SATURATING AUTOMATA FOR GAME SEMANTICS

Alex Dixon
University of Warwick

Andrzej Murawski
University of Oxford

FICA

$$
\begin{aligned}
& \overline{\Gamma \vdash \text { skip : com }} \quad \begin{array}{l}
\Gamma \vdash \operatorname{div}_{\theta}: \theta
\end{array} \frac{0 \leqslant i \leqslant \max }{\Gamma \vdash i: \exp } \quad \frac{\Gamma \vdash M: \exp }{\Gamma \vdash \mathbf{o p}(M): \exp } \\
& \frac{\Gamma \vdash M: \operatorname{com} \quad \Gamma \vdash N: \beta}{\Gamma \vdash M ; N: \beta} \quad \frac{\Gamma \vdash M: \operatorname{com} \quad \Gamma \vdash N: \operatorname{com}}{\Gamma \vdash M \| N: \operatorname{com}} \\
& \frac{\Gamma \vdash M: \exp \quad \Gamma \vdash N_{1}, N_{2}: \beta}{\Gamma \vdash \text { if } M \text { then } N_{1} \text { else } N_{2}: \beta} \quad \frac{\Gamma \vdash M: \exp \quad \Gamma \vdash N: \operatorname{com}}{\Gamma \vdash \text { while } M \text { do } N: \text { com }} \\
& \overline{\Gamma, x: \theta \vdash x: \theta} \quad \frac{\Gamma, x: \theta \vdash M: \theta^{\prime}}{\Gamma \vdash \lambda x . M: \theta \rightarrow \theta^{\prime}} \quad \frac{\Gamma \vdash M: \theta \rightarrow \theta^{\prime} \quad \Gamma \vdash N: \theta}{\Gamma \vdash M N: \theta^{\prime}} \\
& \frac{\Gamma \vdash M: \operatorname{var} \quad \Gamma \vdash N: \exp }{\Gamma \vdash M:=N: \operatorname{com}} \quad \frac{\Gamma \vdash M: \operatorname{var}}{\Gamma \vdash!M: \exp } \quad \frac{\Gamma, x: \operatorname{var} \vdash M: \operatorname{com}, \exp }{\Gamma \vdash \text { newvar } x \text { in } M: \operatorname{com}, \exp } \\
& \frac{\Gamma \vdash M: \operatorname{sem}}{\Gamma \vdash \operatorname{release}(M): \operatorname{com}} \quad \frac{\Gamma \vdash M: \text { sem }}{\Gamma \vdash \operatorname{grab}(M): \operatorname{com}} \quad \frac{\Gamma, s: \operatorname{sem} \vdash M: \operatorname{com}, \exp }{\Gamma \vdash \text { newsem } s \text { in } M: \operatorname{com}, \exp }
\end{aligned}
$$

EXAMPLE

$$
f: \operatorname{com} \rightarrow \operatorname{com}, c: \operatorname{com} \vdash
$$

newvar x in $\left(f(x:=1) \|\right.$ if $!x$ then c else $\left.\operatorname{div}_{\text {com }}\right) ;!x: \exp$

GAME MODEL

Available online at www.sciencedirect.com

ANNALS OF
PURE AND APPLIED LOGIC

Angelic semantics of fine-grained concurrency ${ }^{\star}$

Dan R. Ghica ${ }^{\text {a }}$, Andrzej S. Murawski ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
${ }^{\mathrm{b}}$ Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Available online 26 November 2007

Abstract

We introduce a game model for an Algol-like programming language with primitives for parallel composition and synchronization on semaphores. The semantics is based on a simplified version of Hyland-Ong-style games and it emphasizes the intuitive connection between the concurrent nature of games and that of computation. The model is fully abstract for mayequivalence.

ARENAS

$$
A=\llbracket \mathrm{com} \rightarrow \mathrm{com} \rrbracket \times \llbracket \mathrm{com} \rrbracket \Rightarrow \llbracket \exp \rrbracket
$$

PLAYS

$$
A=\llbracket \mathrm{com} \rightarrow \mathrm{com} \rrbracket \times \llbracket \mathrm{com} \rrbracket \Rightarrow \llbracket \exp \rrbracket
$$

FORK AND WAIT (VIA NON-EXAMPLES)

FORK : In any prefix $s^{\prime}=\cdots q \cdots m$ of s, the question q must be pending when m is played.

WAIT : In any prefix $s^{\prime}=\cdots q \cdots a$ of s, all questions justified by q must be answered.

SATURATED STRATEGIES

$$
\frac{s m_{1} m_{2} s^{\prime} \in \sigma \quad s m_{2} m_{1} s^{\prime} \text { is a play } \neg\left(m_{1} \text { is an O-move and } m_{2} \text { is an P-move }\right)}{s m_{2} m_{1} s^{\prime} \in \sigma}
$$

Saturation is about capturing dependencies of \mathbf{P}-moves on \mathbf{O}-moves.

SATURATION EXAMPLE I

SATURATION EXAMPLE 2

SATURATING AUTOMATA

- Automata over infinite (forest-shaped) alphabets

Accept words over the alphabet $\Sigma \times \mathcal{D}$, where

- Σ is a finite alphabet,
- \mathcal{D} is a countably infinite forest.

$$
\left(\mathrm{q}, d_{0}\right)\left(\operatorname{run}^{f}, d_{1}\right)\left(\text { run }^{f 1}, d_{2}\right)\left(\text { done }^{f 1}, d_{2}\right)\left(\text { run }^{c}, d_{1}^{\prime}\right)\left(\text { done }^{c}, d_{1}^{\prime}\right)\left(\text { done }^{f}, d_{1}\right)\left(1, d_{0}\right)
$$

WORDS AS PLAYS

$\left(\mathrm{q}, d_{0}\right)\left(\right.$ run $\left.^{f}, d_{1}\right)\left(\right.$ run $\left.^{f 1}, d_{2}\right)\left(\right.$ done $\left.^{f 1}, d_{2}\right)\left(\right.$ run $\left.^{c}, d_{1}^{\prime}\right)\left(\right.$ done $\left.^{c}, d_{1}^{\prime}\right)\left(\right.$ done $\left.^{f}, d_{1}\right)\left(1, d_{0}\right)$

SATURATED LANGUAGES

$L \subseteq(\Sigma \times \mathcal{D})^{*}$ is saturated iff, for any $w \in L$ and independent d_{1}, d_{2}, if $w=w_{1}\left(t_{1}, d_{1}\right)\left(t_{2}, d_{2}\right) w_{2} \in L$ then $w_{1}\left(t_{2}, d_{2}\right)\left(t_{1}, d_{1}\right) w_{2} \in L$ whenever $t_{1} \in \Sigma_{P}$ or $t_{2} \in \Sigma_{O}$.

Languages accepted by saturating automata will be saturated.

SATURATING AUTOMATA (SATA)

- Σ is partitioned into $\mathrm{O} / \mathrm{P}-\mathrm{questions}$ and O / P-answers.
- Configurations are finite subtrees of \mathcal{D} annotated with extra information.
- The tree evolves: questions add leaves (FORK), answers remove leaves (WAIT).

SATURATING AUTOMATA (SATA)

- Each even-level node is annotated with a multiset of control states, and zero or more memory cells. This information will evolve at run time.
- Odd levels are annotated with single control states, which do not change.

$$
\dagger \xrightarrow{q_{O}}\left\{l^{(0)}, r^{(0)}\right\}
$$

$$
d_{0}\left(\left\{l^{(0)}, r^{(0)}\right\}, 0\right)
$$

$l^{(0)} \xrightarrow{q_{P}} l^{(1)}$

$$
\begin{gathered}
d_{0}\left(\left\{r^{(0)}\right\}, 0\right) \\
d_{1}\left(l^{(1)}\right)
\end{gathered}
$$

$$
l^{(1)} \xrightarrow{q_{O}}\left\{l^{(2)}\right\}
$$

$$
r_{+}^{(0)} \xrightarrow{q_{P}} r^{(1)}
$$

$$
l^{(1)} \xrightarrow{a_{O}} l_{+}^{(0)}
$$

$$
d_{0}\left(\left\{l_{+}^{(0)}\right\}, 1\right)
$$

$$
d_{1}^{\prime}\left(r^{(1)}\right)
$$

$$
r^{(1)} \xrightarrow{a_{O}} r_{++}^{(0)}
$$

$$
d_{0}\left(\left\{l_{+}^{(0)}, r_{++}^{(0)}\right\}, 1\right)
$$

$$
\left\{l_{+}^{(0)}, r_{++}^{(0)}\right\} \xrightarrow{a_{P}} \dagger
$$

SUMMARY

- SATA grew out of earlier attempts to model the game semantics of FICA: joint work with Ranko Lazić and Igor Walukiewicz [FoSSaCS/LICS 2021]. The decidability results showed therein carry over to SATA.
- The models mentioned above do not satisfy saturation, because they support more permissive communication between levels.
- FoSSaCS 2021 allowed for unrestricted access to the whole branch.
- LICS 2021 allowed for state-based communication between children and parents, i.e. indirect communication between children.
- SATA have been designed to be more restrictive in that regard: communication through control states is minimal and restricted to initialization and finalization. All remaining communications are memory-based.
- SATA provide a more intrinsic model of higher-order concurrency, potentially amenable to methods based on partial-order reduction.
- FICA programs in normal form can be translated to SATA in polynomial time, avoiding exponential blow-ups of other translations.

