Three Dimensions of Compositionality

in CompCert Semantics

Jérémie Koenig
Yale University

MFPS, June 21, 2023



Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:

Compile(p) =p" = S[p] < T[p]



Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:
Compile(p) =p" = S[p] < T[p]

In principle, we can get compositional compiler correctness
by making S[—] and T[—] compositional semantics.



Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:
Compile(p) =p" = S[p] < T[p]

In principle, we can get compositional compiler correctness
by making S[—] and T[—] compositional semantics.

But in practice this is hard to do!

» S and T must be interpreted in the same domain
» We must formalize the calling convention

Traditional compositional semantics do not deal with that.
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Semantics in CompCert
For each source, target and intermediate (whole) program p € L,
a transition system L[p] = (S, —, [, F) is defined where:
S € Set —CS5xS ICS FCS xint
An execution of p corresponds to a transition sequence:

I>2sg =5 —-—s, Fx

CompCert’s correctness is then established as a simulation property:
CompCert(p) =p° = Clight[p] < Asm[p'],

obtained by composing similar statements for each compilation pass.
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A simulation p: L; < L, € TS of Ly by L, is a relation p C S; x S, such that:
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Simulations

A simulation p: L; < L, € TS of Ly by L, is a relation p C S; x S, such that:

>51€/1:>5|52.52612/\51p52 51—>5{
> sips A S —1S = 3sh.5 =028, A S pSsh P ip
I
>51p52/\51F1X:>52F2X, oA >Sé
so that any execution of L; yields a a similar execution of L,.
Simulation relations compose in the expected way: Ly Ly
p:Li <Ly, 7w:l,<lL3 ﬂp
(p;7): L <L L F o
making it possible to decompose the correctness proof. ﬂﬂ
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Vertical Composition [;]

In other words, transition systems and simulations form a category:

» the objects are transition systems
» the morphisms from L; to L, are the simulations L; < L,
» The composition ; of simulations is associative

» = is always a simulation relation and a unit for ;

CompCert
Object Dimension  Operations
Transition system 0

Simulation 1




Real programs are divided into pieces

Consider the following example:
rb.c

/* Encapsulated state */
static int c1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cil++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf([i]; }

void set(int i, V val) { buf[i] = val; }

bqg.c

/% Underlay signature */
extern int incl(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }
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Real programs are divided into pieces

Consider the following example:
rb.c

/% Encapsulated state */
static int c1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf([i]; }

void set(int i, V val) { buf[i] = val; }

bg.c

/* Underlay signature */
extern int incil(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V val);

/* Layer implementation */
void enq(V val) { set(inc2(), val); }
V deq() { return get(inc1()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

To deal with this issue, Compositional CompCert
gives semantics to individual translation units.
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Semantics in Compositional CompCert

Transition systems are extended to L = (5, —, [, X, Y, F).
The states S and internal steps — are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I C (ident x val® x mem) x S F C S x (val x mem)

In addition, some states may perform outgoing calls:

X C S x (ident x val* x mem) Y® C (val x mem) x S



Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */
static int cl, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return bufl[i]; }

void set(int i, V val) { buf[i] = val; }
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Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */
static int cl, c2;
static V buf[N];

/* Accessors */
int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return bufl[i]; }
void set(int i, V val) { buf[i] = val; }

An execution for the translation unit above may be:

incl(e)@[cl — 3./ .. ] / So —* sp F 3@[C1 =4, .. ]
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extern int inci(void);
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Semantics in Compositional CompCert (example)

bqg.c

/* Underlay signature */
extern int inci(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V wval);

/* Layer implementation */
void enq(V val) { set(inc2(), val); %}
V deq() { return get(inc1()); }

An execution for the translation unit above may be:

enq(v)@m | sy —* 51 X incy(€)@my ~» 50m) Y sy - -+ s, F undef@m’
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Horizontal Composition ¢

For Ly, L, € TS, their semantic linking Ly & L, € TS is computed

by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

Ly Ly ’ ’

TN 7T1:L1§L1 7T2:L2§L2

[ ] ﬂﬂl [ ] ﬂj‘rz [ ] ’ ,

NS RNGE m@m Ll ® L <L]®L,
L L

In other words we have a monoidal category:

Compositional CompCert

Object Dimension  Ops

Transition system 1 >,
Simulation 2 ;O

Li®Lo

7 T~
ﬂm@m

Lol
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Compositional CompCert in String Diagrams
A simulation ¢ : L1y & --- B L, < L) @ ---d L), can be depicted as:

Ly Ly--- L,
[_’1 [_’2 L;n

Our previous example is represented as:

Clight(bg.c light(rb.c)

C Asm(bg.s)  Asm(rb.s)



Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

» Previously internal details become observable,
so simulation relations are much more constrained.

» As a result, many proofs had to be redone
and became much more complex.



Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

» Previously internal details become observable,
so simulation relations are much more constrained.

» As a result, many proofs had to be redone
and became much more complex.

CompCertO addresses this by dealing with each language and pass
on its own terms:

» Languages can use their own questions and answers

» Calling conventions are modeled explicitly



Outline

A Double Category of Transition Systems

E DA™ 16/33



Horizontal Morphisms

Recall the transition systems L = (S, —, 1, X, Y, F) € TS used in CompComp:

I C (ident x val® x mem) x S F C S x (val x mem)
X C S x (ident x val* x mem) Y® C (val x mem) x S

The questions and answers are hardcoded to correspond to C calls.
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Horizontal Morphisms

In CompCertO, we generalize L = (S, —,1,X,Y,F): A— B to:

B° xS F
S x A° Y?

Sx B*

-
C A*x S

I C
X C
for the language interfaces A = (A°, A®) and B = (B°, B®).

For our purposes, we use the following notion of composition L; ® L,:

B«———A C«—B«— A
q € B° — = q1 € A° — [ L <:>
K—rn € A®
: b
L . Ll
> gn € A° ] =
re B k— rn € A® - Y=




Vertical Morphisms

To connect source and target languages such as
Clight(p) : C — C vs  Asm(p): A — A,

CompCertO introduces simulation conventions R : C <+ A, which parameterize
the relationship between source- and target-level interactions:

h ’ F1

C°> q1 S1 S 1 —— 5 S1 n €C*
| | |
R® ip P P P IR
| ! |
F>
A°> g -~ S Sy ----- > S Sp ---=-- n € A*

Simulation conventions compose vertically as R; ; R,.
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Simulations

Simulations now have two-dimentional types and compose in both directions:

Al #} Bl
L <g,orp L2 RAI IRB
A2 —_—>» B2
Lo
CompCertO

Object Dimension  Ops
Language interface A 0
Transition system L:A— B 1 ®
Simulation convention R: A<+ B 1 :
Simulation p L <g.s L 2 O]
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Trb
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W




CompCertO in Pasting Diagrams

4 oo T
[0) 1%

C Clight(bq.c) C « Clight(rb.c) C

C Tbq C Trb C

Asm(rb.s)
A «

~

2N 64
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A simulation

CompCertO in String Diagrams

can be represented as:

Ly L

m

d) : L]_ ORERNO) Ln SRl;'“;Rk—»Sum;S, L;_ ORERNO) L/m
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Abstract Specifications

What would be a good specification for our example:

rb.c

/* Encapsulated state */
static int cl1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf[il; }

void set(int i, V val) { buf[i] = val; }

bg.c

/* Underlay signature */
extern int incil(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer timplementation */
void enq(V val) { set(inc2(), val); }
V deq() { return get(inci()); }

As a user, we would prefer not to deal with low-level details about the memory,

and rely instead on an abstract description:

Mbq F enq(v)@q — *Qgv
Mbq F deq()@vg — v@gG

where ¢ € Dyq = val”

u]
8
I
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Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on
Mo F get(1)Q(b, a1, ) — biQ(b, c1, )
M E set(i, v)O(b, c1, 6) — *@(b[i := v], c1, c)
Frb F mcl()@(b, Ci, C2) — Cl@(b, C1—|-1, C2)
M Einc2()Q(b, 1, ) — ©0@(b, ¢1, c+1)

which specifies rb.c in terms of Dy, := VN x N x N



Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on
Mo F get(1)Q(b, a1, ) — biQ(b, c1, )
M E set(i, v)O(b, c1, 6) — *@(b[i := v], c1, c)
F,b F mcl()@(b, Ci, C2) — Cl@(b, C1—|-1, C2)
M Einc2()Q(b, 1, ) — ©0@(b, ¢1, c+1)

which specifies rb.c in terms of Dy, := VN x N x N

CompCertQ's language interfaces and simulation conventions can help us do this!
But it requires a good way to deal with abstract state.
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Adjoining state to language interfaces

Consider the following construction on language interfaces:
AQU :=(A°x U, A* x U)

That is, we extend A with a state component taken in the set U.

The language interface used for C semantics can be described as:
Clight(M) : C@mem — C @mem  where C = (ident x val*, val)
The abstract specifications are typed as:

qu:T—»CCQqu

Mo T C@D, where T = (2, 9)

But how can we interface client code with abstract specifications?



Spatial compositionality

We turn @ into yet another dimension of compositionality:

» Transition systems combine with a lens f : U = V
» Simulation conventions easily combine with a relation R C U x V

» Simulations can be extended in a similar way.

As before, we can use string diagrams to combine two kinds of composition.
For example, to interface bq.c with I :

Lo := (Clight(bq.c) @ D) & Dy,
(C (@ (mem] (@ Drb) ® Frb = mem

where (mem] is a trivial lens which “bounces” the memory state unchanged.



Concretizing state

Consider ', : T — C @ Dy, vs. its implementation rb.c in terms of C @ mem.
The corresponding correctness property can be expressed as:

F,b:Q—»C©Rrb

where R, C D,,, X mem explains how abstract data is implemented.



Summary of the framework

Role Components Notation Compose Diagrams
HVS H VvV
Active  Interface Language interfaces A B, C ©
Behavior Transition systems L:A— BeTS © 0 ON¢
Abstraction  Simulation conventions R: A<« B € SC . @ @ ;
Refinement  Simulations 7 Lf <g_s L’ € TSC ® ;0 o ;
Passive Interface Sets u,v X
Behavior Lenses f:US Ve Lens o X o X
Abstraction  Simulation relations RC UxV € Rel CX X
Refinement  Bisimulations ¢:f =r=s g € LSR o ;X o
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Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation @ C (mem x mem) x mem:

Dy D,
O

mem
Properties of interest can be expressed as simulations, for example

> idmem><mem><mem =(e@mem);e—(memQ@s);e idmem

> C|Ight(/\/’) O mem <(@e—.Coe C|Ight(/\/’)



Three dimenstions of compositionality

Simulation string diagrams can also incorporate @ as depth.

24
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Overall, many properties of interest can be put into the form of simulation
“cubes” of the kind above, and proofs can be glued together geometrically.
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Some other things we did:
» Model of certified abstraction layers within this framework

» Encapsulated state
» ClightP language with private variables



Conclusion

This is joint work with Yu Zhang, Zhong Shao and Yuting Wang.
We are hoping to use thi framework for large-scale verification applications.

Some other things we did:

» Model of certified abstraction layers within this framework
» Encapsulated state
» ClightP language with private variables

Last thoughts:

» Compositional semantics for compilers are hard but interesting

» Semantics and higher category theory can be useful for engineering

Please feel free to request our paper draft from me!
(jeremie.koenig@gmail.com)
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