Three Dimensions of Compositionality

in CompCert Semantics

Jérémie Koenig
Yale University

MFPS, June 21, 2023

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:

Compile(p) =p" = S[p] < T[p]

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:
Compile(p) =p" = S[p] < T[p]

In principle, we can get compositional compiler correctness
by making S[—] and T[—] compositional semantics.

Why Compilers are Interesting

One notion of compiler correctness is semantics preservation:
Compile(p) =p" = S[p] < T[p]

In principle, we can get compositional compiler correctness
by making S[—] and T[—] compositional semantics.

But in practice this is hard to do!

» S and T must be interpreted in the same domain
» We must formalize the calling convention

Traditional compositional semantics do not deal with that.

End-to-end verification of heterogeneous systems

Web server

DA™ 3/33

End-to-end verification of heterogeneous systems

bin etc

<— | Web server | «<—

End-to-end verification of heterogeneous systems

/@\ <— | Web server <—>
bin etc

L1
CPU

o — W

—

=] =) = E £ DA™ 3/33

End-to-end verification of heterogeneous systems

X (Wb (s

bin etc H

L Gy M‘

I

I

=] =) = E £ DA™ 3/33

End-to-end verification of heterogeneous systems

A HH

bin etc

Operating system,
compilers, etc.

L~ u qui

CPU

DA™ 3/33

End-to-end verification of heterogeneous systems

v v
PN HH

Operatlng system
compilers, etc.

= —

CPU

- Mﬁ

u]
)
I

l
it

DA™ 3/33

End-to-end verification of heterogeneous systems

v v
<— | Web server | «—
bin etc

/Yﬂel’,IJMT roup
Advanced Development of lCer ified Softw:
> jio AL s R.JE | B 1k

L~ : qui

CPU

DA™ 3/33

End-to-end verification of heterogeneous systems

e semr] — (o
)

This talk:

CompCertO CAL

w
|
- f::f — =

/@\
1
ﬂ
=

£ DA™ 3/33

End-to-end verification of heterogeneous systems

«— | Web server | «—

L]
- & w

I

=] =) = E £ DA™ 3/33

Outline

Compositional Semantics in CompCert

Semantics in CompCert

For each source, target and intermediate (whole) program p € L,
a transition system L[p] = (S, —, [, F) is defined where:

S € Set - CSxS /ICS FCS xint

Semantics in CompCert
For each source, target and intermediate (whole) program p € L,
a transition system L[p] = (S, —, [, F) is defined where:
S € Set —CS5xS ICS FCS xint
An execution of p corresponds to a transition sequence:

I>2sg =5 —-—s, Fx

Semantics in CompCert
For each source, target and intermediate (whole) program p € L,
a transition system L[p] = (S, —, [, F) is defined where:
S € Set —CS5xS ICS FCS xint
An execution of p corresponds to a transition sequence:

I>2sg =5 —-—s, Fx

CompCert’s correctness is then established as a simulation property:
CompCert(p) =p° = Clight[p] < Asm[p'],

obtained by composing similar statements for each compilation pass.

Simulations

A simulation p: L; < L, € TS of Ly by L, is a relation p C S; x S, such that:

>51€/1:>5|52.52612/\51p52
> sips A S —1S = 3sh.5 =028, A S pSsh
>51p52/\51F1X:>52F2X,

so that any execution of L; yields a a similar execution of L,.

s —— S
I

p P
I
/

52 _____ > 52

Simulations

A simulation p: L; < L, € TS of Ly by L, is a relation p C S; x S, such that:

>516/1:>E|S2.52612/\51p52 51—>5{
> sips A S —1S = 3sh.5 =028, A S pSsh o Ip
]

> 51p52/\51F1X2> $ Fs x,

so that any execution of L; yields a a similar execution of L,.

Simulation relations compose in the expected way:

pZLlél_z 7TZL2§L3
(pim): L <Lj

making it possible to decompose the correctness proof.

Simulations

A simulation p: L; < L, € TS of Ly by L, is a relation p C S; x S, such that:

>51€/1:>5|52.52612/\51p52 51—>5{
> sips A S —1S = 3sh.5 =028, A S pSsh P ip
I
>51p52/\51F1X:>52F2X, oA >Sé
so that any execution of L; yields a a similar execution of L,.
Simulation relations compose in the expected way: Ly Ly
p:Li <Ly, 7w:l,<lL3 ﬂp
(p;7): L <L L F o
making it possible to decompose the correctness proof. ﬂﬂ

Vertical Composition [;]

In other words, transition systems and simulations form a category:

» the objects are transition systems
» the morphisms from L; to L, are the simulations L; < L,
» The composition ; of simulations is associative

» = is always a simulation relation and a unit for ;

Vertical Composition [;]

In other words, transition systems and simulations form a category:

» the objects are transition systems
» the morphisms from L; to L, are the simulations L; < L,
» The composition ; of simulations is associative

» = is always a simulation relation and a unit for ;

CompCert
Object Dimension Operations
Transition system 0

Simulation 1

Real programs are divided into pieces

Consider the following example:
rb.c

/* Encapsulated state */
static int c1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cil++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf([i]; }

void set(int i, V val) { buf[i] = val; }

bqg.c

/% Underlay signature */
extern int incl(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V val);

/* Layer implementation */

void enq(V val) { set(inc2(), val); }

V deq() { return get(inc1()); }

PEN &4

8/33

Real programs are divided into pieces

Consider the following example:

rb.c bqg.c
/% Encapsulated state */ /* Underlay signature */
static int cl, c2; extern int incil(void);
static V buf[N]; extern int inc2(void);
extern V get(int 1i);
/* Accessors */ extern void set(int i, V val);

int inc1() { int i = c1++; c1 %= N; return i; }

int inc2() { int i = c2++; c2 %= N; return i; } /* Layer implementation */
V get(int i) { return buf[i]; }
void set(int i, V val) { buf[i] = val; } V deq() { return get(inci()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

void enq(V val) { set(inc2(), val); }

Real programs are divided into pieces

Consider the following example:
rb.c

/% Encapsulated state */
static int c1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = c1++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf([i]; }

void set(int i, V val) { buf[i] = val; }

bg.c

/* Underlay signature */
extern int incil(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V val);

/* Layer implementation */
void enq(V val) { set(inc2(), val); }
V deq() { return get(inc1()); }

These C translation units do not provide a main function,
so CompCert can compile them but provides no guarantee!

To deal with this issue, Compositional CompCert
gives semantics to individual translation units.

Semantics in Compositional CompCert

Transition systems are extended to L = (5, —, [, X, Y, F).
The states S and internal steps — are as before.

Semantics in Compositional CompCert

Transition systems are extended to L = (5, —, [, X, Y, F).
The states S and internal steps — are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I C (ident x val® x mem) x S F C S x (val x mem)

Semantics in Compositional CompCert

Transition systems are extended to L = (5, —, [, X, Y, F).
The states S and internal steps — are as before.

Initial and final states incorporate a question and an answer for the incoming call:

I C (ident x val® x mem) x S F C S x (val x mem)

In addition, some states may perform outgoing calls:

X C S x (ident x val* x mem) Y® C (val x mem) x S

Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */
static int cl, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return bufl[i]; }

void set(int i, V val) { buf[i] = val; }

u]
8
I
]
it

DAt 10/33

Semantics in Compositional CompCert (example)

rb.c

/* Encapsulated state */
static int cl, c2;
static V buf[N];

/* Accessors */
int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }

V get(int i) { return bufl[i]; }
void set(int i, V val) { buf[i] = val; }

An execution for the translation unit above may be:

incl(e)@[cl — 3./ ..] / So —* sp F 3@[C1 =4, ..]

=] 5 = = £ DA™ 10/33

Semantics in Compositional CompCert (example)

bqg.c

/* Underlay signature */
extern int inci(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V wval);

/* Layer implementation */
void enq(V val) { set(inc2(), val); %}
V deq() { return get(inc1()); }

Semantics in Compositional CompCert (example)

bqg.c

/* Underlay signature */
extern int inci(void);

extern int inc2(void);

extern V get(int 1i);

extern void set(int i, V wval);

/* Layer implementation */
void enq(V val) { set(inc2(), val); %}
V deq() { return get(inc1()); }

An execution for the translation unit above may be:

enq(v)@m | sy —* 51 X incy(€)@my ~» 50m) Y sy - -+ s, F undef@m’

=] 5 = E £ DA™ 11/33

Horizontal Composition ¢

For Ly, L, € TS, their semantic linking Ly & L, € TS is computed
by letting them interact with each other.

Horizontal Composition ¢

For Ly, L, € TS, their semantic linking Ly & L, € TS is computed
by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

L L Lol
/1\ 2 7T1:L1§L/1 7T2:L2§L/2 /12\
.\ﬂm/.\ﬂm/. mem: Lol <Ll * ﬂﬂl@m

L L Lo,

Horizontal Composition ¢

For Ly, L, € TS, their semantic linking Ly & L, € TS is computed

by letting them interact with each other.

Simulations now compose horizontally as well as vertically:

Ly Ly ’ ’

TN 7T1:L1§L1 7T2:L2§L2

[] ﬂﬂl [] ﬂj‘rz [] ’ ,

NS RNGE m@m Ll ® L <L]®L,
L L

In other words we have a monoidal category:

Compositional CompCert

Object Dimension Ops

Transition system 1 >,
Simulation 2 ;O

Li®Lo

7 T~
ﬂm@m

Lol

Compositional CompCert in Pasting Diagrams

Compositional CompCert in Pasting Diagrams

Ly

oy

13/33

Compositional CompCert in Pasting Diagrams

Lpq
([] []
Clight(bg.c) Clight(rb.c)
Tbq Trb
Asm(bq.s) Asm(rb.s)
[

13/33

Compositional CompCert in Pasting Diagrams

Clight(bq.c)

Clight(rb.c)

TMhq D Trb

Asm(bq.s)

Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

d) , (7qu ¥ 7Trb)

Asm(bq.s)

Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

¢ (Toq ® Tp)

Asm(bq.s)

Asm(rb.s)

13/33

Compositional CompCert in Pasting Diagrams

idc @ (¢ (Toq D)

Asm(bq.s)

Asm(rb.s)

13/33

Compositional CompCert in String Diagrams

A simulation ¢ : L1 & --- B L, < L) & --- @ L), can be depicted as

Ly Ly --- L,

Loty L,

Compositional CompCert in String Diagrams
A simulation ¢ : L1y & --- B L, < L) @ ---d L), can be depicted as:

Ly Ly--- L,
[_’1 [_’2 L;n

Our previous example is represented as:

Clight(bg.c light(rb.c)

C Asm(bg.s) Asm(rb.s)

Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

» Previously internal details become observable,
so simulation relations are much more constrained.

» As a result, many proofs had to be redone
and became much more complex.

Issues with Compositional CompCert

Compositional CompCert was a remarkable achievement
but it underscores the difficulty of using compositional semantics.

» Previously internal details become observable,
so simulation relations are much more constrained.

» As a result, many proofs had to be redone
and became much more complex.

CompCertO addresses this by dealing with each language and pass
on its own terms:

» Languages can use their own questions and answers

» Calling conventions are modeled explicitly

Outline

A Double Category of Transition Systems

E DA™ 16/33

Horizontal Morphisms

Recall the transition systems L = (S, —, 1, X, Y, F) € TS used in CompComp:

I C (ident x val® x mem) x S F C S x (val x mem)
X C S x (ident x val* x mem) Y® C (val x mem) x S

The questions and answers are hardcoded to correspond to C calls.

Horizontal Morphisms

In CompCertO, we generalize L = (S, —,1,X,Y,F): A— B to:

| C B°xS F C SxB®
X C SxA° Y* C A*x S

for the language interfaces A = (A°, A®) and B = (B°, B®).

Horizontal Morphisms

In CompCertO, we generalize L = (S, —,1,X,Y,F): A— B to:

B° xS F
S x A° Y?

Sx B*

-
C A*x S

I C
X C
for the language interfaces A = (A°, A®) and B = (B°, B®).

For our purposes, we use the following notion of composition L; ® L,:

B«———A C«—B«— A
q € B° — = q1 € A° — [L <:>
K—rn € A®
: b
L . Ll
> gn € A°] =
re B k— rn € A® - Y=

Vertical Morphisms

To connect source and target languages such as
Clight(p) : C — C vs Asm(p): A — A,

CompCertO introduces simulation conventions R : C <+ A, which parameterize
the relationship between source- and target-level interactions:

h ’ F1

C°> q1 S1 S 1 —— 5 S1 n €C*
| | |
R® ip P P P IR
| ! |
F>
A°> g -~ S Sy ----- > S Sp ---=-- n € A*

Simulation conventions compose vertically as R; ; R,.

Simulations

Simulations now have two-dimentional types and compose in both directions:

L
Al Hl) Bl
L <g,orp L2 RAI IRB

A2 —> BQ
Lo

Simulations

Simulations now have two-dimentional types and compose in both directions:

Al #} Bl
L <g,orp L2 RAI IRB
A2 —_—>» B2
Lo
CompCertO

Object Dimension Ops
Language interface A 0
Transition system L:A— B 1 ®
Simulation convention R: A<+ B 1 :
Simulation p L <g.s L 2 O]

CompCertO in Pasting Diagrams

DAt 20/33

CompCertO in Pasting Diagrams

Clight(bq.c)

P Clight(rb.c)

Trb
& Asm(bq.s)

Asm(rb.s)
W

CompCertO in Pasting Diagrams

4 oo T
[0) 1%

C Clight(bq.c) C « Clight(rb.c) C

C Tbq C Trb C

Asm(rb.s)
A «

~

2N 64

20/33

A simulation

CompCertO in String Diagrams

can be represented as:

Ly L

m

d) : L]_ ORERNO) Ln SRl;'“;Rk—»Sum;S, L;_ ORERNO) L/m

DA 21/33

CompC

ertO in String Diagrams (example

Asm(bq.s + rb.s)

o

«Fr o«

DAt 22/33

Outline

Abstract State and Spatial Composition

Abstract Specifications

What would be a good specification for our example:

rb.c

/* Encapsulated state */
static int cl1, c2;
static V buf[N];

/* Accessors */

int inc1() { int i = cl++; c1 %= N; return i; }
int inc2() { int i = c2++; c2 %= N; return i; }
V get(int i) { return buf[il; }

void set(int i, V val) { buf[i] = val; }

bg.c

/* Underlay signature */
extern int incil(void);

extern int inc2(void);

extern V get(int i);

extern void set(int i, V val);

/* Layer timplementation */
void enq(V val) { set(inc2(), val); }
V deq() { return get(inci()); }

As a user, we would prefer not to deal with low-level details about the memory,

and rely instead on an abstract description:

Mbq F enq(v)@q — *Qgv
Mbq F deq()@vg — v@gG

where ¢ € Dyq = val”

u]
8
I
nl
it

Q>

24/33

Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on
Mo F get(1)Q(b, a1,) — biQ(b, c1,)
M E set(i, v)O(b, c1, 6) — *@(b[i := v], c1, c)
Frb F mcl()@(b, Ci, C2) — Cl@(b, C1—|-1, C2)
M Einc2()Q(b, 1,) — ©0@(b, ¢1, c+1)

which specifies rb.c in terms of Dy, := VN x N x N

Abstract Specifications

Likewise, to prove the implementation correct, we may want to rely on
Mo F get(1)Q(b, a1,) — biQ(b, c1,)
M E set(i, v)O(b, c1, 6) — *@(b[i := v], c1, c)
F,b F mcl()@(b, Ci, C2) — Cl@(b, C1—|-1, C2)
M Einc2()Q(b, 1,) — ©0@(b, ¢1, c+1)

which specifies rb.c in terms of Dy, := VN x N x N

CompCertQ's language interfaces and simulation conventions can help us do this!
But it requires a good way to deal with abstract state.

Adjoining state to language interfaces

Consider the following construction on language interfaces:
AQU :=(A°x U, A* x U)

That is, we extend A with a state component taken in the set U.

Adjoining state to language interfaces

Consider the following construction on language interfaces:
AQU :=(A°x U, A* x U)

That is, we extend A with a state component taken in the set U.

The language interface used for C semantics can be described as:

Clight(M) : C@mem — C @mem where C = (ident x val*, val)

Adjoining state to language interfaces

Consider the following construction on language interfaces:
AQU :=(A°x U, A* x U)

That is, we extend A with a state component taken in the set U.

The language interface used for C semantics can be described as:
Clight(M) : C@mem — C @mem where C = (ident x val*, val)
The abstract specifications are typed as:

qu:T—»CCQqu

Mo T C@D, where T = (2, 9)

But how can we interface client code with abstract specifications?

Spatial compositionality

We turn @ into yet another dimension of compositionality:

» Transition systems combine with a lens f : U = V
» Simulation conventions easily combine with a relation R C U x V

» Simulations can be extended in a similar way.

As before, we can use string diagrams to combine two kinds of composition.
For example, to interface bq.c with I :

Lo := (Clight(bq.c) @ D) & Dy,
(C (@ (mem] (@ Drb) ® Frb = mem

where (mem] is a trivial lens which “bounces” the memory state unchanged.

Concretizing state

Consider ', : T — C @ Dy, vs. its implementation rb.c in terms of C @ mem.
The corresponding correctness property can be expressed as:

F,b:Q—»C©Rrb

where R, C D,,, X mem explains how abstract data is implemented.

Summary of the framework

Role Components Notation Compose Diagrams
HVS H VvV
Active Interface Language interfaces A B, C ©
Behavior Transition systems L:A— BeTS © 0 ON¢
Abstraction Simulation conventions R: A<« B € SC . @ @ ;
Refinement Simulations 7 Lf <g_s L’ € TSC ® ;0 o ;
Passive Interface Sets u,v X
Behavior Lenses f:US Ve Lens o X o X
Abstraction Simulation relations RC UxV € Rel CX X
Refinement Bisimulations ¢:f =r=s g € LSR o ;X o

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation @ C (mem x mem) x mem:

Dy D,
O

mem

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation @ C (mem x mem) x mem:

mem
Properties of interest can be expressed as simulations, for example

> idmem><mem><mem =(e@mem);e—(memQe);e idmem

Compositional state vs. CompCert memory

To preserve compositionality when concretizing abstract state,
we can use separation algebra as a relation @ C (mem x mem) x mem:

Dy D,
O

mem
Properties of interest can be expressed as simulations, for example

> idmem><mem><mem =(e@mem);e—(memQ@s);e idmem

> C|Ight(/\/’) O mem <(@e—.Coe C|Ight(/\/’)

Three dimenstions of compositionality

Simulation string diagrams can also incorporate @ as depth.

24
|

lne |

C‘ i lby [~
o 2

Ak AL

o

87

o i J1A
///;/?'/////2%

Overall, many properties of interest can be put into the form of simulation
“cubes” of the kind above, and proofs can be glued together geometrically.

Outline

Conclusion

DA 32/33

Conclusion

This is joint work with Yu Zhang, Zhong Shao and Yuting Wang.
We are hoping to use thi framework for large-scale verification applications.

Some other things we did:
» Model of certified abstraction layers within this framework

» Encapsulated state
» ClightP language with private variables

Conclusion

This is joint work with Yu Zhang, Zhong Shao and Yuting Wang.
We are hoping to use thi framework for large-scale verification applications.

Some other things we did:

» Model of certified abstraction layers within this framework
» Encapsulated state
» ClightP language with private variables

Last thoughts:

» Compositional semantics for compilers are hard but interesting

» Semantics and higher category theory can be useful for engineering

Please feel free to request our paper draft from me!
(jeremie.koenig@gmail.com)

	Introduction
	Compositional Semantics in CompCert
	A Double Category of Transition Systems
	Abstract State and Spatial Composition
	Conclusion

