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Abstract

We introduce a game model for an Algol-like programming language with primitives for parallel composition and
synchronization on semaphores. The semantics is based on a simplified version of Hyland—Ong-style games and it emphasizes
the intuitive connection between the concurrent nature of games and that of computation. The model is fully abstract for may-
equivalence.
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-ORK AND WAIT
(VIA NON-EXAMPLES)

FORK : In any prefix s’ = --- ¢ -n of s, the question ¢ must be pending when m is played.
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WAIT : In any prefix s’ = --- ¢~ -u of s, all questions justified by ¢ must be answered.
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D STRATEGIES

smimos € 0 smomys’ is a play —(m; is an O-move and ms is an P-move)

SmomiS’' € o

Saturation is about capturing dependencies
of P-moves on O-moves.
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SATURATING AUTOMATA

» Automata over Infinite (forest-shaped) alphabets

Accept words over the alphabet X x D, where
e Y is a finite alphabet,

e D is a countably infinite forest.

(9,do) (run’,dy) (run’*,dy) (done’*, d3) (run®,d}) (done®,d}) (done’, dy) (1,do)



WORDS AS PLAYS
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L € (X x D)* is saturated iff, for any w € L and in-
== wl(tl,dl)(tg,dg)wg e L then

dependent di,d», if w

wl(tg, dg)(tl, dl)’LUQ e L whenever 1 € Zp or t9 € Zo.

Languages accepted by saturating automata will be saturated.



SATURATING AUTOMATA (SA

e X is partitioned into O/P-questions and O/P-answers.

e Configurations are finite subtrees of D annotated with extra
information.

e The tree evolves: questions add leaves (FORK), answers re-
move leaves (WAIT).
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URATING AUTOMATA (SATA)

e Fach even-level node is annotated with a multiset of control
states, and zero or more memory cells. This information will
evolve at run time.

e Odd levels are annotated with single control states, which do
not change.
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SUMMARY

SATA grew out of earlier attempts to model the game semantics of FICA:
joint work with Ranko Lazi¢ and Igor Walukiewicz [FoSSaCS/LICS 2021].

The decidability results showed therein carry over to SATA.

The models mentioned above do not satisfy saturation, because they sup-
port more permissive communication between levels.

— FoSSaCS 2021 allowed for unrestricted access to the whole branch.

— LICS 2021 allowed for state-based communication between children
and parents, i.e. indirect communication between children.

SATA have been designed to be more restrictive in that regard: commu-
nication through control states is minimal and restricted to initialization
and finalization. All remaining communications are memory-based.

SATA provide a more intrinsic model of higher-order concurrency, poten-
tially amenable to methods based on partial-order reduction.

FICA programs in normal form can be translated to SATA in polynomial
time, avoiding exponential blow-ups of other translations.



