
1/33

Three Dimensions of Compositionality

in CompCert Semantics

Jérémie Koenig

Yale University

MFPS, June 21, 2023

≤

2/33

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:

Compile(p) = p′ =⇒ SJpK ≤ TJp′K

In principle, we can get compositional compiler correctness
by making SJ−K and TJ−K compositional semantics.

But in practice this is hard to do!

I S and T must be interpreted in the same domain

I We must formalize the calling convention

Traditional compositional semantics do not deal with that.

2/33

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:

Compile(p) = p′ =⇒ SJpK ≤ TJp′K

In principle, we can get compositional compiler correctness
by making SJ−K and TJ−K compositional semantics.

But in practice this is hard to do!

I S and T must be interpreted in the same domain

I We must formalize the calling convention

Traditional compositional semantics do not deal with that.

2/33

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:

Compile(p) = p′ =⇒ SJpK ≤ TJp′K

In principle, we can get compositional compiler correctness
by making SJ−K and TJ−K compositional semantics.

But in practice this is hard to do!

I S and T must be interpreted in the same domain

I We must formalize the calling convention

Traditional compositional semantics do not deal with that.

3/33

End-to-end verification of heterogeneous systems

Web server

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

Operating system,
compilers, etc.

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

Operating system,
compilers, etc.

X X
X

X

X

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

X X
X

X

X

3/33

End-to-end verification of heterogeneous systems

Web server
/

bin etc . . .

Network

CPU NIC

This talk:

CompCertO, CAL

3/33

End-to-end verification of heterogeneous systems

X

Web server
/

bin etc . . .

Network

CPU NIC

4/33

Outline

Compositional Semantics in CompCert

A Double Category of Transition Systems

Abstract State and Spatial Composition

Conclusion

5/33

Semantics in CompCert

For each source, target and intermediate (whole) program p ∈ L,
a transition system L[p] = 〈S ,→, I ,F 〉 is defined where:

S ∈ Set → ⊆ S × S I ⊆ S F ⊆ S × int

An execution of p corresponds to a transition sequence:

I 3 s0 → s1 → · · · → sn F x

CompCert’s correctness is then established as a simulation property:

CompCert(p) = p′ =⇒ Clight[p] ≤ Asm[p′] ,

obtained by composing similar statements for each compilation pass.

5/33

Semantics in CompCert

For each source, target and intermediate (whole) program p ∈ L,
a transition system L[p] = 〈S ,→, I ,F 〉 is defined where:

S ∈ Set → ⊆ S × S I ⊆ S F ⊆ S × int

An execution of p corresponds to a transition sequence:

I 3 s0 → s1 → · · · → sn F x

CompCert’s correctness is then established as a simulation property:

CompCert(p) = p′ =⇒ Clight[p] ≤ Asm[p′] ,

obtained by composing similar statements for each compilation pass.

5/33

Semantics in CompCert

For each source, target and intermediate (whole) program p ∈ L,
a transition system L[p] = 〈S ,→, I ,F 〉 is defined where:

S ∈ Set → ⊆ S × S I ⊆ S F ⊆ S × int

An execution of p corresponds to a transition sequence:

I 3 s0 → s1 → · · · → sn F x

CompCert’s correctness is then established as a simulation property:

CompCert(p) = p′ =⇒ Clight[p] ≤ Asm[p′] ,

obtained by composing similar statements for each compilation pass.

6/33

Simulations

A simulation ρ : L1 ≤ L2 ∈ TS of L1 by L2 is a relation ρ ⊆ S1 × S2 such that:

I s1 ∈ I1 ⇒ ∃s2 . s2 ∈ I2 ∧ s1 ρ s2
I s1 ρ s2 ∧ s1 →1 s

′
1 ⇒ ∃s ′2 . s2 →2 s

′
2 ∧ s ′1 ρ s

′
2

I s1 ρ s2 ∧ s1 F1 x ⇒ s2 F2 x ,

s1 s ′1

s2 s ′2

ρ ρ

so that any execution of L1 yields a a similar execution of L2.

Simulation relations compose in the expected way:

ρ : L1 ≤ L2 π : L2 ≤ L3

(ρ ; π) : L1 ≤ L3

making it possible to decompose the correctness proof.

L1 L1

L2 `

L3 L3

ρ

ρ;π

π

6/33

Simulations

A simulation ρ : L1 ≤ L2 ∈ TS of L1 by L2 is a relation ρ ⊆ S1 × S2 such that:

I s1 ∈ I1 ⇒ ∃s2 . s2 ∈ I2 ∧ s1 ρ s2
I s1 ρ s2 ∧ s1 →1 s

′
1 ⇒ ∃s ′2 . s2 →2 s

′
2 ∧ s ′1 ρ s

′
2

I s1 ρ s2 ∧ s1 F1 x ⇒ s2 F2 x ,

s1 s ′1

s2 s ′2

ρ ρ

so that any execution of L1 yields a a similar execution of L2.

Simulation relations compose in the expected way:

ρ : L1 ≤ L2 π : L2 ≤ L3

(ρ ; π) : L1 ≤ L3

making it possible to decompose the correctness proof.

L1 L1

L2 `

L3 L3

ρ

ρ;π

π

6/33

Simulations

A simulation ρ : L1 ≤ L2 ∈ TS of L1 by L2 is a relation ρ ⊆ S1 × S2 such that:

I s1 ∈ I1 ⇒ ∃s2 . s2 ∈ I2 ∧ s1 ρ s2
I s1 ρ s2 ∧ s1 →1 s

′
1 ⇒ ∃s ′2 . s2 →2 s

′
2 ∧ s ′1 ρ s

′
2

I s1 ρ s2 ∧ s1 F1 x ⇒ s2 F2 x ,

s1 s ′1

s2 s ′2

ρ ρ

so that any execution of L1 yields a a similar execution of L2.

Simulation relations compose in the expected way:

ρ : L1 ≤ L2 π : L2 ≤ L3

(ρ ; π) : L1 ≤ L3

making it possible to decompose the correctness proof.

L1 L1

L2 `

L3 L3

ρ

ρ;π

π

7/33

Vertical Composition ;

In other words, transition systems and simulations form a category:

I the objects are transition systems

I the morphisms from L1 to L2 are the simulations L1 ≤ L2
I The composition ; of simulations is associative

I = is always a simulation relation and a unit for ;

CompCert

Object Dimension Operations

Transition system 0
Simulation 1 ;

7/33

Vertical Composition ;

In other words, transition systems and simulations form a category:

I the objects are transition systems

I the morphisms from L1 to L2 are the simulations L1 ≤ L2
I The composition ; of simulations is associative

I = is always a simulation relation and a unit for ;

CompCert

Object Dimension Operations

Transition system 0
Simulation 1 ;

8/33

Real programs are divided into pieces

Consider the following example:
rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

To deal with this issue, Compositional CompCert
gives semantics to individual translation units.

8/33

Real programs are divided into pieces

Consider the following example:
rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

To deal with this issue, Compositional CompCert
gives semantics to individual translation units.

8/33

Real programs are divided into pieces

Consider the following example:
rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

To deal with this issue, Compositional CompCert
gives semantics to individual translation units.

9/33

Semantics in Compositional CompCert

Transition systems are extended to L = 〈S ,→, I ,X ,Y ,F 〉.
The states S and internal steps → are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I ⊆ (ident× val∗ ×mem)× S F ⊆ S × (val×mem)

In addition, some states may perform outgoing calls:

X ⊆ S × (ident× val∗ ×mem) Y s ⊆ (val×mem)× S

9/33

Semantics in Compositional CompCert

Transition systems are extended to L = 〈S ,→, I ,X ,Y ,F 〉.
The states S and internal steps → are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I ⊆ (ident× val∗ ×mem)× S F ⊆ S × (val×mem)

In addition, some states may perform outgoing calls:

X ⊆ S × (ident× val∗ ×mem) Y s ⊆ (val×mem)× S

9/33

Semantics in Compositional CompCert

Transition systems are extended to L = 〈S ,→, I ,X ,Y ,F 〉.
The states S and internal steps → are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I ⊆ (ident× val∗ ×mem)× S F ⊆ S × (val×mem)

In addition, some states may perform outgoing calls:

X ⊆ S × (ident× val∗ ×mem) Y s ⊆ (val×mem)× S

10/33

Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

An execution for the translation unit above may be:

inc1(ε)@[c1 7→ 3, . . .] I s0 →∗ sn F 3@[c1 7→ 4, . . .]

10/33

Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

An execution for the translation unit above may be:

inc1(ε)@[c1 7→ 3, . . .] I s0 →∗ sn F 3@[c1 7→ 4, . . .]

11/33

Semantics in Compositional CompCert (example)

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

An execution for the translation unit above may be:

enq(v)@m I s0 →∗ s1 X inc2(ε)@m1 5@m′1 Y
s1 s2 · · · sn F undef@m′

11/33

Semantics in Compositional CompCert (example)

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

An execution for the translation unit above may be:

enq(v)@m I s0 →∗ s1 X inc2(ε)@m1 5@m′1 Y
s1 s2 · · · sn F undef@m′

12/33

Horizontal Composition ⊕
For L1, L2 ∈ TS, their semantic linking L1 ⊕ L2 ∈ TS is computed
by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

• • •π1 π2

L1

L′1

L2

L′2

π1 : L1 ≤ L′1 π2 : L2 ≤ L′2

π1 ⊕ π2 : L1 ⊕ L2 ≤ L′1 ⊕ L′2
• •π1⊕π2

L1⊕L2

L′1⊕L′2

In other words we have a monoidal category:

Compositional CompCert

Object Dimension Ops

Transition system 1 ⊕
Simulation 2 ; ⊕

12/33

Horizontal Composition ⊕
For L1, L2 ∈ TS, their semantic linking L1 ⊕ L2 ∈ TS is computed
by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

• • •π1 π2

L1

L′1

L2

L′2

π1 : L1 ≤ L′1 π2 : L2 ≤ L′2

π1 ⊕ π2 : L1 ⊕ L2 ≤ L′1 ⊕ L′2
• •π1⊕π2

L1⊕L2

L′1⊕L′2

In other words we have a monoidal category:

Compositional CompCert

Object Dimension Ops

Transition system 1 ⊕
Simulation 2 ; ⊕

12/33

Horizontal Composition ⊕
For L1, L2 ∈ TS, their semantic linking L1 ⊕ L2 ∈ TS is computed
by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

• • •π1 π2

L1

L′1

L2

L′2

π1 : L1 ≤ L′1 π2 : L2 ≤ L′2

π1 ⊕ π2 : L1 ⊕ L2 ≤ L′1 ⊕ L′2
• •π1⊕π2

L1⊕L2

L′1⊕L′2

In other words we have a monoidal category:

Compositional CompCert

Object Dimension Ops

Transition system 1 ⊕
Simulation 2 ; ⊕

13/33

Compositional CompCert in Pasting Diagrams

L1

L2

L3

φ

π

13/33

Compositional CompCert in Pasting Diagrams

L1

L3

φ;π

13/33

Compositional CompCert in Pasting Diagrams

• •

φ

• • •

πbq πrb

• • •

Lbq

Clight(bq.c) Clight(rb.c)

Asm(bq.s) Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

• •

φ

• • •

πbq ⊕ πrb

• • •

Lbq

Clight(bq.c) Clight(rb.c)

Asm(bq.s) Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

• •

φ ; (πbq ⊕ πrb)

• • •

Lbq

Asm(bq.s) Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

• • •

φ ; (πbq ⊕ πrb)

• • • •

C Lbq

C Asm(bq.s) Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

• • •

idC ⊕ (φ ; (πbq ⊕ πrb))

• • • •

C Lbq

C Asm(bq.s) Asm(rb.s)

14/33

Compositional CompCert in String Diagrams

A simulation φ : L1 ⊕ · · · ⊕ Ln ≤ L′1 ⊕ · · · ⊕ L′m can be depicted as:

L1 L2 Ln· · ·

L′1 L′2 L′m· · ·

φ

Our previous example is represented as:

C

C

Lbq

Clight(bq.c)

Asm(bq.s)

Clight(rb.c)

Asm(rb.s)

φ

πbq πrb

14/33

Compositional CompCert in String Diagrams

A simulation φ : L1 ⊕ · · · ⊕ Ln ≤ L′1 ⊕ · · · ⊕ L′m can be depicted as:

L1 L2 Ln· · ·

L′1 L′2 L′m· · ·

φ

Our previous example is represented as:

C

C

Lbq

Clight(bq.c)

Asm(bq.s)

Clight(rb.c)

Asm(rb.s)

φ

πbq πrb

15/33

Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

I Previously internal details become observable,
so simulation relations are much more constrained.

I As a result, many proofs had to be redone
and became much more complex.

CompCertO addresses this by dealing with each language and pass
on its own terms:

I Languages can use their own questions and answers

I Calling conventions are modeled explicitly

15/33

Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

I Previously internal details become observable,
so simulation relations are much more constrained.

I As a result, many proofs had to be redone
and became much more complex.

CompCertO addresses this by dealing with each language and pass
on its own terms:

I Languages can use their own questions and answers

I Calling conventions are modeled explicitly

16/33

Outline

Compositional Semantics in CompCert

A Double Category of Transition Systems

Abstract State and Spatial Composition

Conclusion

17/33

Horizontal Morphisms

Recall the transition systems L = 〈S ,→, I ,X ,Y ,F 〉 ∈ TS used in CompComp:

I ⊆ (ident× val∗ ×mem)× S F ⊆ S × (val×mem)

X ⊆ S × (ident× val∗ ×mem) Y s ⊆ (val×mem)× S

The questions and answers are hardcoded to correspond to C calls.

For our purposes, we use the following notion of composition L1 � L2:

L

q ∈ B◦

B

q1 ∈ A◦

A

r1 ∈ A•

...
qn ∈ A◦

rn ∈ A•r ∈ B•

L1

L2

L2

C B A

17/33

Horizontal Morphisms

In CompCertO, we generalize L = 〈S ,→, I ,X ,Y ,F 〉 : A� B to:

I ⊆ B◦ × S F ⊆ S × B•

X ⊆ S × A◦ Y s ⊆ A• × S

for the language interfaces A = 〈A◦,A•〉 and B = 〈B◦,B•〉.

For our purposes, we use the following notion of composition L1 � L2:

L

q ∈ B◦

B

q1 ∈ A◦

A

r1 ∈ A•

...
qn ∈ A◦

rn ∈ A•r ∈ B•

L1

L2

L2

C B A

17/33

Horizontal Morphisms

In CompCertO, we generalize L = 〈S ,→, I ,X ,Y ,F 〉 : A� B to:

I ⊆ B◦ × S F ⊆ S × B•

X ⊆ S × A◦ Y s ⊆ A• × S

for the language interfaces A = 〈A◦,A•〉 and B = 〈B◦,B•〉.

For our purposes, we use the following notion of composition L1 � L2:

L

q ∈ B◦

B

q1 ∈ A◦

A

r1 ∈ A•

...
qn ∈ A◦

rn ∈ A•r ∈ B•

L1

L2

L2

C B A

18/33

Vertical Morphisms

To connect source and target languages such as

Clight(p) : C � C vs Asm(p′) : A� A ,

CompCertO introduces simulation conventions R : C ↔ A, which parameterize
the relationship between source- and target-level interactions:

C◦ 3 q1 s1 s1 s ′1 s1 r1 ∈ C•

A◦ 3 q2 s2 s2 s ′2 s2 r2 ∈ A•

I1

R◦ ρ ρ ρ

F1

ρ R•

I2

F2

Simulation conventions compose vertically as R1 ; R2.

19/33

Simulations

Simulations now have two-dimentional types and compose in both directions:

π : L1 ≤RA�RB
L2

A1 B1

A2 B2

RA

L1

RB

L2

CompCertO

Object Dimension Ops

Language interface A 0
Transition system L : A� B 1 �
Simulation convention R : A↔ B 1 ;
Simulation ρ : L1 ≤R�S L2 2 ; �

19/33

Simulations

Simulations now have two-dimentional types and compose in both directions:

π : L1 ≤RA�RB
L2

A1 B1

A2 B2

RA

L1

RB

L2

CompCertO

Object Dimension Ops

Language interface A 0
Transition system L : A� B 1 �
Simulation convention R : A↔ B 1 ;
Simulation ρ : L1 ≤R�S L2 2 ; �

20/33

CompCertO in Pasting Diagrams

L1

L2

L3

φ

π

20/33

CompCertO in Pasting Diagrams

• •

φ

• • •

πbq πrb

• • •

Lbq

Clight(bq.c) Clight(rb.c)

Asm(bq.s) Asm(rb.s)

20/33

CompCertO in Pasting Diagrams

C >

φ

C C C

πbq πrb

A A A

Lbq

∅

Clight(bq.c)

C

Clight(rb.c)

C C

Asm(bq.s) Asm(rb.s)

21/33

CompCertO in String Diagrams

A simulation

φ : L1 � · · · � Ln ≤R1;···;Rk�S1;···;Sl L
′
1 � · · · � L′m

can be represented as:

Z0

Z1

Zl Y ′ Ak

Y A0

A1

· · ·

.

.

.

· · ·

.

.

.

L1 L2 Ln

L′mL′2L′1

R1
R2

Rk

S1
S2

Sl

φ

22/33

CompCertO in String Diagrams (example)

C >

A A

Lbq

Clight(bq.c)

Asm(bq.s)

Asm(bq.s + rb.s)

Clight(rb.c)

Asm(rb.s)

C

∅

∅
φ

πbq πrb

`

z

23/33

Outline

Compositional Semantics in CompCert

A Double Category of Transition Systems

Abstract State and Spatial Composition

Conclusion

24/33

Abstract Specifications

What would be a good specification for our example:
rb.c

/* Encapsulated state */

static int c1, c2;

static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return buf[i]; }

void set(int i, V val) { buf[i] = val; }

bq.c

/* Underlay signature */

extern int inc1(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

As a user, we would prefer not to deal with low-level details about the memory,
and rely instead on an abstract description:

Γbq � enq(v)@~q � ∗@~qv
Γbq � deq()@v~q � v@~q

where ~q ∈ Dbq := val∗

25/33

Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on

Γrb � get(i)@(b, c1, c2)� bi@(b, c1, c2)

Γrb � set(i , v)@(b, c1, c2)� ∗@(b[i := v], c1, c2)

Γrb � inc1()@(b, c1, c2)� c1@(b, c1+1, c2)

Γrb � inc2()@(b, c1, c2)� c2@(b, c1, c2+1)

which specifies rb.c in terms of Drb := V N × N× N

CompCertO’s language interfaces and simulation conventions can help us do this!
But it requires a good way to deal with abstract state.

25/33

Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on

Γrb � get(i)@(b, c1, c2)� bi@(b, c1, c2)

Γrb � set(i , v)@(b, c1, c2)� ∗@(b[i := v], c1, c2)

Γrb � inc1()@(b, c1, c2)� c1@(b, c1+1, c2)

Γrb � inc2()@(b, c1, c2)� c2@(b, c1, c2+1)

which specifies rb.c in terms of Drb := V N × N× N

CompCertO’s language interfaces and simulation conventions can help us do this!
But it requires a good way to deal with abstract state.

26/33

Adjoining state to language interfaces

Consider the following construction on language interfaces:

A @ U := 〈A◦ × U , A• × U〉

That is, we extend A with a state component taken in the set U .

The language interface used for C semantics can be described as:

Clight(M) : C @ mem� C @ mem where C = 〈ident× val∗, val〉

The abstract specifications are typed as:

Γbq : >� C @ Dbq

Γrb : >� C @ Drb
where > = 〈∅,∅〉

But how can we interface client code with abstract specifications?

26/33

Adjoining state to language interfaces

Consider the following construction on language interfaces:

A @ U := 〈A◦ × U , A• × U〉

That is, we extend A with a state component taken in the set U .

The language interface used for C semantics can be described as:

Clight(M) : C @ mem� C @ mem where C = 〈ident× val∗, val〉

The abstract specifications are typed as:

Γbq : >� C @ Dbq

Γrb : >� C @ Drb
where > = 〈∅,∅〉

But how can we interface client code with abstract specifications?

26/33

Adjoining state to language interfaces

Consider the following construction on language interfaces:

A @ U := 〈A◦ × U , A• × U〉

That is, we extend A with a state component taken in the set U .

The language interface used for C semantics can be described as:

Clight(M) : C @ mem� C @ mem where C = 〈ident× val∗, val〉

The abstract specifications are typed as:

Γbq : >� C @ Dbq

Γrb : >� C @ Drb
where > = 〈∅,∅〉

But how can we interface client code with abstract specifications?

27/33

Spatial compositionality

We turn @ into yet another dimension of compositionality:

I Transition systems combine with a lens f : U � V

I Simulation conventions easily combine with a relation R ⊆ U × V

I Simulations can be extended in a similar way.

As before, we can use string diagrams to combine two kinds of composition.
For example, to interface bq.c with Γrb:

Lbq := (Clight(bq.c) @ Drb)�
(C @ 〈mem] @ Drb)� Γrb =

C > ,
mem
Drb

Clight(bq.c) Γrb

where 〈mem] is a trivial lens which “bounces” the memory state unchanged.

28/33

Concretizing state

Consider Γrb : >� C @ Drb vs. its implementation rb.c in terms of C @ mem.
The corresponding correctness property can be expressed as:

Γrb : ∅� C @ Rrb

C

C

Drb

Rrb

mem

where Rrb ⊆ Drb ×mem explains how abstract data is implemented.

29/33

Summary of the framework

Role Components Notation Compose Diagrams
H V S H V

Active Interface Language interfaces A,B,C @
Behavior Transition systems L : A� B ∈ TS � @ � @
Abstraction Simulation conventions R : A↔ B ∈ SC ; @ @ ;
Refinement Simulations π : L] ≤R�S L[∈ TSC � ; @ � ;

Passive Interface Sets U,V ×
Behavior Lenses f : U � V ∈ Lens ◦ × ◦ ×
Abstraction Simulation relations R ⊆ U × V ∈ Rel ; × × ;
Refinement Bisimulations φ : f ≡R�S g ∈ LSR ◦ ; × ◦ ;

30/33

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation • ⊆ (mem×mem)×mem:

D1

R1

mem

D2

R2

•

Properties of interest can be expressed as simulations, for example

I idmem×mem×mem ≡(•@mem);•�(mem@•);• idmem

I Clight(M) @ mem ≤C@•�C@• Clight(M)

30/33

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation • ⊆ (mem×mem)×mem:

D1

R1

mem

D2

R2

•

Properties of interest can be expressed as simulations, for example

I idmem×mem×mem ≡(•@mem);•�(mem@•);• idmem

I Clight(M) @ mem ≤C@•�C@• Clight(M)

30/33

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation • ⊆ (mem×mem)×mem:

D1

R1

mem

D2

R2

•

Properties of interest can be expressed as simulations, for example

I idmem×mem×mem ≡(•@mem);•�(mem@•);• idmem

I Clight(M) @ mem ≤C@•�C@• Clight(M)

31/33

Three dimenstions of compositionality

Simulation string diagrams can also incorporate @ as depth.

Overall, many properties of interest can be put into the form of simulation
“cubes” of the kind above, and proofs can be glued together geometrically.

32/33

Outline

Compositional Semantics in CompCert

A Double Category of Transition Systems

Abstract State and Spatial Composition

Conclusion

33/33

Conclusion

This is joint work with Yu Zhang, Zhong Shao and Yuting Wang.
We are hoping to use thi framework for large-scale verification applications.

Some other things we did:

I Model of certified abstraction layers within this framework

I Encapsulated state

I ClightP language with private variables

Last thoughts:

I Compositional semantics for compilers are hard but interesting

I Semantics and higher category theory can be useful for engineering

Please feel free to request our paper draft from me!
(jeremie.koenig@gmail.com)

33/33

Conclusion

This is joint work with Yu Zhang, Zhong Shao and Yuting Wang.
We are hoping to use thi framework for large-scale verification applications.

Some other things we did:

I Model of certified abstraction layers within this framework

I Encapsulated state

I ClightP language with private variables

Last thoughts:

I Compositional semantics for compilers are hard but interesting

I Semantics and higher category theory can be useful for engineering

Please feel free to request our paper draft from me!
(jeremie.koenig@gmail.com)

	Introduction
	Compositional Semantics in CompCert
	A Double Category of Transition Systems
	Abstract State and Spatial Composition
	Conclusion

