SATURATING AUTOMATA FOR GAME SEMANTICS

Alex Dixon University of Warwick

Andrzej Murawski University of Oxford

FICA

$\Gamma \vdash \mathbf{skip}: \mathbf{com}$	$\Gamma \vdash \mathbf{div}_{\theta}: \theta$	$\frac{0 \leqslant i \leqslant max}{\Gamma \vdash i : \exp}$	$\frac{\Gamma \vdash M : \exp}{\Gamma \vdash \operatorname{op}(M) : \exp}$	
$\frac{\Gamma \vdash M : \mathbf{com} \qquad \Gamma \vdash N : \beta}{\Gamma \vdash M; N : \beta} \qquad \frac{\Gamma \vdash N}{\Gamma}$		$\frac{\Gamma \vdash M : \mathbf{com}}{\Gamma \vdash M }$	$\frac{\Gamma \vdash N : \mathbf{com}}{N : \mathbf{com}}$	
$\frac{\Gamma \vdash M : \exp \qquad \Gamma \vdash N_1, N_2 : \beta}{\Gamma \vdash \text{if } M \text{ then } N_1 \text{ else } N_2 : \beta} \qquad \frac{\Gamma \vdash M : \exp \qquad \Gamma \vdash N : \text{com}}{\Gamma \vdash \text{while } M \text{ do } N : \text{com}}$				
$\overline{\Gamma, x: \theta \vdash x: \theta} \qquad \overline{\Gamma, x: \theta \vdash M: \theta'} \\ \overline{\Gamma \vdash \lambda x.M: \theta \to \theta'}$		$\frac{\Gamma \vdash M}{\theta'}$	$\frac{\Gamma \vdash M : \theta \to \theta' \qquad \Gamma \vdash N : \theta}{\Gamma \vdash MN : \theta'}$	
$\frac{\Gamma \vdash M : \mathbf{var} \qquad \Gamma \vdash N : \mathbf{exp}}{\Gamma \vdash M := N : \mathbf{com}} \qquad \frac{\Gamma \vdash M : \mathbf{var}}{\Gamma \vdash !M : \mathbf{exp}}$		$\frac{I : \mathbf{var}}{I : \mathbf{exp}} \qquad \frac{\Gamma, z}{\Gamma \vdash \mathbf{r}}$	$\frac{\Gamma, x : \mathbf{var} \vdash M : \mathbf{com}, \mathbf{exp}}{\Gamma \vdash \mathbf{newvar} x \mathbf{in} M : \mathbf{com}, \mathbf{exp}}$	
$\frac{\Gamma \vdash M : \mathbf{sem}}{\Gamma \vdash \mathbf{release}(M) : \mathbf{com}}$	$\frac{\Gamma \vdash M : \mathbf{se}}{\Gamma \vdash \mathbf{grab}(M)}$	$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{r}} \mathbf{r}$	$s: \mathbf{sem} \vdash M : \mathbf{com}, \mathbf{exp}$ newsem $s \mathbf{in} M : \mathbf{com}, \mathbf{exp}$	

EXAMPLE

 $f: \mathbf{com} \to \mathbf{com}, c: \mathbf{com} \vdash$

newvar x in (f(x := 1) || if !x then c else div_{com}); !x : exp

GAME MODEL

Available online at www.sciencedirect.com

Annals of Pure and Applied Logic 151 (2008) 89-114

ANNALS OF PURE AND APPLIED LOGIC

www.elsevier.com/locate/apal

Angelic semantics of fine-grained concurrency[☆]

Dan R. Ghica^a, Andrzej S. Murawski^{b,*}

^a School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK ^b Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Available online 26 November 2007

Abstract

We introduce a game model for an Algol-like programming language with primitives for parallel composition and synchronization on semaphores. The semantics is based on a simplified version of Hyland–Ong-style games and it emphasizes the intuitive connection between the concurrent nature of games and that of computation. The model is fully abstract for *may*-equivalence.

ARENAS

 $A = \llbracket \mathbf{com} \to \mathbf{com} \rrbracket \times \llbracket \mathbf{com} \rrbracket \Rightarrow \llbracket \mathbf{exp} \rrbracket$

PLAYS

FORK : In any prefix $s' = \cdots q \cdots m$ of s, the question q must be pending when m is played.

WAIT : In any prefix $s' = \cdots q \cdots a$ of s, all questions justified by q must be answered.

SATURATED STRATEGIES

 $sm_1m_2s' \in \sigma$ sm_2m_1s' is a play $\neg(m_1 \text{ is an O-move and } m_2 \text{ is an P-move})$

 $sm_2m_1s'\in\sigma$

Saturation is about capturing dependencies of *P*-moves on *O*-moves.

SATURATION EXAMPLE I

SATURATION EXAMPLE 2

SATURATING AUTOMATA

• Automata over infinite (forest-shaped) alphabets

Accept words over the alphabet $\Sigma \times \mathcal{D}$, where

- Σ is a finite alphabet,
- \mathcal{D} is a countably infinite forest.

 $(q, d_0) (run^f, d_1) (run^{f1}, d_2) (done^{f1}, d_2) (run^c, d'_1) (done^c, d'_1) (done^f, d_1) (1, d_0)$

WORDS AS PLAYS

 $(\mathsf{q}, d_0) \, (\mathsf{run}^f, d_1) \, (\mathsf{run}^{f1}, d_2) \, (\mathsf{done}^{f1}, d_2) \, (\mathsf{run}^c, d_1') \, (\mathsf{done}^c, d_1') \, (\mathsf{done}^f, d_1) \, (1, d_0)$

SATURATED LANGUAGES

 $L \subseteq (\Sigma \times \mathcal{D})^*$ is saturated iff, for any $w \in L$ and independent d_1, d_2 , if $w = w_1(t_1, d_1)(t_2, d_2)w_2 \in L$ then $w_1(t_2, d_2)(t_1, d_1)w_2 \in L$ whenever $t_1 \in \Sigma_P$ or $t_2 \in \Sigma_O$.

Languages accepted by saturating automata will be saturated.

SATURATING AUTOMATA (SATA)

- Σ is partitioned into O/P-questions and O/P-answers.
- \bullet Configurations are finite subtrees of $\mathcal D$ annotated with extra information.
- The tree evolves: questions add leaves (FORK), answers remove leaves (WAIT).

SATURATING AUTOMATA (SATA)

- Each even-level node is annotated with a multiset of control states, and zero or more memory cells. This information will evolve at run time.
- Odd levels are annotated with single control states, which do not change.

 $d_2(\{l^{(2)}\},0)$

$$l^{(0)} \xrightarrow{q_P} l^{(1)}$$

$$l^{(1)} \xrightarrow{q_O} \{l^{(2)}\}$$

$$egin{aligned} &d_0(\{r^{(0)}\},0)\ &igcap_{l}\ &d_1(l^{(1)})\ &igcap_{l}\ &d_2(\{l^{(2)}\},0) \end{aligned}$$

$$(l^{(2)}, 1, 0, 0) \xrightarrow{\epsilon} (l^{(2)}_+, 1)$$

$$(r^{(0)}, 1, 0, 1) \xrightarrow{\epsilon} (r^{(0)}_+, 1)$$

$$r^{(0)}_+ \xrightarrow{q_P} r^{(1)}$$

 $\{l_{+}^{(2)}\} \xrightarrow{a_{P}} \dagger$

SUMMARY

- SATA grew out of earlier attempts to model the game semantics of FICA: joint work with Ranko Lazić and Igor Walukiewicz [FoSSaCS/LICS 2021]. The decidability results showed therein carry over to SATA.
- The models mentioned above do not satisfy saturation, because they support more permissive communication between levels.
 - FoSSaCS 2021 allowed for unrestricted access to the whole branch.
 - LICS 2021 allowed for state-based communication between children and parents, i.e. indirect communication between children.
- SATA have been designed to be more restrictive in that regard: communication through control states is minimal and restricted to initialization and finalization. All remaining communications are memory-based.
- SATA provide a more intrinsic model of higher-order concurrency, potentially amenable to methods based on partial-order reduction.
- FICA programs in normal form can be translated to SATA in polynomial time, avoiding exponential blow-ups of other translations.