SATURATING AUTOMATA
ML ARE MM RIS

Alex Dixon Andrzej Murawski
University of VWarwick University of Oxford

I

e o= I'-M :exp
I' - skip : com ' divg : 0 I'-1:exp I' - op(M) : exp

I'- M : com I'-EN:B I'- M : com I'-N:com

I'-M;N:p3 ' - M||N : com
I'- M :exp I'- Ni,Ny: 0 I'- M : exp I'- N :com
I' - if M then Ny else N5 : I' - while M do N : com
z:0—M:0 I'-M:0 -6 I'-N:6
I e = e, I'-Xe.M:0—¢ I'-MN : ¢
I' - M : var I'- N :exp I' - M : var I'yx : var — M : com, exp
I'-M:=N :com I'=!M :exp I' - newvar xin M : com, exp
I'- M : sem I' = M : sem I'ys:sem — M : com, exp

[' - release(M) : com [' - grab(M) : com [' - newsem sin M : com, exp

S RAMPLE

= M@ .

Available online at www.sciencedirect.com

2 R ANNALS OF
ScienceDirect PURE AND

APPLIED LOGIC

- 2 =N
ELSEVIER Annals of Pure and Applied Logic 151 (2008) 89-114

www.elsevier.com/locate/apal

Angelic semantics of fine-grained concurrency™

Dan R. Ghica®, Andrzej S. Murawski >*

& School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
b Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 30D, UK

Available online 26 November 2007

Abstract

We introduce a game model for an Algol-like programming language with primitives for parallel composition and
synchronization on semaphores. The semantics is based on a simplified version of Hyland—Ong-style games and it emphasizes
the intuitive connection between the concurrent nature of games and that of computation. The model is fully abstract for may-
equivalence.

AR

—NAS

A = [com — com] x [com] = [exp]

@ q
o
P run/ run® 2
el |
O runfl done!/ done¢

|
P done'!

PLAYS

A = [com — com] x [com] = [exp]

¢ 0 e
f c ; i)
P A R §1 = q run/ done/
O rur|1f1 done/ done* O P @,
P done/?
N A
Sg = q run/ runfl done/? run® done® done’ 1

O P O 1 e P O O P

-ORK AND WAIT
(VIA NON-EXAMPLES)

FORK : In any prefix s’ = --- ¢ -n of s, the question ¢ must be pending when m is played.

e G

q run’ done’ run/?
O P O @)
WAIT : In any prefix s’ = --- ¢~ -u of s, all questions justified by ¢ must be answered.

K\
/g
q run’ runs! done’

O P O P

SATURA

D STRATEGIES

smimos € 0 smomys’ is a play —(m; is an O-move and ms is an P-move)

SmomiS’' € o

Saturation is about capturing dependencies
of P-moves on O-moves.

SA

URATION EXAMPL

1 2

run run?! run? done done done

O P P @, O %
m

run run? run! done! done? done

O P /& O @) P
m

run run? done? run! done! done

O 2 O i O 2

SATURA

q
O

|[ON

- XA

A

runf I’Uﬂf1

P 0,

,m

runf runfl

i O

done/!
P

A

run®

P O

run¢

1

done® donef!
O P

B

done® done’

O

done’

0,

SATURATING AUTOMATA

» Automata over Infinite (forest-shaped) alphabets

Accept words over the alphabet X x D, where
e Y is a finite alphabet,

e D is a countably infinite forest.

(9,do) (run’,dy) (run’*,dy) (done’*, d3) (run®,d}) (done®,d}) (done’, dy) (1,do)

WORDS AS PLAYS

(q,do) (run’, dy) (run’", dy) (done’™, dp) (run®, d}) (done®, d}) (done’, dy) (1, dy)

TN
i d
|
do
/ \
/N e
q run’ runf/l done/! run® done® done’ 1

O i O [47 O O /2

SA

URA

D LANGUAG

e

L € (X x D)* is saturated iff, for any w € L and in-
== wl(tl,dl)(tg,dg)wg e L then

dependent di,d», if w

wl(tg, dg)(tl, dl)’LUQ e L whenever 1 € Zp or t9 € Zo.

Languages accepted by saturating automata will be saturated.

SATURATING AUTOMATA (SA

e X is partitioned into O/P-questions and O/P-answers.

e Configurations are finite subtrees of D annotated with extra
information.

e The tree evolves: questions add leaves (FORK), answers re-
move leaves (WAIT).

(,db) d di

‘ (a,d2)

N
/o

A)

BA

URATING AUTOMATA (SATA)

e Fach even-level node is annotated with a multiset of control
states, and zero or more memory cells. This information will
evolve at run time.

e Odd levels are annotated with single control states, which do
not change.

0 0
T do ({¢\”, V3, 1)

AN .

o d! dy (¢)) (g5?)

ds d2 ({g5”},0)

142,
TOREON

ey e
et (1)

i) O
{1}

2 €

0 €
(r©,1,0,1)-5 ({9, 1)

rﬁf’)ﬂr“)

=2

l(l)&,lﬁf’)

(0)

(Uze
U e TN

0 0 ap
Y s

SUMMARY

SATA grew out of earlier attempts to model the game semantics of FICA:
joint work with Ranko Lazi¢ and Igor Walukiewicz [FoSSaCS/LICS 2021].

The decidability results showed therein carry over to SATA.

The models mentioned above do not satisfy saturation, because they sup-
port more permissive communication between levels.

— FoSSaCS 2021 allowed for unrestricted access to the whole branch.

— LICS 2021 allowed for state-based communication between children
and parents, i.e. indirect communication between children.

SATA have been designed to be more restrictive in that regard: commu-
nication through control states is minimal and restricted to initialization
and finalization. All remaining communications are memory-based.

SATA provide a more intrinsic model of higher-order concurrency, poten-
tially amenable to methods based on partial-order reduction.

FICA programs in normal form can be translated to SATA in polynomial
time, avoiding exponential blow-ups of other translations.

