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Polynomials and wiring diagrams

Let A, B, C , D, E , F , G be sets, and consider the polynomials

p = CDyAB

q = EFyC

r = FGyA

p ⊗ q = CDEFyABC

pA

B

C

D
qC E

F

rA F

G

pA

B

C

D
qC E

F

Polynomials form a category where a morphism p ⊗ q → r
consists of functions

CDEF → FG

(CDEF )A → ABC p

q

r
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G
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Dynamics: polynomial coalgebras

A p-coalgebra is a set S of “states” with a function S → p(S)

For p(S) = A × SB, each state is assigned an element of A
and a function B → S which updates the state

Let t = RyR and define the polynomial [t⊗m, t⊗n] as

HomPoly(t⊗m, t⊗n)yRm×Rn = Hom(Rm,Rn)×Hom(Rm×Rn,Rm)yRm×Rn

A [t⊗m, t]-coalgebra consists of, for each state s ∈ S, a
“wiring” t⊗m → t and a “rewiring” function Rm × R → S

t

t

t

t
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HomPoly(t⊗m, t⊗n)yRm×Rn = Hom(Rm,Rn)×Hom(Rm×Rn,Rm)yRm×Rn

For deep learning:

Sm,n = {(k ∈ N, f : Rk×Rm → Rn, r ∈ Rk)|f is differentiable}

(k, f , r) is assigned Rm f (r ,−)−−−−→ Rn and

Rm × Rn π2−→ Rn Df ⊤
−−−→ Rk × Rm π2−→ Rm

the feedback x ∈ Rn causes (k, f , r) to update to

(k, f , r + ϵπ1Df ⊤x)
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Nesting: operad structure

A dynamic operad on p is a sequence of coalgebras
Sn → [p⊗n, p](Sn) for all n, along with coherent functions

1 → S1 and Sn × Sm1 × · · · × Smn → Sm1+···+mn

that respect identity and composition of morphisms into p

p

p

p

p state s1 ∈ S3

p
p

p state s2 ∈ S2

p state s ∈ S2

S3

S2

S2 → S5
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Networks: PROP structure

A dynamic PROP on p is a sequence of coalgebras
Sm,n → [p⊗m, p⊗n](Sm,n) for all m, n, along with functions

1 → S1,1, 1 → S0,0, Perm(m) × Perm(n) × Sm,n → Sm,n

Sℓ,m × Sm,n → Sℓ,n, and Sm1,n1 × Sm2,n2 → Sm1+m2,n1+n2

respecting identity/composition/tensor of morphisms into p

S2,3

S2,3

S2,3

S3,3

S3,3

S3,3

S3,3

S3,3

S3,3

S3,3

S3,3

S3,3

S3,1

S3,1

S3,1
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A dynamic PROP for deep learning
1 → S1,1, 1 → S0,0, Perm(m) × Perm(n) × Sm,n → Sm,n

Sℓ,m × Sm,n → Sℓ,n, and Sm1,n1 × Sm2,n2 → Sm1+m2,n1+n2

Sm,n =
{(k ∈ N, f : Rk × Rm → Rn, r ∈ Rk)|f is differentiable}

(0, idR, ∗), (0, id∗, ∗)

(σ, τ, (k, f , r)) 7→

(k,Rk × Rm id×Rσ

−−−−→ Rk × Rm f−→ Rn Rτ

−−→ Rn, r)

((k ′, f ′, r ′), (k, f , r)) 7→

(k + k ′,Rk × Rk′ × Rℓ id×f ′
−−−→ Rk × Rm f−→ Rn, (r , r ′))

((k1, f1, r1), (k2, f2, r2)) 7→ (k1 + k2, f1 × f2, (r1, r2))
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Vistas

Model other types of learning systems compositionally as
dynamic categorical structures
As a well behaved categorical structure, dynamic PROPS can
be easily compared, combined, or generalized
Implementation in computing frameworks based on category
theory or polynomials (algebraicjulia.org)
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