixed-polarity dependent sums/products (value-value and value-computation forms).

Syntactically,

$$\begin{aligned} \mathbf{v} : \mathbf{A} ::= \mathsf{nat} \mid \mathsf{seq} \mid \mathbf{v}_1 \doteq_{\mathbf{A}} \mathbf{v}_2 \mid \mathbf{x} : \mathbf{A}_1 \times \mathbf{A}_2 \mid \mathbf{x} : \mathbf{A}_1 \to \mathbf{A}_2 \mid \mathbf{U}(\mathbf{X}) \\ \mathbf{e} : \mathbf{X} ::= \mathbf{F}(\mathbf{A}) \mid \mathbf{x} : \mathbf{A}_1 \times \mathbf{X}_2 \mid \mathbf{x} : \mathbf{A}_1 \to \mathbf{X}_2 \end{aligned}$$

Computations are sequenced, using $bind(e_1; x \cdot e_2)$ and ret(v), in anticipation of effects.

Define $e_1 \simeq_{F(A)} e_2$ to mean

thunk
$$(\boldsymbol{e}_1) \doteq_{\boldsymbol{U}(\boldsymbol{F}(\boldsymbol{A}))} \operatorname{thunk}(\boldsymbol{e}_2).$$

They are "equal computations."

These type theories capture the behavior of programs ... but what about their cost?

Want to state and prove complexity bounds!

- isort : seq $\xrightarrow{n^2} F(seq)$ (quadratic wrt comparisons).
- msort : seq $\xrightarrow{n \lg n} F(seq)$ (polylogarithmic).

But how can equal functions have different properties? And what does cost even mean in this setting?

- What are the steps?
- Sequential vs parallel?

Frege distinguished sense from reference.

- Reference: what is being described.
- Sense: how it is given.
- A similar distinction is considered here:
 - Reference: a (computable) function.
 - Sense: an algorithm.

Here **cost** is a precise formulation of sense, and may even be used to compare **proofs**.

The textbook story is machine-based.

- Cost = instruction steps (or memory cells).
- Higher-order programming is never considered.
- Parallelism? Specifying *p* is a non-starter.
- There is no theory of composition of programs.

Blelloch's language-based formulation is a big improvement.

- Cost semantics specifies a dependency graph whose edges constrain execution order of steps.
- Provable implementation by a Brent-type theorem whose proof defines scheduler as a function of platform characteristics.

Cost is not absolute, ie per-model, but rather relative, ie per-algorithm.

- Sorting: number of comparisons.
- Graphs: edge inserts or removals, etc.
- Sequences: access, update, map-reduce.

These concepts are not definable at the RAM or TM level!

But notice, abstract cost measures fit well with abstract types, a fundamentally linguistic notion.

How can this be expressed?

Method

First idea: introduce step counting aka profiling.

```
\texttt{step}_X:\mathbb{C}\to X\to X
```

where \mathbb{C} is a type of costs (think $(\mathbb{N}, 0, +)$ for now).

eg, for sorting, use step to count comparisons.

But simple-minded instrumentation allows behavior to influence on cost!

if step_count > 1000 then ... else

Such programs ought to be ruled out, but how?

Second idea, introduce a writer monad $\mathbb{C} \times -$ for computations [Danielsson 98]

- step^c(e) adds $c : \mathbb{C}$ to count.
- No operation to branch on step count.

Doing so permits tracking, specification, and verification of costs of programs ... but to the exclusion of pure behavior!

eg, isort $\neq \texttt{msort}: \texttt{seq} \rightarrow \textit{F}(\texttt{seq})$, precisely because of profiling.

Achieve full integration using a phase distinction.

- 1. Prototypically, compile-time vs run-time.
- 2. For metatheory, syntactic vs semantic.
- 3. For program modules, static vs dynamic.
- 4. For information flow, security level.

What do they have in common?

- Types are hybrid structures: syntax+computability, types+code, classified+public.
- 2. Phase (syntactic, static, level) imposes equations that "collapse" aspects (computability, code, classified).

In general a phase is given a proposition, ϕ .

- True only by assumption: $x : \phi \vdash J$.
- Subterminal/proof-irrelevant: $\Gamma \vdash M \doteq M' : \phi$.

Phases induce two modalities [Rijke, Shulman, Spitters]:

- Open mode: $\bigcirc_{\phi}(A) := \phi \supset A$. "The ϕ part of A."
- Closed mode: $\bullet_{\phi}(A) := \phi \lor A$. "All of A, with no ϕ part."

These aspects of a type are exhaustive, but not necessarily exclusive.

Two basic properties of phases:

- $\bigcirc_{\phi}(ullet_{\phi}(A))\cong 1$, but $ullet_{\phi}(\bigcirc_{\phi}(A))\ncong 1$ ("fringe").
- $A \cong \bigcirc_{\phi}(A) \times_{\bigoplus_{\phi}(\bigcirc_{\phi}(A))} \bigoplus_{\phi}(A)$ (pullback wrt fringe).

Non-interference: If $f : \bullet_{\phi}(A) \to \bigcirc_{\phi}(A)$, then f is constant!

eg, syntax prior to semantics, types do not depend on code, classified cannot depend on public.

Here: the extensional phase, ext, eliminates step counting.

(Hereafter: \bigcirc (A), \bullet (A) for $\bigcirc_{ext}(A)$, $\bullet_{ext}(A)$, respectively.)

Computation types form a writer monad ${ \bullet } ({ \mathbb C }) \times - { : }$

- + $\mathbb C$ is a cost monoid, e.g. $(\mathbb N,0,+).$
- $step^{c}(e)$ increments cost by c, then executes e.

Use of closed modality is essential!

- Cost analysis depends on behavioral analysis.
- Costs collapse under open modality.

(The injection of $\mathbb C$ into ${\bullet}(\mathbb C)$ is usually elided to lighten notation.)

General laws for step counting:

- $\operatorname{step}^0(\mathbf{e}) \simeq \mathbf{e}.$
- $\operatorname{step}^{\operatorname{c}}(\operatorname{step}^{\operatorname{d}}(\operatorname{e}))\simeq\operatorname{step}^{\operatorname{c}+\operatorname{d}}(\operatorname{e}).$

CBPV-style stepping laws for computations:

- $step^{c}(bind(e; x.f)) \simeq bind(step^{c}(e); x.f).$
- $step^{c}(\lambda(x \cdot e)) \simeq \lambda(x \cdot step^{c}(e)).$
- $\operatorname{step}^{\mathsf{c}}(\langle \mathsf{v}_1, \mathsf{e}_2 \rangle) \simeq \langle \mathsf{v}_1, \operatorname{step}^{\mathsf{c}}(\mathsf{e}_2) \rangle.$

Any enrichment must mesh with stepping in this way.

Extensional phase erases step counting:

$$_: \bigcirc (\texttt{step}^{c}(e) \simeq_{F(A)} e)$$

But $\bigcirc (\bigcirc (\mathbb{C})) \cong 1$, so $\bigcirc (\eta_{\bullet}(c) \doteq_{\bigcirc (\mathbb{C})} \eta_{\bullet}(0))$, and so $\bigcirc (\operatorname{step}^{c}(e) \simeq \operatorname{step}^{0}(e) \simeq e).$

Thus, the extensional phase isolates behavior:

$$_: \bigcirc (\mathsf{isort} \simeq_{\mathsf{seq} \to F(\mathsf{seq})} \mathsf{msort})$$

(Proof: they both sort, functions equate extensionally.)

Define $isBounded_A(e, c)$ for e : F(A) and $c : \mathbb{C}$ by

 $d: \mathbb{C} \times \bigcirc (d \leq_{\mathbb{N}} c) \times e \simeq_{F(A)} \operatorname{step}^{d}(\operatorname{ret}(v))$

(Here using $\mathbb{C} = \mathbb{N}$, but will be generalized.)

Intensionally, ie non-extensionally, one may specify costs of algorithms:

- $s : seq \vdash isBounded_{seq}(isort(s), |s|^2)$.
- $s : seq \vdash isBounded_{seq}(msort(s), |s| \lg |s|).$

(or discharge premise using dep. function type.)

Integrates cost and behavior with guaranteed non-interference!

Analyses

How are interesting algorithms defined in total type theory?

- Non-structural recursions are typical.
- · Instrumented with step's counting "figure of merit."

How is their (behavior and) cost verified?

- Specify recurrence on cost of algorithm.
- Solve recurrence separately.

Example: Euclid's algorithm, counting modulus operations.

Add a "clock" parameter counting recursion depth.

• Define instrumented algorithm:

$$\texttt{gcd}_{\textit{clocked}}: \texttt{nat} \rightarrow \texttt{nat}^2 \rightarrow \textit{F}(\texttt{nat})$$

• Define upper bound on recursion depth:

$$gcd_{depth} : nat^2 \rightarrow nat$$

• Define gcd itself:

$$gcd(x, y) := gcd_{clocked}(gcd_{depth}(x, y))(x, y)$$

(cf Kleene normal form theorem for TM's.)

Patterns of Recursion

Explicitly, gcd_{clocked} is defined by recursion on the clock counter:

$$gcd_{clocked}(zero)(x,y) = ret(x)$$
$$gcd_{clocked}(succ(k))(x,0) = ret(x)$$

and

 $gcd_{clocked}(succ(k))(x, succ(y)) =$ hind(mod) (x, succ(y))) r acd (b)(s

 $\texttt{bind}(\texttt{mod}_{\textit{instr}}(x,\texttt{succ}(y)); r \, . \, \texttt{gcd}_{\textit{clocked}}(k)(\texttt{succ}(y), r))$

where mod_{instr} computes and counts moduli.

The total function gcd_{depth} computes recursion depth for a given input as a generalized value.

Algorithm gcd is extensionally correct:

1.
$$\bigcirc(\gcd(x, \texttt{zero}) \simeq \texttt{ret}(x))$$

2. $\bigcirc(\gcd(x, \operatorname{suc}(y)) \simeq \gcd(\operatorname{suc}(y), \operatorname{mod}(x, \operatorname{suc}(y))))$

Intensionally cost is characterized by a recurrence:

$$isBounded_{F(nat)}(gcd(x, y), gcd_{depth}(x, y)).$$

Solve recurrence (purely mathematical):

$$gcd_{depth}(x, y) \leq Fib^{-1}(x) + 1.$$

Instrument comparisons with step.

Define isort and msort as above.

- Clocked versions to manage recursion.
- Recursion bound for each algorithm.

Behavioral equivalence:

 $s: seq \vdash \bigcirc (isort(s) \simeq_{F(seq)} msort(s)).$

Cost discrepancy:

- $s : seq \vdash isBounded_{seq}(isort(s), |s|^2)$.
- $s: \texttt{seq} \vdash \texttt{isBounded}_{\texttt{seq}}(\texttt{msort}(s), |s| ~ \lg ~ |s|).$

Parallel Cost Analysis

Following Blelloch & Greiner, change cost monoid to \mathbb{N}^2 :

- Work: sequential cost, as above.
- Span: idealized parallel cost.

Define parallel cost composition:

 $(\mathbf{w}_1, \mathbf{s}_1) \otimes (\mathbf{w}_2, \mathbf{s}_2) = (\mathbf{w}_1 + \mathbf{w}_2, \max(\mathbf{s}_1, \mathbf{s}_2))$

Enrich langage with parallel pairs, $e_1 \& e_2$, such that

 $\texttt{step}^{\texttt{c}_1}(\texttt{ret}(\texttt{v}_1)) \& \texttt{step}^{\texttt{c}_2}(\texttt{ret}(\texttt{v}_2)) = \texttt{step}^{\texttt{c}_1 \otimes \texttt{c}_2}(\texttt{ret}((\texttt{v}_1,\texttt{v}_2)))$

(Brent-type theorem relates abstract parallel cost to implementation on *p*-RAM, taking account of scheduling.)

Insertion sort remains quadratic in work and span. Merge sort can be parallelized:

• Sequential merge:

 $s: seq \vdash isBounded(msort(s), |s| \lg |s|, 2 |s| + \lg |s|)$

• Parallel merge:

 $s: seq \vdash isBounded(msort(s), lg^2(|s|+1), 2|s|(lg^3(|s|+1)))$

NB: same algorithm, different cost analysis!

(See Agda repo for details.)

Two approaches to amortization:

- Inductive definition of instruction sequences.
- Coinductive definition of abstraction.

eg, batched queues with separate front and back "halves."

- Enqueueing takes zero steps.
- Dequeueing takes length of back half steps.

The two formulations are shown to be equivalent in the companion paper in CALCO.

Computational Adequacy

Computational adequacy relates denotational to operational semantics for programs.

- Plotkin's LCF Considered as a P.L. is paradigmatic.
- Germane to giving Calf operational meaning.

Can Plotkin's results be generalized to account for cost as well as behavior?

- LICS '23: Yes, for Gödel's T, a total language, and, yes, for a first-order "while" language with partiality.
- Ongoing: cost-aware adequacy for PCF (and FPC) using SDT within Calf.

Extend Calf with a lifting monad L(A) satisfying compactness: If $iter(f, v) \simeq step^{c}(ret_{L}(v'))$, then for some $k \ge 0$, $f^{k}(v) \simeq step^{c}(ret_{L}(v'))$.

Consider while programs with first-order store.

- Define cost-aware denotational semantics ||p||.
- Define cost-aware operational semantics $e \Downarrow^{\eta_{\bullet}(c)} v$.

Cost is defined as number of β -steps in execution.

As earlier, the use of the closed modality is critical (costs collapse extensionally.)

Theorem: Cost-aware adequacy:

For closed while programs p of type bool, if $||p|| \simeq \operatorname{step}^{c}(\operatorname{ret}(b))$, then $e \Downarrow^{\eta \bullet(c)} \overline{b}$.

Corollary: Extensional adequacy:

For closed programs p of type bool, if $\bigcirc (||p|| \simeq \operatorname{ret}(b))$, then $\bigcirc (e \Downarrow^{\eta_{\bullet}(c)} \overline{b})$, ie $e \Downarrow \overline{b}$ in the usual sense.

(Proof uses logical relations defined internally to relate denotational to operational behavior.)

Internal adequacy may be used to "implement" Calf programs as while programs.

- Define msort_{calf} as earlier, counting comparisons.
- Define msort_{while} such that

 \bigcirc (msort_{calf} \doteq ||msort_{while}||).

Adequacy ensures

- Correct behavior.
- Proportionate cost.

A possible framework for cost-aware compiler correctness?

Origin and Other Applications

Sterling's Synthetic Tait Computability has two characteristic features:

- Proof-relevant: generalize relations to families.
- Synthetic: all types express computability properties.

Developed to study Cartesian cubical type theory with a full univalent universe hierarchy.

Computability ensures completeness of a generalization of normalization by evaluation, crucial for implementation.

Analytically, a computability structure has two parts:

- A syntactic part, a definitional equivalence class of terms of a type.
- A semantic part, a proof of that the relevant computability property holds of the syntax.

Synthetically, all types are computability structures.

- Dependent type structure lifts to computability structures.
- Syntactic part is isolated by a phase, which collapses semantic part.

The phase distinction may be understood in terms of information-flow security:

- Profiling is a private matter.
- Delivered code is public.
- Non-interference: Public behavior is independent of profiling.

Generalize ext $\leq \top$ to security levels.

- Two-phase sets are maps $\mathbb{I}^{op} \to \mathsf{Set.}$
- Generalize to $P^{op}
 ightarrow$ Set with many levels of "visibility."

The language of program modules is a dependent type theory a la MacQueen, enriched with

- Static phase, stat, for "compile-time" aspects of a module (types; static data/indices.)
- Dynamic phase for "run-time" aspects (incl. static).
- Extension types to express sharing:

$$\{ \mathsf{A} \mid \mathsf{stat} \hookrightarrow \mathsf{M} \}$$

The type theory of parametricity structures has two phases:

- Syntactic, the subjects of the relations, with left and right parts.
- Semantic, the proofs of computability.

Extension types specify syntactic aspect of a comp. str.:

$$\{ S \mid syn \hookrightarrow \ulcorner x : A \to B \urcorner \}$$

Future Work

Scaling Up

Mechanization of 15-210 Introduction to Parallel Algorithms.

- FP-based course on parallel algorithms.
- Inductive data structures.
- Unbounded length sequences with map-reduce API.

Verification uses embedding of Calf into Agda prover. So far, all verifications are for purely functional algorithms:

- Insertion and merge sort, sequential and parallel cost.
- Parallelizable red-black trees with join and singleton.

But probabilistic methods are also important, as are other effects.

The phase distinction integrates

- Extensional behavior.
- Intensional cost.

Moreover, the theory of phases

- Ensures non-interference.
- Supports abstract cost accounting.

Phase distinctions abound!

- Synthetic Tait Computability.
- Design of module systems.
- Integration of development and delivery.
- Parametricity structures for abstraction.
- Information flow security.

There is nothing more practical than a good theory!

References (w/Links Therein)

- H. Grodin and R. Harper.
 Amortized analysis via coinduction. CoRR, abs/2303.16048, 2023.
- Y. Niu and R. Harper.
 A metalanguage for cost-aware denotational semantics. CoRR, abs/2209.12669, 2022.
- Y. Niu, J. Sterling, H. Grodin, and R. Harper.
 A cost-aware logical framework.
 Proc. ACM Program. Lang., 6(POPL):1–31, 2022.
- J. Sterling and R. Harper.
 Sheaf semantics of termination-insensitive noninterference.

In <u>FSCD</u>, volume 228 of <u>LIPIcs</u>, pages 5:1–5:19, 2022.