
Andrzej Murawski
University of Oxford

SATURATING AUTOMATA
FOR GAME SEMANTICS

Alex Dixon
University of Warwick

FICA
� $ skip : com � $ div✓ : ✓

0 § i § max
� $ i : exp

� $ M : exp

� $ oppMq : exp

� $ M : com � $ N : �

� $ M ;N : �

� $ M : com � $ N : com
� $ M ||N : com

� $ M : exp � $ N1, N2 : �

� $ if M thenN1 elseN2 : �

� $ M : exp � $ N : com

� $ whileM doN : com

�, x : ✓ $ x : ✓

�, x : ✓ $ M : ✓
1

� $ �x.M : ✓ Ñ ✓
1

� $ M : ✓ Ñ ✓
1

� $ N : ✓

� $ MN : ✓
1

� $ M : var � $ N : exp
� $ M :“N : com

� $ M : var
� $!M : exp

�, x : var $ M : com, exp

� $ newvarx inM : com, exp

� $ M : sem
� $ releasepMq : com

� $ M : sem
� $ grabpMq : com

�, s : sem $ M : com, exp

� $ newsem s inM : com, exp

Figure 1: FICA typing rules

d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

l
p1q aO

››Ñl
p0q
` d0ptl

p0q
` u, 1q

d
1
1pr

p1q
q

r
p1q aO

››Ñr
p0q
`` d0ptl

p0q
` , r

p0q
``u, 1q

tl
p0q
` , r

p0q
``u

aP

››Ñ:

9

Dixon, Murawski

V $ skip||skip, s ÝÑ skip, s V $ if i thenN1 elseN2, s ÝÑ N1, s, i ‰ 0

V $ skip; c, s ÝÑ c, s V $ if 0 thenN1 elseN2, s ÝÑ N2, s

V $ oppiq, s ÝÑ xoppiq, s V $ pλx.MqN, s ÝÑ M rN{xs, s

V $ newvarx :“ i in c, s ÝÑ c, s V $!v, s b pv ÞÑ iq ÝÑ i, s b pv ÞÑ iq

V $ newsemx :“ i in c, s ÝÑ c, s V $ v :“ i1, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ i1q

V $ grabpvq, s b pv ÞÑ 0q ÝÑ skip, s b pv ÞÑ 1q

V $ releasepvq, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ 0q, i ‰ 0

V $ whileM doN, s ÝÑ if M then pN ;whileM doNq else skip, s

Fig. 2. Reduction rules for FICA

Two terms of the same type and with the same free variables are equivalent if they cannot be distinguished
with respect to termination by any context: for all contexts C such that $ CrM1s : com, we have CrM1só
if and only if CrM2s ó. Using game semantics, one can reduce – to equality of the associated sets of
complete plays (Theorem ??).

Example 2.1 Consider the term

f : com Ñ com, c : com $ newvarx in pf px :“ 1q || if !x then c else divcomq; !x : exp

The free variable f can be viewed as representing an unknown function, to be bound to concrete code by
a context. Since we work in a call-by-name setting, that function may evaluate its argument arbitrarily
many times, including none. If the function does not use its argument, the value of x will always be 0 (we
assume that local variables are initialised to 0) and the term will never terminate, because the right term
inside || will always diverge, preventing the whole term from terminating. On the other hand, as long as
f evaluates its argument at least once and terminates, and the right-hand side of || is scheduled after the
assignment x :“ 1 (and code bound to c terminates) then the whole term will terminate too, returning 1.

In the next section we sketch the game semantics of FICA.

3 Game semantics

In this section, we briefly present the fully abstract game model for FICA from [?], which we rely on in the
paper. Game semantics for FICA involves two players, called Opponent (O) and Proponent (P), and the
sequences of moves made by them can be viewed as interactions between a program (P) and a surrounding
context (O). The games are defined using an auxiliary concept of an arena.

Definition 3.1 An arena A is a tuple xMA,λA,$A, IAy, where:

‚ MA is a set of moves;
‚ λA : MA Ñ tO,P u ˆ tQ,Au is a function determining for each m P MA whether it is an Opponent

or a Proponent move, and a question or an answer ; we write λOP
A ,λQA

A for the composite of λA with
respectively the first and second projections;

‚ $A is a binary relation on MA, called enabling, satisfying: if m $A n then λOP
A pmq ‰ λOP

A pnq and

λQA
A pmq “ Q;

‚ IA Ď MA is a set of initial moves such that λApIAq Ď tpO,Qqu and $A XpMA ˆ IAq “ H (no enablers).

Note that an initial move must be an O-question (OQ). In arenas used to interpret base types all

4

EXAMPLE

Dixon, Murawski

V $ skip||skip, s ÝÑ skip, s V $ if i thenN1 elseN2, s ÝÑ N1, s, i ‰ 0

V $ skip; c, s ÝÑ c, s V $ if 0 thenN1 elseN2, s ÝÑ N2, s

V $ oppiq, s ÝÑ xoppiq, s V $ pλx.MqN, s ÝÑ M rN{xs, s

V $ newvarx :“ i in c, s ÝÑ c, s V $!v, s b pv ÞÑ iq ÝÑ i, s b pv ÞÑ iq

V $ newsemx :“ i in c, s ÝÑ c, s V $ v :“ i1, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ i1q

V $ grabpvq, s b pv ÞÑ 0q ÝÑ skip, s b pv ÞÑ 1q

V $ releasepvq, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ 0q, i ‰ 0

V $ whileM doN, s ÝÑ if M then pN ;whileM doNq else skip, s

Fig. 2. Reduction rules for FICA

Two terms of the same type and with the same free variables are equivalent if they cannot be distinguished
with respect to termination by any context: for all contexts C such that $ CrM1s : com, we have CrM1só
if and only if CrM2s ó. Using game semantics, one can reduce – to equality of the associated sets of
complete plays (Theorem ??).

Example 2.1 Consider the term

f : com Ñ com, c : com $ newvarx in pf px :“ 1q || if !x then c else divcomq; !x : exp

The free variable f can be viewed as representing an unknown function, to be bound to concrete code by
a context. Since we work in a call-by-name setting, that function may evaluate its argument arbitrarily
many times, including none. If the function does not use its argument, the value of x will always be 0 (we
assume that local variables are initialised to 0) and the term will never terminate, because the right term
inside || will always diverge, preventing the whole term from terminating. On the other hand, as long as
f evaluates its argument at least once and terminates, and the right-hand side of || is scheduled after the
assignment x :“ 1 (and code bound to c terminates) then the whole term will terminate too, returning 1.

In the next section we sketch the game semantics of FICA.

3 Game semantics

In this section, we briefly present the fully abstract game model for FICA from [?], which we rely on in the
paper. Game semantics for FICA involves two players, called Opponent (O) and Proponent (P), and the
sequences of moves made by them can be viewed as interactions between a program (P) and a surrounding
context (O). The games are defined using an auxiliary concept of an arena.

Definition 3.1 An arena A is a tuple xMA,λA,$A, IAy, where:

‚ MA is a set of moves;
‚ λA : MA Ñ tO,P u ˆ tQ,Au is a function determining for each m P MA whether it is an Opponent

or a Proponent move, and a question or an answer ; we write λOP
A ,λQA

A for the composite of λA with
respectively the first and second projections;

‚ $A is a binary relation on MA, called enabling, satisfying: if m $A n then λOP
A pmq ‰ λOP

A pnq and

λQA
A pmq “ Q;

‚ IA Ď MA is a set of initial moves such that λApIAq Ď tpO,Qqu and $A XpMA ˆ IAq “ H (no enablers).

Note that an initial move must be an O-question (OQ). In arenas used to interpret base types all

4

GAME MODEL

Annals of Pure and Applied Logic 151 (2008) 89–114
www.elsevier.com/locate/apal

Angelic semantics of fine-grained concurrencyI

Dan R. Ghicaa, Andrzej S. Murawskib,⇤

a
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

b
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Available online 26 November 2007

Abstract

We introduce a game model for an Algol-like programming language with primitives for parallel composition and
synchronization on semaphores. The semantics is based on a simplified version of Hyland–Ong-style games and it emphasizes
the intuitive connection between the concurrent nature of games and that of computation. The model is fully abstract for may-
equivalence.
c� 2007 Elsevier B.V. All rights reserved.

Keywords: Shared-memory concurrency; Game semantics; May-equivalence

1. Introduction

Message-passing and shared memory are the two major paradigms of concurrent programming. The latter is closer
to the underlying machine model, which makes it both more popular and more “low-level” (and more error-prone)
than the former. This constitutes very good motivation for the study of such languages. Concurrent shared-variable
programming languages themselves can come in several varieties:

• Fine-grained languages have designated atomic actions which are implemented directly by the hardware on which
the program is executed. In contrast, coarse-grained programming languages can specify sequences of actions to
appear as indivisible.

• Languages with static process creation execute statements in parallel and then synchronize on the completion of
all the statements. Conversely, dynamic process creation languages can create wholly autonomous new threads of
execution.

• The procedure invocation mechanism can be call-by-name or call-by-value.

Any combination of the features above is possible and yields interesting programming languages. In this paper we
consider fine-grained, static, call-by-name languages. We found that this particular set of choices is most naturally
suited to the particular semantic model we intend to present.

I An extended abstract of this article was presented at FoSSaCS’04.
⇤ Corresponding author.

E-mail address: Andrzej.Murawski@comlab.ox.ac.uk (A.S. Murawski).

0168-0072/$ - see front matter c� 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2007.10.005

ARENAS

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

PLAYS

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

FORK AND WAIT
(VIA NON-EXAMPLES)

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

1

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

1

Dixon, Murawski

Definition 3.2 The set PA of plays over A consists of the justified sequences s over A that satisfy the
two conditions below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions justified by q must be answered.

It is easy to check that the justified sequences s1, s2 from ???? are plays.

Remark 3.3 It is worth noting that the notion of play is stable with respect to swaps of adjacent moves
except when the swaps involve occurrences of moves m1m2 related by the pointer structure: m1m2 or
m1,m2 are answers to questions q1, q2 such that q2 justifies q1.

A subset σ of PA is O-complete if s P σ and so P PA imply so P σ, when o is an O-move.

Definition 3.4 A strategy on A, written σ : A, is a prefix-closed O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a FICA-term. Let us write !Γ $ θ" for the
arena !θ1" ˆ ¨ ¨ ¨ ˆ !θl" ñ !θ". In [?] it is shown how to assign a strategy on !Γ $ θ" to any FICA-
term Γ $ M : θ. We write !Γ $ M" to refer to that strategy. For example, !Γ $ div" “ tε, runu and
!Γ $ skip" “ tε, run, run doneu. The plays s1, s2 turn out to belong to the strategy that interprets the
term from Example ??. Given a strategy σ, we denote by comppσq the set of non-empty complete plays
of σ, i.e. those in which all questions have been answered. For example, s1 (??) is not complete, but s2
(??) is.

The game-semantic interpretation !¨ ¨ ¨" can be viewed as a faithful record of all possible interactions be-
tween the term and its contexts. It provides a fully abstract model in the sense that contextual equivalence
is characterized by the sets of non-empty complete plays.

Theorem 3.5 ([?]) We have Γ $ M1 – M2 if and only if compp!Γ $ M1"q “ compp!Γ $ M2"q.

The strategies corresponding to FICA terms turn out to be closed under swaps of adjacent moves as long
as the earlier move is a P-move or the later one is an O-move, and the swap produces a play. Formally,
for any arena A, let us define ľĎ PA ˆ PA to be the least preorder satisfying smo s1 ľ s oms1 and
s pms1 ľ smp s1, where m, o, p range over moves, O-moves and P-moves respectively. In the pairs of
plays above, we assume that, during a swap, the justification pointers from the two moves also move with
them.

Example 3.6 Consider the following play.

s3 “ q runf runf1 runc donec donef1 donef 1

O P O P P OO P

Observe that s2 ľ s3, where s2 is the play from ??, because the P-move donef1 moved to the right past a
P-move (runc) and an O-move (donec). In contrast, we do not have s3 ľ s2, as this would involve moving
a P-move (donef1) left past an O-move (donec).

Example 3.7 Consider the plays s4, s5 given below (in the arena !com Ñ com Ñ com"), which corre-
spond to parallel and sequential composition respectively. Observe that s4 ľ s5. Note that the witnessing
swap involves swapping run2 (P-move) with done1 (O-move), which is permitted by the definition of ľ.

s4 “ run run1 run2 done1 done2 done
O P P O O P

s5 “ run run1 done1 run2 done2 done
O P O P O P

Definition 3.8 A strategy σ : A is saturated if, for all s, s1 P PA, if s P σ and s ľ s1 then s1 P σ.

6

Dixon, Murawski

Definition 3.2 The set PA of plays over A consists of the justified sequences s over A that satisfy the
two conditions below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions justified by q must be answered.

It is easy to check that the justified sequences s1, s2 from ???? are plays.

Remark 3.3 It is worth noting that the notion of play is stable with respect to swaps of adjacent moves
except when the swaps involve occurrences of moves m1m2 related by the pointer structure: m1m2 or
m1,m2 are answers to questions q1, q2 such that q2 justifies q1.

A subset σ of PA is O-complete if s P σ and so P PA imply so P σ, when o is an O-move.

Definition 3.4 A strategy on A, written σ : A, is a prefix-closed O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a FICA-term. Let us write !Γ $ θ" for the
arena !θ1" ˆ ¨ ¨ ¨ ˆ !θl" ñ !θ". In [?] it is shown how to assign a strategy on !Γ $ θ" to any FICA-
term Γ $ M : θ. We write !Γ $ M" to refer to that strategy. For example, !Γ $ div" “ tε, runu and
!Γ $ skip" “ tε, run, run doneu. The plays s1, s2 turn out to belong to the strategy that interprets the
term from Example ??. Given a strategy σ, we denote by comppσq the set of non-empty complete plays
of σ, i.e. those in which all questions have been answered. For example, s1 (??) is not complete, but s2
(??) is.

The game-semantic interpretation !¨ ¨ ¨" can be viewed as a faithful record of all possible interactions be-
tween the term and its contexts. It provides a fully abstract model in the sense that contextual equivalence
is characterized by the sets of non-empty complete plays.

Theorem 3.5 ([?]) We have Γ $ M1 – M2 if and only if compp!Γ $ M1"q “ compp!Γ $ M2"q.

The strategies corresponding to FICA terms turn out to be closed under swaps of adjacent moves as long
as the earlier move is a P-move or the later one is an O-move, and the swap produces a play. Formally,
for any arena A, let us define ľĎ PA ˆ PA to be the least preorder satisfying smo s1 ľ s oms1 and
s pms1 ľ smp s1, where m, o, p range over moves, O-moves and P-moves respectively. In the pairs of
plays above, we assume that, during a swap, the justification pointers from the two moves also move with
them.

Example 3.6 Consider the following play.

s3 “ q runf runf1 runc donec donef1 donef 1

O P O P P OO P

Observe that s2 ľ s3, where s2 is the play from ??, because the P-move donef1 moved to the right past a
P-move (runc) and an O-move (donec). In contrast, we do not have s3 ľ s2, as this would involve moving
a P-move (donef1) left past an O-move (donec).

Example 3.7 Consider the plays s4, s5 given below (in the arena !com Ñ com Ñ com"), which corre-
spond to parallel and sequential composition respectively. Observe that s4 ľ s5. Note that the witnessing
swap involves swapping run2 (P-move) with done1 (O-move), which is permitted by the definition of ľ.

s4 “ run run1 run2 done1 done2 done
O P P O O P

s5 “ run run1 done1 run2 done2 done
O P O P O P

Definition 3.8 A strategy σ : A is saturated if, for all s, s1 P PA, if s P σ and s ľ s1 then s1 P σ.

6

SATURATED STRATEGIES

Saturation is about capturing dependencies
of P-moves on O-moves.

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1

P � sm2m1s
1
is a play (m1 is a P-move or m2 is an O-move)

sm2m1s
1 P �

sm1m2s
1

P � sm2m1s
1
is a play (m1 is an O-move and m2 is an P-move)

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “ predpd
1
1q “ d0 and

predpd2q “ d1. The play s2 (Figure ??) can be represented by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

L Ñ p⌃ ˆ Dq˚
is saturated i↵, for any w P L and independent d1, d2, if

w “ w1pt1, d1qpt2, d2qw2 P L then w1pt2, d2qpt1, d1qw2 P L whenever t1 P ⌃P

or t2 P ⌃O.

Theorem For any SATA A, the sets TrpAq,LpAq are saturated.

1

SATURATION EXAMPLE 1

run run1 run2 done1 done2 done

O P P O O P

run run2 run1 done1 done2 done

O PP O O P

run run2 done2 run1 done1 done

O PP OO P

4

SATURATION EXAMPLE 2

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

Dixon, Murawski

Definition 3.2 The set PA of plays over A consists of the justified sequences s over A that satisfy the
two conditions below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions justified by q must be answered.

It is easy to check that the justified sequences s1, s2 from ???? are plays.

Remark 3.3 It is worth noting that the notion of play is stable with respect to swaps of adjacent moves
except when the swaps involve occurrences of moves m1m2 related by the pointer structure: m1m2 or
m1,m2 are answers to questions q1, q2 such that q2 justifies q1.

A subset σ of PA is O-complete if s P σ and so P PA imply so P σ, when o is an O-move.

Definition 3.4 A strategy on A, written σ : A, is a prefix-closed O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a FICA-term. Let us write !Γ $ θ" for the
arena !θ1" ˆ ¨ ¨ ¨ ˆ !θl" ñ !θ". In [?] it is shown how to assign a strategy on !Γ $ θ" to any FICA-
term Γ $ M : θ. We write !Γ $ M" to refer to that strategy. For example, !Γ $ div" “ tε, runu and
!Γ $ skip" “ tε, run, run doneu. The plays s1, s2 turn out to belong to the strategy that interprets the
term from Example ??. Given a strategy σ, we denote by comppσq the set of non-empty complete plays
of σ, i.e. those in which all questions have been answered. For example, s1 (??) is not complete, but s2
(??) is.

The game-semantic interpretation !¨ ¨ ¨" can be viewed as a faithful record of all possible interactions be-
tween the term and its contexts. It provides a fully abstract model in the sense that contextual equivalence
is characterized by the sets of non-empty complete plays.

Theorem 3.5 ([?]) We have Γ $ M1 – M2 if and only if compp!Γ $ M1"q “ compp!Γ $ M2"q.

The strategies corresponding to FICA terms turn out to be closed under swaps of adjacent moves as long
as the earlier move is a P-move or the later one is an O-move, and the swap produces a play. Formally,
for any arena A, let us define ľĎ PA ˆ PA to be the least preorder satisfying smo s1 ľ s oms1 and
s pms1 ľ smp s1, where m, o, p range over moves, O-moves and P-moves respectively. In the pairs of
plays above, we assume that, during a swap, the justification pointers from the two moves also move with
them.

Example 3.6 Consider the following play.

s3 “ q runf runf1 runc donec donef1 donef 1

O P O P P OO P

Observe that s2 ľ s3, where s2 is the play from ??, because the P-move donef1 moved to the right past a
P-move (runc) and an O-move (donec). In contrast, we do not have s3 ľ s2, as this would involve moving
a P-move (donef1) left past an O-move (donec).

Example 3.7 Consider the plays s4, s5 given below (in the arena !com Ñ com Ñ com"), which corre-
spond to parallel and sequential composition respectively. Observe that s4 ľ s5. Note that the witnessing
swap involves swapping run2 (P-move) with done1 (O-move), which is permitted by the definition of ľ.

s4 “ run run1 run2 done1 done2 done
O P P O O P

s5 “ run run1 done1 run2 done2 done
O P O P O P

Definition 3.8 A strategy σ : A is saturated if, for all s, s1 P PA, if s P σ and s ľ s1 then s1 P σ.

6

SATURATING AUTOMATA
• Automata over infinite (forest-shaped) alphabets

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � (m1 is a P-move or m2 is an O-move) sm2m1s

1
is a play

sm2m1s
1 P �

sm1m2s
1 P � (m1 is an O-move and m2 is an P-move) sm2m1s

1
is a play

sm2m1s
1 P �

Plays are represented by words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

1

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � (m1 is a P-move or m2 is an O-move) sm2m1s

1
is a play

sm2m1s
1 P �

sm1m2s
1 P � (m1 is an O-move and m2 is an P-move) sm2m1s

1
is a play

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

1

WORDS AS PLAYS

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � (m1 is a P-move or m2 is an O-move) sm2m1s

1
is a play

sm2m1s
1 P �

sm1m2s
1 P � (m1 is an O-move and m2 is an P-move) sm2m1s

1
is a play

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

1

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA,λBs λAñB “ rxλPO
A ,λQA

A y,λBs pλPO
A pmq “ O iff λOP

A pmq “ P q
$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ !com Ñ com" ˆ !com" ñ !exp"

O q
!
!
!

""
""
""
""
""

P runf

##
##

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example ??.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
!com" run done
!var" read i

writepiq ok

Arena OQ PA
!exp" q i
!sem" grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure ??.

We write !θ" for the arena corresponding to type θ. In Figure ??, we give (the enabling relation of)
the arena A “ p!com Ñ com" ˆ !com"q ñ !exp", which needs to be constructed to interpret the term
from Example ??. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition ??).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a
justified sequence, we say that it is pending in that sequence. In Figures ??, ?? we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � (m1 is a P-move or m2 is an O-move) sm2m1s

1
is a play

sm2m1s
1 P �

sm1m2s
1 P � (m1 is an O-move and m2 is an P-move) sm2m1s

1
is a play

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

L Ñ p⌃ ˆ Dq˚ is saturated i↵, for any w P L and in-
dependent d1, d2, if w “ w1pt1, d1qpt2, d2qw2 P L then
w1pt2, d2qpt1, d1qw2 P L whenever t1 P ⌃P or t2 P ⌃O.

Theorem For any SATA A, the sets TrpAq,LpAq are saturated.

1

SATURATED LANGUAGES

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � (m1 is a P-move or m2 is an O-move) sm2m1s

1
is a play

sm2m1s
1 P �

sm1m2s
1 P � (m1 is an O-move and m2 is an P-move) sm2m1s

1
is a play

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

L Ñ p⌃ ˆ Dq˚ is saturated i↵, for any w P L and in-
dependent d1, d2, if w “ w1pt1, d1qpt2, d2qw2 P L then
w1pt2, d2qpt1, d1qw2 P L whenever t1 P ⌃P or t2 P ⌃O.

Theorem For any SATA A, the sets TrpAq,LpAq are saturated.

1

Languages accepted by saturating automata will be saturated.

SATURATING AUTOMATA (SATA)
• ⌃ is partitioned into O/P-questions and O/P-answers.

• Configurations are finite subtrees of D annotated with extra

information.

• The tree evolves: questions add leaves (FORK), answers re-

move leaves (WAIT).

• Each even-level node is annotated with a multiset of control

states, and zero or more memory cells. This information will

evolve at run time.

• Odd levels are annotated with single control states, which does

not change.

2

q runf donef runf1

O P O O

q runf runf1 donef

O P O P

sm1m2s
1 P � sm2m1s

1
is a play (m1 is a P-move or m2 is an O-move)

sm2m1s
1 P �

sm1m2s
1 P � sm2m1s

1
is a play (m1 is an O-move and m2 is an P-move)

sm2m1s
1 P �

Accept words over the alphabet ⌃ ˆ D, where

• ⌃ is a finite alphabet,

• D is a countably infinite forest.

Suppose ⌃ consists of moves used in Figure ??, predpd0q “ K, predpd1q “
predpd1

1q “ d0 and predpd2q “ d1. The play s2 (Figure ??) can be represented

by the following word over ⌃ ˆ D:

d0

d1 d
1
1

d2

pq, d0q prunf , d1q prunf1, d2q pdonef1, d2q prunc, d1
1q pdonec, d1

1q pdonef , d1q p1, d0q

L Ñ p⌃ ˆ Dq˚
is saturated i↵, for any w P L and in-

dependent d1, d2, if w “ w1pt1, d1qpt2, d2qw2 P L then

w1pt2, d2qpt1, d1qw2 P L whenever t1 P ⌃P or t2 P ⌃O.

Theorem For any SATA A, the sets TrpAq,LpAq are saturated.

1

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

5

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

5

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

pq,d1
2q

44

pa,d2q

**

5

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

pq,d1
2q

44

pa,d2q

**

5

SATURATING AUTOMATA (SATA)

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

pq,d1
2q

44

pa,d2q

**

d0 pH, 1q

d1 pl
p1q
1 q d

1
1 pr

p1q
1 q

d2 ptl
p2q
2 u, 0q

d0 ptq
p0q
1 , q

p0q
2 u, 1q

d1 pq
p1q
1 q d

1
1 pq

p1q
2 q

d2 ptq
p2q
2 u, 0q

5

d0

d1 d
1
1

d2 d
1
2

d0

d1 d
1
1

pq,d1
2q

44

pa,d2q

**

d0 pH, 1q

d1 pl
p1q
1 q d

1
1 pr

p1q
1 q

d2 ptl
p2q
2 u, 0q

d0 ptq
p0q
1 , q

p0q
2 u, 1q

d1 pq
p1q
1 q d

1
1 pq

p1q
2 q

d2 ptq
p2q
2 u, 0q

d0

d1 d
1
1

d2

5

• ⌃ is partitioned into O/P-questions and O/P-answers.

• Configurations are finite subtrees of D annotated with extra

information.

• The tree evolves: questions add leaves (FORK), answers re-

move leaves (WAIT).

• Each even-level node is annotated with a multiset of control

states, and zero or more memory cells. This information will

evolve at run time.

• Odd levels are annotated with single control states, which do

not change.

2

:
qO

››Ñtl
p0q

, r
p0q

u d0ptl
p0q

, r
p0q

u, 0q

l
p0q qP

››Ñl
p1q

d0ptr
p0q

u, 0q

d1pl
p1q

q

l
p1q qO

››Ñtl
p2q

u d0ptr
p0q

u, 0q

d1pl
p1q

q

d2ptl
p2q

u, 0q

6

d0ptr
p0q

u, 0q

d1pl
p1q

q

d2ptl
p2q

u, 0q

pl
p2q

, 1, 0, 0q
✏

››Ñpl
p2q
` , 1q d0ptr

p0q
u, 1q

d1pl
p1q

q

d2ptl
p2q
` u, 0q

pr
p0q

, 1, 0, 1q
✏

››Ñpr
p0q
` , 1q d0ptr

p0q
` u, 1q

d1pl
p1q

q

d2ptl
p2q
` u, 0q

r
p0q
`

qP
››Ñr

p1q
d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

d2ptl
p2q
` u, 0q

tl
p2q
` u

aP

››Ñ: d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

7

d0ptr
p0q
` u, 1q

d1pl
p1q

q

d2ptl
p2q
` u, 0q

r
p0q
`

qP
››Ñr

p1q
d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

d2ptl
p2q
` u, 0q

tl
p2q
` u

aP

››Ñ: d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

8

d0pH, 1q

d1pl
p1q

q d
1
1pr

p1q
q

l
p1q aO

››Ñl
p0q
` d0ptl

p0q
` u, 1q

d
1
1pr

p1q
q

r
p1q aO

››Ñr
p0q
`` d0ptl

p0q
` , r

p0q
``u, 1q

tl
p0q
` , r

p0q
``u

aP

››Ñ:

9

SUMMARY
• SATA grew out of earlier attempts to model the game semantics of FICA:

joint work with Ranko Lazić and Igor Walukiewicz [FoSSaCS/LICS 2021].

The decidability results showed therein carry over to SATA.

• The models mentioned above do not satisfy saturation, because they sup-

port more permissive communication between levels.

– FoSSaCS 2021 allowed for unrestricted access to the whole branch.

– LICS 2021 allowed for state-based communication between children

and parents, i.e. indirect communication between children.

• SATA have been designed to be more restrictive in that regard: commu-

nication through control states is minimal and restricted to initialization

and finalization. All remaining communications are memory-based.

• SATA provide a more intrinsic model of higher-order concurrency, poten-

tially amenable to methods based on partial-order reduction.

• FICA programs in normal form can be translated to SATA in polynomial

time, avoiding exponential blow-ups of other translations.

3

