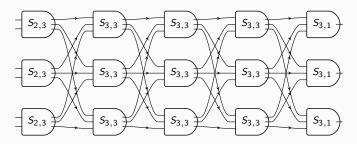
Dynamic PROPs for Networked Learners

Brandon T. Shapiro* and David I. Spivak

CALCO 2023

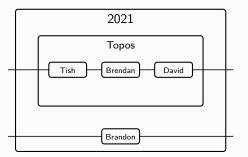
Outline

- Nested dynamic structures
- Polynomials and wiring diagrams
- Oynamics: polynomial coalgebras
- Sesting and networks: operad and PROP structure
- **o** A dynamic PROP for deep learning
- Vistas



• How I joined Topos Institute

• How I joined Topos Institute

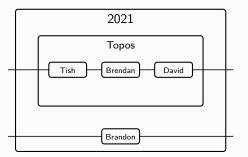


3/11

э

∃ ► < ∃ ►</p>

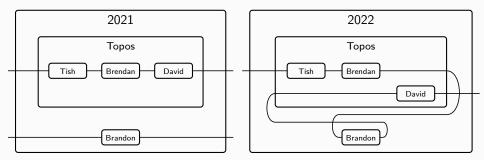
• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

▲ □ ▶ ▲ □ ▶ ▲

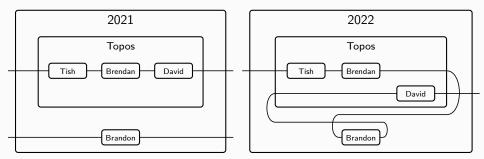
• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

(日)

• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

(日)

∃ ► < ∃ ►</p>

• Let A, B, C, D, E, F, G be sets, and consider the polynomials $p = CDy^{AB}$

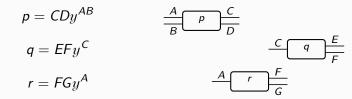
伺 ト イヨ ト イヨト

• Let A, B, C, D, E, F, G be sets, and consider the polynomials $p = CDy^{AB}$ $A = P = CDy^{C}$

• • = • • = •

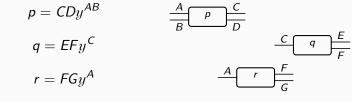
• Let A, B, C, D, E, F, G be sets, and consider the polynomials $p = CDy^{AB}$ $q = EFy^{C}$ $r = FGy^{A}$

• Let A, B, C, D, E, F, G be sets, and consider the polynomials



ヨト イヨト

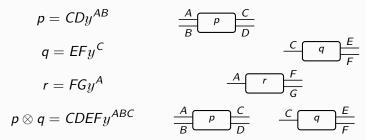
• Let A, B, C, D, E, F, G be sets, and consider the polynomials



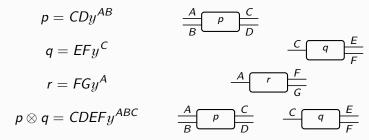
 $p \otimes q = CDEFy^{ABC}$

ヨトイヨト

• Let A, B, C, D, E, F, G be sets, and consider the polynomials

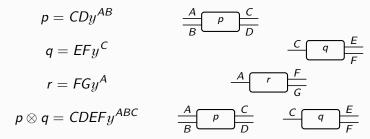


• Let A, B, C, D, E, F, G be sets, and consider the polynomials



 Polynomials form a category where a morphism p ⊗ q → r consists of functions

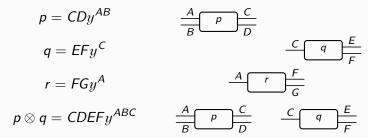
• Let A, B, C, D, E, F, G be sets, and consider the polynomials



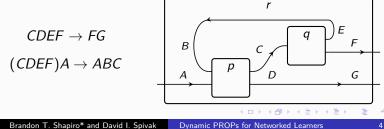
 Polynomials form a category where a morphism p ⊗ q → r consists of functions

 $CDEF \rightarrow FG$ $(CDEF)A \rightarrow ABC$

• Let A, B, C, D, E, F, G be sets, and consider the polynomials



• Polynomials form a category where a morphism $p \otimes q \rightarrow r$ consists of functions



• A *p*-coalgebra is a set S of "states" with a function S o p(S)

- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For p(S) = A × S^B, each state is assigned an element of A and a function B → S which updates the state

- A *p*-coalgebra is a set S of "states" with a function $S \to p(S)$
- For p(S) = A × S^B, each state is assigned an element of A and a function B → S which updates the state

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For p(S) = A × S^B, each state is assigned an element of A and a function B → S which updates the state

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

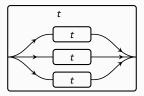
• A $[t^{\otimes m}, t]$ -coalgebra consists of, for each state $s \in S$, a "wiring" $t^{\otimes m} \to t$ and a "rewiring" function $\mathbb{R}^m \times \mathbb{R} \to S$

- A *p*-coalgebra is a set S of "states" with a function $S \to p(S)$
- For p(S) = A × S^B, each state is assigned an element of A and a function B → S which updates the state

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

• A $[t^{\otimes m}, t]$ -coalgebra consists of, for each state $s \in S$, a "wiring" $t^{\otimes m} \to t$ and a "rewiring" function $\mathbb{R}^m \times \mathbb{R} \to S$



• A *p*-coalgebra is a set S of "states" with a function $S \rightarrow p(S)$

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

・ 同 ト ・ ヨ ト ・ ヨ ト

• A *p*-coalgebra is a set S of "states" with a function $S \rightarrow p(S)$

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

• For deep learning:

 $S_{m,n} = \{ (k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$

同 ト イヨ ト イヨ ト ニヨ

6/11

• A *p*-coalgebra is a set S of "states" with a function $S \rightarrow p(S)$

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

For deep learning:

 $S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$

•
$$(k, f, r)$$
 is assigned $\mathbb{R}^m \xrightarrow{f(r, -)} \mathbb{R}^n$ and

 $\mathbb{R}^m \times \mathbb{R}^n \xrightarrow{\pi_2} \mathbb{R}^n \xrightarrow{Df^{\top}} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{\pi_2} \mathbb{R}^m$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• A *p*-coalgebra is a set S of "states" with a function $S \rightarrow p(S)$

• Let $t = \mathbb{R}y^{\mathbb{R}}$ and define the polynomial $[t^{\otimes m}, t^{\otimes n}]$ as

 $\operatorname{Hom}_{\operatorname{Poly}}(t^{\otimes m}, t^{\otimes n})y^{\mathbb{R}^m \times \mathbb{R}^n} = \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n) \times \operatorname{Hom}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^m)y^{\mathbb{R}^m \times \mathbb{R}^n}$

For deep learning:

 $S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$

•
$$(k, f, r)$$
 is assigned $\mathbb{R}^m \xrightarrow{f(r, -)} \mathbb{R}^n$ and
 $\mathbb{R}^m \times \mathbb{R}^n \xrightarrow{\pi_2} \mathbb{R}^n \xrightarrow{Df^{\top}} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{\pi_2} \mathbb{R}^m$

• the feedback $x \in \mathbb{R}^n$ causes (k, f, r) to update to $(k, f, r + \epsilon \pi_1 D f^\top x)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

★ ∃ ► < ∃ ►</p>

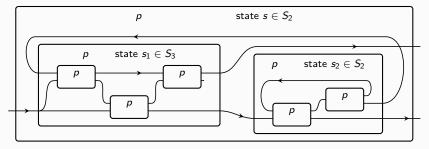
• A dynamic operad on p is a sequence of coalgebras $S_n \to [p^{\otimes n}, p](S_n)$ for all n, along with coherent functions $1 \to S_1$ and $S_n \times S_{m_1} \times \cdots \times S_{m_n} \to S_{m_1+\dots+m_n}$

that respect identity and composition of morphisms into p

A B M A B M

• A dynamic operad on p is a sequence of coalgebras $S_n \to [p^{\otimes n}, p](S_n)$ for all n, along with coherent functions $1 \to S_1$ and $S_n \times S_{m_1} \times \cdots \times S_{m_n} \to S_{m_1+\dots+m_n}$

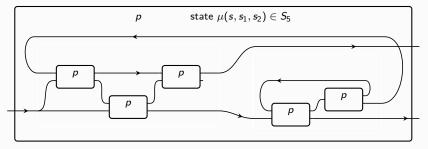
that respect identity and composition of morphisms into p



伺 ト イヨ ト イヨ ト

• A dynamic operad on p is a sequence of coalgebras $S_n \to [p^{\otimes n}, p](S_n)$ for all n, along with coherent functions $1 \to S_1$ and $S_n \times S_{m_1} \times \cdots \times S_{m_n} \to S_{m_1 + \cdots + m_n}$

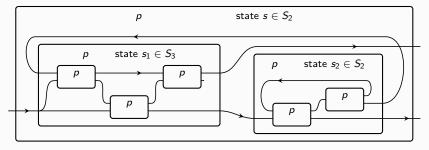
that respect identity and composition of morphisms into p

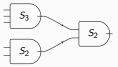


何 ト イヨ ト イヨ ト

• A dynamic operad on p is a sequence of coalgebras $S_n \to [p^{\otimes n}, p](S_n)$ for all n, along with coherent functions $1 \to S_1$ and $S_n \times S_{m_1} \times \cdots \times S_{m_n} \to S_{m_1+\dots+m_n}$

that respect identity and composition of morphisms into p



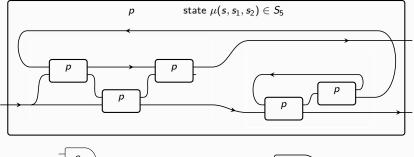


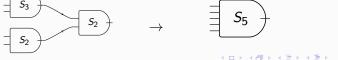
7 / 11

何 ト イ ヨ ト イ ヨ ト

• A dynamic operad on p is a sequence of coalgebras $S_n \to [p^{\otimes n}, p](S_n)$ for all n, along with coherent functions $1 \to S_1$ and $S_n \times S_{m_1} \times \cdots \times S_{m_n} \to S_{m_1 + \cdots + m_n}$

that respect identity and composition of morphisms into p





Brandon T. Shapiro* and David I. Spivak

Dynamic PROPs for Networked Learners

Networks: PROP structure

æ

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Networks: PROP structure

• A dynamic PROP on p is a sequence of coalgebras $S_{m,n} \rightarrow [p^{\otimes m}, p^{\otimes n}](S_{m,n})$ for all m, n, along with functions

 $1 \rightarrow S_{1,1}, \quad 1 \rightarrow S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \rightarrow S_{m,n}$

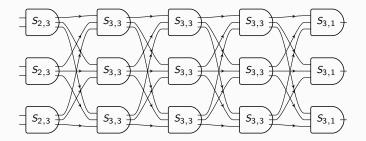
 $S_{\ell,m} \times S_{m,n} \to S_{\ell,n}$, and $S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$ respecting identity/composition/tensor of morphisms into p

向下 イヨト イヨト ニヨ

Networks: PROP structure

• A dynamic PROP on p is a sequence of coalgebras $S_{m,n} \rightarrow [p^{\otimes m}, p^{\otimes n}](S_{m,n})$ for all m, n, along with functions $1 \rightarrow S_{1,1}, \quad 1 \rightarrow S_{0,0}, \quad \text{Perm}(m) \times \text{Perm}(n) \times S_{m,n} \rightarrow S_{m,n}$

 $S_{\ell,m} \times S_{m,n} \to S_{\ell,n}$, and $S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$ respecting identity/composition/tensor of morphisms into p



(日) (同) (三) (三) (三)

 $1 \rightarrow S_{1,1}, \quad 1 \rightarrow S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \rightarrow S_{m,n}$

 $S_{\ell,m} imes S_{m,n} o S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} imes S_{m_2,n_2} o S_{m_1+m_2,n_1+n_2}$

(人間) シスヨン スヨン ヨ

$$1 \to S_{1,1}, \quad 1 \to S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \to S_{m,n}$$
$$S_{\ell,m} \times S_{m,n} \to S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$$
$$\bullet S_{m,n} =$$
$$\{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable}\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$1 \to S_{1,1}, \quad 1 \to S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \to S_{m,n}$$
$$S_{\ell,m} \times S_{m,n} \to S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$$
$$\bullet S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$1 \to S_{1,1}, \quad 1 \to S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \to S_{m,n}$$
$$S_{\ell,m} \times S_{m,n} \to S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$$
$$\bullet S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$$
$$\bullet (0, \operatorname{id}_{\mathbb{R}}, *), (0, \operatorname{id}_{*}, *)$$
$$\bullet (\sigma, \tau, (k, f, r)) \mapsto (k, \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{\operatorname{id} \times \mathbb{R}^\sigma} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{\mathbb{R}^r} \mathbb{R}^n, r)$$

< 同 > < 三 > < 三 > -

$$1 \to S_{1,1}, \quad 1 \to S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \to S_{m,n}$$

$$S_{\ell,m} \times S_{m,n} \to S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$$

$$S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$$

$$(0, \operatorname{id}_{\mathbb{R}}, *), (0, \operatorname{id}_{*}, *)$$

$$(\sigma, \tau, (k, f, r)) \mapsto (k, \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{\operatorname{id} \times \mathbb{R}^\sigma} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{\mathbb{R}^r} \mathbb{R}^n, r)$$

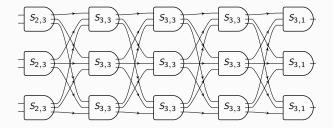
$$((k', f', r'), (k, f, r)) \mapsto (k + k', \mathbb{R}^k \times \mathbb{R}^{k'} \times \mathbb{R}^\ell \xrightarrow{\operatorname{id} \times f'} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n, (r, r'))$$

・ 何 ト ・ ヨ ト ・ ヨ ト

$$1 \to S_{1,1}, \quad 1 \to S_{0,0}, \quad \operatorname{Perm}(m) \times \operatorname{Perm}(n) \times S_{m,n} \to S_{m,n}$$
$$S_{\ell,m} \times S_{m,n} \to S_{\ell,n}, \quad \text{and} \quad S_{m_1,n_1} \times S_{m_2,n_2} \to S_{m_1+m_2,n_1+n_2}$$
$$\bullet S_{m,n} = \{(k \in \mathbb{N}, f : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^n, r \in \mathbb{R}^k) | f \text{ is differentiable} \}$$
$$\bullet (0, \operatorname{id}_{\mathbb{R}}, *), (0, \operatorname{id}_{*}, *)$$
$$\bullet (\sigma, \tau, (k, f, r)) \mapsto (k, \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{\operatorname{id} \times \mathbb{R}^\sigma} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{\mathbb{R}^\tau} \mathbb{R}^n, r)$$
$$\bullet ((k', f', r'), (k, f, r)) \mapsto$$

 $(k + k', \mathbb{R}^k \times \mathbb{R}^{k'} \times \mathbb{R}^\ell \xrightarrow{\mathrm{id} \times f'} \mathbb{R}^k \times \mathbb{R}^m \xrightarrow{f} \mathbb{R}^n, (r, r'))$

• $((k_1, f_1, r_1), (k_2, f_2, r_2)) \mapsto (k_1 + k_2, f_1 \times f_2, (r_1, r_2))$



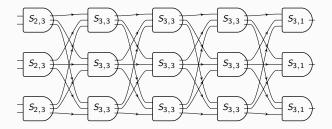
10 / 11

æ.,

< ロ > < 部 > < き > < き > <</p>

Vistas

 Model other types of learning systems compositionally as dynamic categorical structures

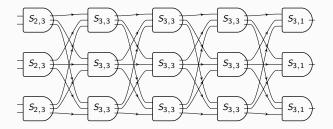


10/11

- 4 同 ト 4 ヨ ト 4 ヨ ト

Vistas

- Model other types of learning systems compositionally as dynamic categorical structures
- As a well behaved categorical structure, dynamic PROPS can be easily compared, combined, or generalized

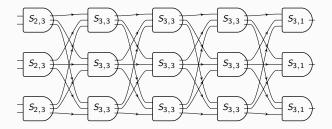


10/11

伺下 イラト イラ

Vistas

- Model other types of learning systems compositionally as dynamic categorical structures
- As a well behaved categorical structure, dynamic PROPS can be easily compared, combined, or generalized
- Implementation in computing frameworks based on category theory or polynomials (algebraicjulia.org)



伺下 イラト イラ

- Brandon T. Shapiro and David I. Spivak, "Dynamic operads, dynamic categories: From deep learning to prediction markets" arXiv:2205.03906
- David I. Spivak, "Learners' Languages" arXiv:2103.01189
- Sophie Libkind and David I. Spivak, "When you light up, I light up: A dynamical monoidal category of Hebbian learners" Topos Institute Blog

Thanks!