Joint Distributions in Probabilistic Semantics

Dexter Kozen, Cornell University
Alexandra Silva, Cornell University
Erik Voogd, University of Oslo

MFPS 2023
Bloomington, 23 June 2023

Probabilistic Programming

- Many applications: machine learning and other statistical analyses
- Examples: Church, Anglican, Stan, Venture, ...

Probabilistic Programming

- Many applications: machine learning and other statistical analyses
- Examples: Church, Anglican, Stan, Venture, ...
- Sampling random values
- Probabilistic conditioning (Bayesian inference)

Probabilistic Programming

- Many applications: machine learning and other statistical analyses
- Examples: Church, Anglican, Stan, Venture, ...
- Sampling random values
- Probabilistic conditioning (Bayesian inference)

```
x:=normal (0,1);
y:=normal(x,1);
observe(y=1);
return(x>1);
```


Denotational Semantics

Measure theory!

- quasi-Borel spaces
- Markov kernels
- Joint measures

Denotational Semantics

Measure theory!

- quasi-Borel spaces
- Markov kernels
- Joint measures

Markov Kernels

Markov kernel $\left(X, \Sigma_{X}\right) \rightarrow\left(Y, \Sigma_{Y}\right)$ is a map $X \times \Sigma_{Y} \rightarrow[0, \infty)$ s.t.

- For fixed $x \in X, P(x,-)$ is a finite measure on Y
- For fixed $B \in \Sigma_{Y}, P(\cdot, B)$ is a measurable function on X

Probabilistic Programs as Markov Kernels

- $\mathrm{x}:=$ normal $(0,1)$ builds a measure space (\mathbb{R}, μ) (Gaussian)

Probabilistic Programs as Markov Kernels

- $\mathrm{x}:=$ normal $(0,1)$ builds a measure space (\mathbb{R}, μ) (Gaussian)
- $\mathrm{y}:=$ normal $(\mathrm{x}, 1)$ defines kernel $P: \mathbb{R} \rightarrow \mathbb{R},(x, B) \mapsto \gamma_{x, 1}(B)$

Probabilistic Programs as Markov Kernels

- $\mathrm{x}:=$ normal $(0,1)$ builds a measure space (\mathbb{R}, μ) (Gaussian)
- $\mathrm{y}:=\mathrm{normal}(\mathrm{x}, 1)$ defines kernel $P: \mathbb{R} \rightarrow \mathbb{R},(x, B) \mapsto \gamma_{x, 1}(B)$ and builds

$$
\nu(B)=\int_{x \in X} P(x, B) d \mu
$$

The Category of Kernels

The category Krn

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are Markov kernels P such that

$$
\nu(B)=\int_{x \in X} P(x, B) d \mu
$$

The Category of Kernels

The category Krn

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are Markov kernels P such that

$$
\nu(B)=\int_{x \in X} P(x, B) d \mu
$$

For example:

- Let $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ such that $\sum_{i} \boldsymbol{x}(i)=1$ and $\sum_{i} \boldsymbol{y}(i)=1$
- $(n, \mathcal{P}(n), \boldsymbol{x})$ and $(n, \mathcal{P}(n), \boldsymbol{y})$ are objects (probability spaces)

The Category of Kernels

The category Krn

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are Markov kernels P such that

$$
\nu(B)=\int_{x \in X} P(x, B) d \mu
$$

For example:

- Let $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ such that $\sum_{i} \boldsymbol{x}(i)=1$ and $\sum_{i} \boldsymbol{y}(i)=1$
- $(n, \mathcal{P}(n), \boldsymbol{x})$ and $(n, \mathcal{P}(n), \boldsymbol{y})$ are objects (probability spaces)
- Arrows from \boldsymbol{x} to \boldsymbol{y} are matrices $A \in[0,1]^{n \times n}$ such that $\boldsymbol{y}=A^{T} \boldsymbol{x}$

$$
\boldsymbol{y}(j)=\sum_{i \in n} A(i, j) \cdot \boldsymbol{x}(i)
$$

Composition in Krn

Bayesian Inference in Krn

- Krn is symmetric monoidal closed

Bayesian Inference in Krn

- Krn is symmetric monoidal closed
- Krn is a dagger category, where $(-)^{\dagger}$ is Bayesian inversion

$$
(Q \circ P)^{\dagger}=P^{\dagger} \circ Q^{\dagger} \quad\left(P^{\dagger}\right)^{\dagger}=P
$$

Bayesian Inference in Krn

- Krn is symmetric monoidal closed
- Krn is a dagger category, where $(-)^{\dagger}$ is Bayesian inversion

$$
(Q \circ P)^{\dagger}=P^{\dagger} \circ Q^{\dagger} \quad\left(P^{\dagger}\right)^{\dagger}=P
$$

```
x:=normal (0,1);
y:=normal(x,1);
observe(y=1);
return(x>1);
```


Bayesian Inference in Krn

- Krn is symmetric monoidal closed
- Krn is a dagger category, where $(-)^{\dagger}$ is Bayesian inversion

$$
(Q \circ P)^{\dagger}=P^{\dagger} \circ Q^{\dagger} \quad\left(P^{\dagger}\right)^{\dagger}=P
$$

```
x:=normal (0,1);
y:=normal(x,1);
observe(y=1);
return(x>1);
```


Bayesian Inference in Krn

- Krn is symmetric monoidal closed
- Krn is a dagger category, where $(-)^{\dagger}$ is Bayesian inversion

$$
(Q \circ P)^{\dagger}=P^{\dagger} \circ Q^{\dagger} \quad\left(P^{\dagger}\right)^{\dagger}=P
$$

```
x:=normal (0,1);
y:=normal(x,1);
observe(y=1);
return(x>1);
```


Bayesian Inference in Krn

- Krn is symmetric monoidal closed
- Krn is a dagger category, where $(-)^{\dagger}$ is Bayesian inversion

$$
(Q \circ P)^{\dagger}=P^{\dagger} \circ Q^{\dagger} \quad\left(P^{\dagger}\right)^{\dagger}=P
$$

For $P: X \rightarrow Y$ a kernel, let
(1) $\gamma(A \times B):=\int_{x \in X} \mathbb{1}_{A}(x) \cdot P(x, B) d \mu$ be a joint measure on $X \times Y$

- γ has marginals μ and ν
(2) Let Q be the disintegration of γ along π_{Y}
(3) Define $P^{\dagger}:=\pi_{X} \circ Q$

A Category of Joint Distributions

The category PRel

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are joint measures

$$
\gamma: \Sigma_{X} \otimes \Sigma_{Y} \rightarrow \mathbb{R}_{+}
$$

such that $\gamma(-\times Y) \ll \mu$ and $\gamma(X \times-) \ll \nu$

A Category of Joint Distributions

The category PRel

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are joint measures

$$
\gamma: \Sigma_{X} \otimes \Sigma_{Y} \rightarrow \mathbb{R}_{+}
$$

such that $\gamma(-\times Y) \ll \mu$ and $\gamma(X \times-) \ll \nu$
$\left(X, \Sigma_{X}, \mu\right)$ and $\left(X, \Sigma_{X}, \mu^{\prime}\right)$ are isomorphic iff $\mu \ll \mu^{\prime}$ and $\mu^{\prime} \ll \mu$

A Category of Joint Distributions

The category PRel

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are joint measures

$$
\gamma: \Sigma_{X} \otimes \Sigma_{Y} \rightarrow \mathbb{R}_{+}
$$

such that $\gamma(-\times Y)=\mu$ and $\gamma(X \times-)=\nu$
$\left(X, \Sigma_{X}, \mu\right)$ and $\left(X, \Sigma_{X}, \mu^{\prime}\right)$ are isomorphic iff $\mu \ll \mu^{\prime}$ and $\mu^{\prime} \ll \mu$

A Category of Joint Distributions

The category PRel

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are joint measures

$$
\gamma: \Sigma_{X} \otimes \Sigma_{Y} \rightarrow \mathbb{R}_{+}
$$

such that $\gamma(-\times Y)=\mu$ and $\gamma(X \times-)=\nu$

Example:

- $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ discrete probability spaces
- Joint measure $\alpha \in[0,1]^{n \times n}$ with $\alpha 1=\boldsymbol{x}$ and $\alpha^{T} 1=\boldsymbol{y}$

A Category of Joint Distributions

The category PRel

- Objects are measure spaces $\left(X, \Sigma_{X}, \mu\right),\left(Y, \Sigma_{Y}, \nu\right), \ldots$
- Arrows from $\left(X, \Sigma_{X}, \mu\right)$ to $\left(Y, \Sigma_{Y}, \nu\right)$ are joint measures

$$
\gamma: \Sigma_{X} \otimes \Sigma_{Y} \rightarrow \mathbb{R}_{+}
$$

such that $\gamma(-\times Y)=\mu$ and $\gamma(X \times-)=\nu$

Example:

- $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ discrete probability spaces
- Joint measure $\alpha \in[0,1]^{n \times n}$ with $\alpha 1=\boldsymbol{x}$ and $\alpha^{T} 1=\boldsymbol{y}$

$$
\forall i . \boldsymbol{x}(i)=\sum_{j \in n} \alpha(i, j) \quad \forall j . \boldsymbol{y}(j)=\sum_{i \in n} \alpha(i, j)
$$

Krn and PRel are Isomorphic

$$
\mathrm{Krn} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathrm{PRel}
$$

- For a kernel $P:(X, \mu) \rightarrow(Y, \nu)$,

$$
F P(A \times B)=\int_{x \in X} \mathbb{1}_{A}(x) \cdot P(x, B) d \mu
$$

Krn and PRel are Isomorphic

$$
\mathrm{Krn} \underset{{ }^{2}}{\stackrel{F}{\rightleftarrows}} \mathrm{PRel}
$$

- For a kernel $P:(X, \mu) \rightarrow(Y, \nu)$,

$$
F P(A \times B)=\int_{x \in X} \mathbb{1}_{A}(x) \cdot P(x, B) d \mu
$$

- Conversely, $G \gamma$ is a disintegration of γ
- The resulting kernel is unique up to a μ-nullset

Krn and PRel are Isomorphic

$$
\mathrm{Krn} \underset{{ }^{2}}{\stackrel{F}{\rightleftarrows}} \mathrm{PRel}
$$

- For a kernel $P:(X, \mu) \rightarrow(Y, \nu)$,

$$
F P(A \times B)=\int_{x \in X} \mathbb{1}_{A}(x) \cdot P(x, B) d \mu
$$

- Conversely, $G \gamma$ is a disintegration of γ
- The resulting kernel is unique up to a μ-nullset
- Disintegration only possible if the underlying space is Polish

Krn and PRel are Isomorphic

$$
\begin{gathered}
\mathrm{Krn} \underset{G}{\stackrel{F}{<}} \text { PRel } \\
F P(A \times B)=\int_{x \in X} \mathbb{1}_{A}(x) \cdot P(x, B) d \mu
\end{gathered}
$$

Example:

- Let $A \in[0,1]^{n \times n}$ be a kernel such that $A^{T} \boldsymbol{x}=\boldsymbol{y}$

$$
F A=\operatorname{diag}(x) \cdot A=\left(\begin{array}{cccc}
a_{11} x_{1} & a_{12} x_{1} & \ldots & a_{1 n} x_{1} \\
a_{21} x_{2} & a_{22} x_{2} & \ldots & a_{2 n} x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} x_{n} & a_{n 2} x_{n} & \ldots & a_{n n} x_{n}
\end{array}\right)
$$

- $F A$ has marginals $(F A) 1=\boldsymbol{x}$ and $(F A)^{T} 1=\boldsymbol{y}$

Composition in PRel

$$
\text { PRel } \quad(X, \mu) \xrightarrow{\gamma}(Y, \nu) \xrightarrow{\theta}(Z, \rho)
$$

Composition in PRel

Composition in PRel

(1) Disintegrate γ to P, and θ to Q

Composition in PRel

(1) Disintegrate γ to P, and θ to Q
(2) Compose P and Q in Krn

Composition in PRel

(1) Disintegrate γ to P, and θ to Q
(2) Compose P and Q in Krn
(3) Reintegrate $Q \circ P$ to a joint measure

A New Category of Joint Distributions

The category JDist:

- Objects are any measure space $\left(X, \Sigma_{X}, \mu\right)$
- Arrows $\theta:(X, \mu) \rightarrow(Y, \nu)$ are joint measures with marginals μ and ν

How to compose?

Composition in JDist by Example

- Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be probability measures on $n=3$
- Let $\boldsymbol{x} \xrightarrow{A} \boldsymbol{y}$ and $\boldsymbol{y} \xrightarrow{B} \boldsymbol{z}$ be kernels, so $A^{T} \boldsymbol{x}=\boldsymbol{y}$ and $B^{T} \boldsymbol{y}=\boldsymbol{z}$

Composition in JDist by Example

- Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be probability measures on $n=3$
- Let $\boldsymbol{x} \xrightarrow{A} \boldsymbol{y}$ and $\boldsymbol{y} \xrightarrow{B} \boldsymbol{z}$ be kernels, so $A^{T} \boldsymbol{x}=\boldsymbol{y}$ and $B^{T} \boldsymbol{y}=\boldsymbol{z}$
- The corresponding joint measures are

$$
\widehat{A}=\left(\begin{array}{lll}
A_{1,1} \boldsymbol{x}_{1} & A_{1,2} \boldsymbol{x}_{1} & A_{1,3} \boldsymbol{x}_{1} \\
A_{2,1} \boldsymbol{x}_{2} & A_{2,2} \boldsymbol{x}_{2} & A_{2,3} \boldsymbol{x}_{2} \\
A_{3,1} \boldsymbol{x}_{3} & A_{3,2} \boldsymbol{x}_{3} & A_{3,3} \boldsymbol{x}_{3}
\end{array}\right) \widehat{B}=\left(\begin{array}{lll}
B_{1,1} \boldsymbol{y}_{1} & B_{1,2} \boldsymbol{y}_{1} & B_{1,3} \boldsymbol{y}_{1} \\
B_{2,1} \boldsymbol{y}_{2} & B_{2,2} \boldsymbol{y}_{2} & B_{2,3} \boldsymbol{y}_{2} \\
B_{3,1} \boldsymbol{y}_{3} & B_{3,2} \boldsymbol{y}_{3} & B_{3,3} \boldsymbol{y}_{3}
\end{array}\right)
$$

Composition in JDist by Example

- Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be probability measures on $n=3$
- Let $\boldsymbol{x} \xrightarrow{A} \boldsymbol{y}$ and $\boldsymbol{y} \xrightarrow{B} \boldsymbol{z}$ be kernels, so $A^{T} \boldsymbol{x}=\boldsymbol{y}$ and $B^{T} \boldsymbol{y}=\boldsymbol{z}$
- The corresponding joint measures are

$$
\widehat{A}=\left(\begin{array}{lll}
A_{1,1} \boldsymbol{x}_{1} & A_{1,2} \boldsymbol{x}_{1} & A_{1,3} \boldsymbol{x}_{1} \\
A_{2,1} \boldsymbol{x}_{2} & A_{2,2} \boldsymbol{x}_{2} & A_{2,3} \boldsymbol{x}_{2} \\
A_{3,1} \boldsymbol{x}_{3} & A_{3,2} \boldsymbol{x}_{3} & A_{3,3} \boldsymbol{x}_{3}
\end{array}\right) \widehat{B}=\left(\begin{array}{lll}
B_{1,1} \boldsymbol{y}_{1} & B_{1,2} \boldsymbol{y}_{1} & B_{1,3} \boldsymbol{y}_{1} \\
B_{2,1} \boldsymbol{y}_{2} & B_{2,2} \boldsymbol{y}_{2} & B_{2,3} \boldsymbol{y}_{2} \\
B_{3,1} \boldsymbol{y}_{3} & B_{3,2} \boldsymbol{y}_{3} & B_{3,3} \boldsymbol{y}_{3}
\end{array}\right)
$$

- For the kernel composition $C=A B$ we have $C_{i, j}=\sum_{k=1}^{3} A_{i, k} B_{k, j}$
- Its corresponding joint measure is \widehat{C} with $\widehat{C}_{i j}=\sum_{k=1}^{3} A_{i, k} B_{k, j} \boldsymbol{x}_{i}$

Composition in JDist by Example

- Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be probability measures on $n=3$
- Let $\boldsymbol{x} \xrightarrow{A} \boldsymbol{y}$ and $\boldsymbol{y} \xrightarrow{B} \boldsymbol{z}$ be kernels, so $A^{T} \boldsymbol{x}=\boldsymbol{y}$ and $B^{T} \boldsymbol{y}=\boldsymbol{z}$
- The corresponding joint measures are

$$
\widehat{A}=\left(\begin{array}{lll}
A_{1,1} \boldsymbol{x}_{1} & A_{1,2} \boldsymbol{x}_{1} & A_{1,3} \boldsymbol{x}_{1} \\
A_{2,1} \boldsymbol{x}_{2} & A_{2,2} \boldsymbol{x}_{2} & A_{2,3} \boldsymbol{x}_{2} \\
A_{3,1} \boldsymbol{x}_{3} & A_{3,2} \boldsymbol{x}_{3} & A_{3,3} \boldsymbol{x}_{3}
\end{array}\right) \widehat{B}=\left(\begin{array}{lll}
B_{1,1} \boldsymbol{y}_{1} & B_{1,2} \boldsymbol{y}_{1} & B_{1,3} \boldsymbol{y}_{1} \\
B_{2,1} \boldsymbol{y}_{2} & B_{2,2} \boldsymbol{y}_{2} & B_{2,3} \boldsymbol{y}_{2} \\
B_{3,1} \boldsymbol{y}_{3} & B_{3,2} \boldsymbol{y}_{3} & B_{3,3} \boldsymbol{y}_{3}
\end{array}\right)
$$

- For the kernel composition $C=A B$ we have $C_{i, j}=\sum_{k=1}^{3} A_{i, k} B_{k, j}$
- Its corresponding joint measure is \widehat{C} with $\widehat{C}_{i j}=\sum_{k=1}^{3} A_{i, k} B_{k, j} \boldsymbol{x}_{i}$
- Want: $D=\widehat{B} \star \widehat{A}$ such that $D=\widehat{C}$
- Matrix multiplication gives

$$
D_{i, j}=(\widehat{A} \widehat{B})_{i, j}=\left(\sum_{k} \widehat{A}_{i, k} \widehat{B}_{k, j}\right)_{i, j}=\left(\sum_{k}\left(A_{i, k} \boldsymbol{x}_{i}\right)\left(B_{k, j} \boldsymbol{y}_{k}\right)\right)_{i, j}
$$

Composition in JDist by Example

- Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ be probability measures on $n=3$
- Let $\boldsymbol{x} \xrightarrow{A} \boldsymbol{y}$ and $\boldsymbol{y} \xrightarrow{B} \boldsymbol{z}$ be kernels, so $A^{T} \boldsymbol{x}=\boldsymbol{y}$ and $B^{T} \boldsymbol{y}=\boldsymbol{z}$
- The corresponding joint measures are

$$
\widehat{A}=\left(\begin{array}{lll}
A_{1,1} \boldsymbol{x}_{1} & A_{1,2} \boldsymbol{x}_{1} & A_{1,3} \boldsymbol{x}_{1} \\
A_{2,1} \boldsymbol{x}_{2} & A_{2,2} \boldsymbol{x}_{2} & A_{2,3} \boldsymbol{x}_{2} \\
A_{3,1} \boldsymbol{x}_{3} & A_{3,2} \boldsymbol{x}_{3} & A_{3,3} \boldsymbol{x}_{3}
\end{array}\right) \widehat{B}=\left(\begin{array}{lll}
B_{1,1} \boldsymbol{y}_{1} & B_{1,2} \boldsymbol{y}_{1} & B_{1,3} \boldsymbol{y}_{1} \\
B_{2,1} \boldsymbol{y}_{2} & B_{2,2} \boldsymbol{y}_{2} & B_{2,3} \boldsymbol{y}_{2} \\
B_{3,1} \boldsymbol{y}_{3} & B_{3,2} \boldsymbol{y}_{3} & B_{3,3} \boldsymbol{y}_{3}
\end{array}\right)
$$

- For the kernel composition $C=A B$ we have $C_{i, j}=\sum_{k=1}^{3} A_{i, k} B_{k, j}$
- Its corresponding joint measure is \widehat{C} with $\widehat{C}_{i j}=\sum_{k=1}^{3} A_{i, k} B_{k, j} \boldsymbol{x}_{i}$
- Want: $D=\widehat{B} \star \widehat{A}$ such that $D=\widehat{C}$
- Define

$$
D_{i, j}:=\left(\sum_{k, y_{k}>0} \frac{\widehat{A}_{i, k} \widehat{B}_{k, j}}{\boldsymbol{y}_{k}}\right)_{i, j}=\widehat{C}_{i, j}
$$

Composition in JDist

$$
D(i, j)=\sum_{k, \boldsymbol{y}(k)>0} \frac{\widehat{A}(i, k) \cdot \widehat{B}(k, j)}{\boldsymbol{y}(k)}
$$

- Let $(X, \mu),(Y, \nu)$, and (Z, ρ) be measure spaces
- Let $\theta:(X, \mu) \rightarrow(Y, \nu)$ and $\eta:(Y, \nu) \rightarrow(Z, \rho)$ be arrows

Composition in JDist

$$
D(i, j)=\sum_{k, \boldsymbol{y}(k)>0} \frac{\widehat{A}(i, k) \cdot \widehat{B}(k, j)}{\boldsymbol{y}(k)}
$$

- Let $(X, \mu),(Y, \nu)$, and (Z, ρ) be measure spaces
- Let $\theta:(X, \mu) \rightarrow(Y, \nu)$ and $\eta:(Y, \nu) \rightarrow(Z, \rho)$ be arrows
- Define

$$
(\eta \circ \theta)(A \times C)=\lim _{\mathcal{D}} \sum_{B \in \mathcal{D}, \nu(B)>0} \frac{\theta(A \times B) \cdot \eta(B \times C)}{\nu(B)}
$$

Composition in JDist

$$
D(i, j)=\sum_{k, \boldsymbol{y}(k)>0} \frac{\widehat{A}(i, k) \cdot \widehat{B}(k, j)}{\boldsymbol{y}(k)}
$$

- Let $(X, \mu),(Y, \nu)$, and (Z, ρ) be measure spaces
- Let $\theta:(X, \mu) \rightarrow(Y, \nu)$ and $\eta:(Y, \nu) \rightarrow(Z, \rho)$ be arrows
- Define

$$
(\eta \circ \theta)(A \times C)=\lim _{\mathcal{D}} \sum_{B \in \mathcal{D}, \nu(B)>0} \frac{\theta(A \times B) \cdot \eta(B \times C)}{\nu(B)}
$$

- Theorem: this limit is well-defined

Composition in JDist

$$
D(i, j)=\sum_{k, \boldsymbol{y}(k)>0} \frac{\widehat{A}(i, k) \cdot \widehat{B}(k, j)}{\boldsymbol{y}(k)}
$$

- Let $(X, \mu),(Y, \nu)$, and (Z, ρ) be measure spaces
- Let $\theta:(X, \mu) \rightarrow(Y, \nu)$ and $\eta:(Y, \nu) \rightarrow(Z, \rho)$ be arrows
- Define

$$
(\eta \circ \theta)(A \times C)=\lim _{\mathcal{D}} \sum_{B \in \mathcal{D}, \nu(B)>0} \frac{\theta(A \times B) \cdot \eta(B \times C)}{\nu(B)}
$$

- Theorem: this limit is well-defined
- Theorem: this extends to a measure on $X \times Z$

Composition in JDist

$$
D(i, j)=\sum_{k, \boldsymbol{y}(k)>0} \frac{\widehat{A}(i, k) \cdot \widehat{B}(k, j)}{\boldsymbol{y}(k)}
$$

- Let $(X, \mu),(Y, \nu)$, and (Z, ρ) be measure spaces
- Let $\theta:(X, \mu) \rightarrow(Y, \nu)$ and $\eta:(Y, \nu) \rightarrow(Z, \rho)$ be arrows
- Define

$$
(\eta \circ \theta)(A \times C)=\lim _{\mathcal{D}} \sum_{B \in \mathcal{D}, \nu(B)>0} \frac{\theta(A \times B) \cdot \eta(B \times C)}{\nu(B)}
$$

- Theorem: this limit is well-defined
- Theorem: this extends to a measure on $X \times Z$
- Theorem: Krn embeds faithfully into JDist

Discussion

- JDist has a dagger: $\theta^{\dagger}(B \times A)=\theta(A \times B)$
- Composition directly defined; no disintegration
- Measure spaces need not be standard Borel

Joint Distributions in Probabilistic Semantics

Dexter Kozen, Cornell University
Alexandra Silva, Cornell University
Erik Voogd, University of Oslo

MFPS 2023
Bloomington, 23 June 2023

