Interpolation is (not always) easy to spoil

Andrzej Tarlecki

Institute of Informatics, University of Warsaw

Classical Craig's interpolation

In first-order logic:

Fact: Any sentences $\varphi \in \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\psi \in \operatorname{Sen}\left(\Sigma_{c}\right)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \mathbf{S e n}\left(\Sigma_{p} \cap \Sigma_{c}\right)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.

Numerous applications

 in specification \& development theory:- Maibaum, Sadler, Veloso, Dimitrakos '84-. .
- Bergstra, Heering, Klint '90
- Cengarle '94, Borzyszkowski '02
- ...

Classical Craig's interpolation

In first-order logic:

Fact: Any sentences $\varphi \in \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\psi \in \operatorname{Sen}\left(\Sigma_{c}\right)$ such that $\varphi \Rightarrow \psi$, have an interpolant $\theta \in \mathbf{S e n}\left(\Sigma_{p} \cap \Sigma_{c}\right)$ such that $\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$.

Key related properties:

- Robinson's consistency theorem
- Beth's definability theorem

Meta-facts:

- $\mathcal{C I}$ and $\mathcal{R C}$ are equivalent
- \mathcal{C} I implies $\mathcal{B D}$ (not vice versa)
"IN ESSENCE"
- a category Sign of signatures
- a functor Sen: Sign \rightarrow Set
$-\operatorname{Sen}(\Sigma)$ is the set of Σ-sentences, for $\Sigma \in|\operatorname{Sign}|$
- a functor Mod: Sign ${ }^{o p} \rightarrow$ Class
- $\operatorname{Mod} \Sigma$ is the category of Σ-models, for $\Sigma \in|\operatorname{Sign}|$
- for each $\Sigma \in|\mathbf{S i g n}|, \Sigma$-satisfaction relation $\models_{\Sigma} \subseteq \operatorname{Mod}(\Sigma) \times \operatorname{Sen}(\Sigma)$
subject to the satisfaction condition:

$$
\left.M^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi \Longleftrightarrow M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

where $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ in $\operatorname{Sign}, M^{\prime} \in \operatorname{Mod}\left(\Sigma^{\prime}\right), \varphi \in \operatorname{Sen}(\Sigma)$, and then $M^{\prime} \mid{ }_{\sigma}$ stands for $\operatorname{Mod}(\sigma)\left(M^{\prime}\right)$, and $\sigma(\varphi)$ for $\boldsymbol{\operatorname { S e n }}(\sigma)(\varphi)$.

Truth is invariant under change of notation and independent of additional symbols around

The satisfaction condition:

$$
M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \text { iff }\left.M^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi
$$

It follows:

$$
\Phi \models_{\Sigma} \varphi \text { implies } \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

If ${ }_{-} \mid \sigma: \operatorname{Mod}\left(\Sigma^{\prime}\right) \rightarrow \operatorname{Mod}(\Sigma)$ is onto:

$$
\Phi \models_{\Sigma} \varphi \text { iff } \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Craig's interpolation

In INS $=\left\langle\right.$ Sign, Sen, Mod, $\left.\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\operatorname{Sign}|}\right\rangle:$
Recall:

Some things don't work in INS:

- implication?
\leadsto entailment
- individual sentences?
\leadsto sets of sentences
- union/intersection square?
\leadsto arbitrary commutative square
of signature morphisms

Craig's interpolation

In INS $=\left\langle\operatorname{Sign}, \operatorname{Sen}, \operatorname{Mod},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\operatorname{Sign}|}\right\rangle:$
Definition: An interpolant for $\Phi \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$ such that $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$ is $\Theta \subseteq \operatorname{Sen}\left(\Sigma_{i}\right)$ such that $\Phi \models \sigma_{i p}(\Theta)$ and $\sigma_{i c}(\Theta) \models \Psi$.

The square ($*$) admits interpolation if all $\Phi \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$ such that $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$ have an interpolant.

Tarlecki '86, Diaconescu et al. '00-... (Roșu, Popescu, Serbănuță, Găină)

Craig's interpolation

In INS $=\left\langle\mathbf{S i g n}\right.$, Sen, $\left.\operatorname{Mod},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\operatorname{Sign}|}\right\rangle:$
Definition: An interpolant for $\Phi \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma_{c}\right)$ such that $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$ is $\Theta \subseteq \mathbf{S e n}\left(\Sigma_{i}\right)$ such that $\Phi \models \sigma_{i p}(\Theta)$ and $\sigma_{i c}(\Theta) \models \Psi$.

- In PL (propositional logic): all signature pushouts admit interpolation.
- In FO (many-sorted first-order logic): all signature pushouts with $\sigma_{i p}$ or $\sigma_{i c}$ injective on sorts admit interpolation.
- In EQ (many-sorted equational logic, nonempty carrier sets): all signature pushouts with injective $\sigma_{i c}$ admit interpolation.

Two separate problems

When building and using heterogeneous logical environments - a number of institutions linked by institution (co)morphisms or similar maps - two problems arise:

- Can interpolation properties be preserved when moving from one institution to another?
\leadsto how can we "borrow" interpolation along institution (co)morphisms?
- Can interpolation properties be spoiled when moving from one institution to another?
\leadsto how can we "spoil" interpolation along institution (co)morphisms?

> In this work: we address the latter!

Simple institution extensions

Let $\mathbf{I N S}=\left\langle\boldsymbol{S i g n}, \mathbf{S e n}, \operatorname{Mod},\left\langle\models_{\Sigma}\right\rangle_{\Sigma \in|\mathbf{S i g n}|}\right\rangle$

- Extending INS by a new "abstract" Σ-model M with $\operatorname{Th}(M) \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$, $\Sigma \in|\boldsymbol{S i g n}|$, results in $\mathbf{I N S} \mathbf{S}^{+}=\left\langle\mathbf{S i g n}, \mathbf{S e n}, \mathbf{M o d}^{+},\left\langle\models_{\Sigma^{\prime}}^{+}\right\rangle_{\Sigma^{\prime} \in|\mathbf{S i g n}|}\right\rangle$:
$-\operatorname{Mod}^{+}\left(\Sigma^{\prime}\right)=\operatorname{Mod}\left(\Sigma^{\prime}\right) \cup\left\{\left\lceil\left. M\right|_{\tau}\right\rceil \mid \tau: \Sigma^{\prime} \rightarrow \Sigma\right\} \quad M$ added as $\lceil M \mid i d\rceil$
$-\left\lceil\left. M\right|_{\tau}\right\rceil \models_{\Sigma^{\prime}}^{+} \varphi^{\prime}$ iff $\tau\left(\varphi^{\prime}\right) \in \operatorname{Th}(M)$, for $\tau: \Sigma^{\prime} \rightarrow \Sigma, \varphi^{\prime} \in \operatorname{Sen}\left(\Sigma^{\prime}\right)$
- Extending INS by a new "abstract" Σ-sentence φ with $\operatorname{Mod}(\varphi) \subseteq \operatorname{Mod}(\Sigma)$, $\Sigma \in|\mathbf{S i g n}|$, results in $\mathbf{I N S}{ }^{+}=\left\langle\mathbf{S i g n}, \mathbf{S e n}^{+}, \mathbf{M o d},\left\langle\models_{\Sigma^{\prime}}^{+}\right\rangle_{\Sigma^{\prime} \in|\mathbf{S i g n}|}\right\rangle:$
$-\operatorname{Sen}^{+}\left(\Sigma^{\prime}\right)=\operatorname{Sen}\left(\Sigma^{\prime}\right) \cup\left\{\lceil\tau(\varphi)\rceil \mid \tau: \Sigma \rightarrow \Sigma^{\prime}\right\} \quad \varphi$ added as $\lceil i d(\varphi)\rceil$
$-M^{\prime} \models_{\Sigma^{\prime}}^{+}\lceil\tau(\varphi)\rceil$ iff $\left.M^{\prime}\right|_{\tau} \in \operatorname{Mod}(\varphi)$, for $\tau: \Sigma \rightarrow \Sigma^{\prime}, M^{\prime} \in \operatorname{Mod}\left(\Sigma^{\prime}\right)$

Similarly for multiple models and sentences, respectively

Spoiling an interpolant by new models - easy?

Consider an interpolant $\Theta \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma_{i}\right)$ for $\Phi \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$, $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$. Apparently: any interpolant should be always easy to spoil:

- add a new Σ_{p}-model M such that $\Phi \subseteq T h(M)$ but $\sigma_{i p}(\Theta) \nsubseteq T h(M)$, then $\Phi \not \models \sigma_{i p}(\Theta)$; or
- add a new Σ_{c}-model N such that $\Psi \nsubseteq T h(N)$ but $\sigma_{i c}(\Theta) \subseteq T h(N)$, then $\sigma_{i c}(\Theta) \not \models \Psi$.

BUT:

- $\left\lceil\left. M\right|_{\tau}\right\rceil \in \operatorname{Mod}^{+}\left(\Sigma_{u}\right)$ for $\tau: \Sigma_{u} \rightarrow \Sigma_{p}$
- $\left\lceil N \mid \tau_{\tau^{\prime}}\right\rceil \in \operatorname{Mod}^{+}\left(\Sigma_{u}\right)$ for $\tau^{\prime}: \Sigma_{u} \rightarrow \Sigma_{c}$
may spoil $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi) \ldots$

Spoiling an interpolant by new models

Fact: An interpolant $\Theta \subseteq \operatorname{Sen}\left(\Sigma_{i}\right)$ for $\Phi \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$, $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$, may be spoiled by extending INS by new models if

- there is $\Phi^{\bullet} \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ such that:
$-\Phi \subseteq \Phi^{\bullet}, \sigma_{i p}(\Theta) \nsubseteq \Phi^{\bullet}$ and
- for all $\tau: \Sigma_{u} \rightarrow \Sigma_{p}$, if $\tau\left(\sigma_{p u}(\Phi)\right) \subseteq \Phi^{\bullet}$ then $\tau\left(\sigma_{c u}(\Psi)\right) \subseteq \Phi^{\bullet}$
or
- there is $\Psi^{\circ} \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$ such that:
- $\sigma_{i c}(\Theta) \subseteq \Psi^{\circ}, \Psi \nsubseteq \Psi^{\circ}$ and
- for all $\tau^{\prime}: \Sigma_{u} \rightarrow \Sigma_{c}$, if $\tau^{\prime}\left(\sigma_{p u}(\Phi)\right) \subseteq \Psi^{\circ}$ then $\tau^{\prime}\left(\sigma_{c u}(\Psi)\right) \subseteq \Psi^{\circ}$

Spoiling an interpolant by new models

Syntactic separation

- $\Phi^{\bullet} \subseteq \operatorname{Sen}(\Sigma)$ never separates $\Phi^{\prime} \subseteq \operatorname{Sen}\left(\Sigma^{\prime}\right)$ from $\Psi^{\prime} \subseteq \operatorname{Sen}\left(\Sigma^{\prime}\right)$ when for all $\tau: \Sigma^{\prime} \rightarrow \Sigma$, if $\tau\left(\Phi^{\prime}\right) \subseteq \Phi^{\bullet}$ then $\tau\left(\Psi^{\prime}\right) \subseteq \Phi^{\bullet}$.
- for $\Phi \subseteq \boldsymbol{\operatorname { S e n }}(\Sigma)$ and $\Phi^{\prime}, \Psi^{\prime} \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma^{\prime}\right)$, let

$$
\left[\Phi^{\prime} \underset{\Sigma}{\stackrel{\Sigma^{\prime}}{\sim}} \Psi^{\prime}\right](\Phi)
$$

be the least set of Σ-sentences that contains Φ and never separates Φ^{\prime} from Ψ^{\prime}.
Fact: An interpolant $\Theta \subseteq \operatorname{Sen}\left(\Sigma_{i}\right)$ for $\Phi \subseteq \operatorname{Sen}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \operatorname{Sen}\left(\Sigma_{c}\right)$, $\sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$, may be spoiled by extending INS by new models iff

- $\sigma_{i p}(\Theta) \nsubseteq\left[\sigma_{p u}(\Phi) \underset{\Sigma_{p}}{\stackrel{\Sigma_{u}}{\sim}} \sigma_{c u}(\Psi)\right](\Phi)$ or
- $\Psi \nsubseteq\left[\sigma_{p u}(\Phi) \underset{\Sigma_{c}}{\stackrel{\Sigma_{u}}{\sim}} \sigma_{c u}(\Psi)\right]\left(\sigma_{i c}(\Theta)\right)$

In propositional logic: examples

Put:

$$
\begin{aligned}
& -\Sigma_{p}=\{p, r\}, \varphi=r \wedge p \\
& -\Sigma_{c}=\{p, q\}, \psi=q \vee p
\end{aligned}
$$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
$p, p \vee p, p \wedge p,(p \vee p) \wedge(p \vee \neg p), \ldots$
Fact: No interpolant for φ and ψ is stable under extensions of PL by new models.
This follows since:

- $\left[r \wedge p \underset{\Sigma_{p}}{\Sigma_{p} \cup \Sigma_{c}} q \vee p\right](r \wedge p)=\{r \wedge p, r \vee p, p \vee p\}$, and
- $\left[r \wedge p \underset{\Sigma_{c}}{\Sigma_{p} \cup \Sigma_{c}} q \vee p\right](p \vee p)=\{p \vee p\}$

Examples in propositional logic

Put:

$$
\begin{aligned}
& -\Sigma_{p}=\{p, r\}, \varphi=(p \vee r) \wedge(p \vee \neg r) \\
& -\Sigma_{c}=\{p, q\}, \psi=(p \vee q) \wedge(p \vee \neg q)
\end{aligned}
$$

Clearly, $\varphi \models \psi$. Interpolants for φ and ψ include:
$p, p \vee p, p \wedge p,(p \vee p) \wedge(p \vee \neg p), \ldots$
Fact: The interpolant $(p \vee p) \wedge(p \vee \neg p)$ is stable under extensions of $\mathbf{P L}$ by new models.

This follows since:

- $(p \vee p) \wedge(p \vee \neg p) \in\left[\varphi \underset{\Sigma_{p}}{\stackrel{\Sigma_{p} \cup \Sigma_{c}}{\longrightarrow}} \psi\right]((p \vee r) \wedge(p \vee \neg r))$, and
- $(p \vee q) \wedge(p \vee \neg q) \in\left[\varphi \underset{\Sigma_{c}}{\Sigma_{p} \cup \Sigma_{c}} \psi\right]((p \vee p) \wedge(p \vee \neg p))$

Spoiling interpolation by new models

Consider $\Phi \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma_{p}\right)$ and $\Psi \subseteq \boldsymbol{\operatorname { S e n }}\left(\Sigma_{c}\right), \sigma_{p u}(\Phi) \models \sigma_{c u}(\Psi)$.
Can all interpolants for Φ and Ψ be spoiled by new models?
Fact: Φ and Ψ have no interpolant in some extension of INS by new models if $\Psi \nsubseteq \sigma_{i c}\left(\sigma_{i p}^{-1}\left(\left[\sigma_{p u}(\Phi) \underset{\Sigma_{p}}{\stackrel{\Sigma_{u}}{\sim}} \sigma_{c u}(\Psi)\right](\Phi)\right)\right)$.

Define:

$$
\Theta^{*}=\sigma_{i p}^{-1}\left(\left[\sigma_{p u}(\Phi) \underset{\Sigma_{p}}{\stackrel{\Sigma_{u}}{\sim}} \sigma_{c u}(\Psi)\right](\Phi) \cap T h(\Phi)\right) \subseteq \operatorname{Sen}\left(\Sigma_{i}\right)
$$

Fact: Φ and Ψ have an interpolant in every extension of INS by new models iff

$$
\Psi \subseteq\left[\sigma_{p u}(\Phi) \underset{\Sigma_{c}}{\Sigma_{u}} \sigma_{c u}(\Psi)\right]\left(\sigma_{i c}\left(\Theta^{*}\right)\right) \text { and } \sigma_{i c}\left(\Theta^{*}\right) \models \Psi
$$

Spoiling interpolation by new sentences

Fact: (*) admits interpolation in every extension of INS by new sentences iff for all classes $\mathcal{M} \subseteq \operatorname{Mod}\left(\Sigma_{p}\right)$ and $\mathcal{N} \subseteq \operatorname{Mod}\left(\Sigma_{c}\right)$ such that $\left.\mathcal{M}\right|_{\sigma_{p u}} ^{-1} \subseteq \mathcal{N}| |_{\sigma_{c u}}^{-1}$ there is a class $\mathcal{K} \subseteq \operatorname{Mod}\left(\Sigma_{i}\right)$ such that $\left.\mathcal{M}\right|_{\sigma_{i p}} \subseteq \mathcal{K}$ and $\left.\mathcal{K}\right|_{\sigma_{i c}} ^{-1} \subseteq \mathcal{N}$, i.e.

$$
\left.\mathcal{M}\right|_{\sigma_{i p}} \subseteq \mathcal{K} \subseteq\left(\left.\operatorname{Mod}\left(\Sigma_{i}\right) \backslash\left(\operatorname{Mod}\left(\Sigma_{c}\right) \backslash \mathcal{N}\right)\right|_{\sigma_{i c}}\right)
$$

that is definable in INS from $\left\{\left\langle\Sigma_{p}, \mathcal{M}\right\rangle,\left\langle\Sigma_{c}, \mathcal{N}\right\rangle\right\}$.
$\mathcal{K} \subseteq \operatorname{Mod}\left(\Sigma_{i}\right)$ is definable in $\mathbf{I N S}$ from $\left\{\left\langle\Sigma_{p}, \mathcal{M}\right\rangle,\left\langle\Sigma_{c}, \mathcal{N}\right\rangle\right\}$ if there are
$\Theta \subseteq \operatorname{Sen}\left(\Sigma_{i}\right), \tau_{j}: \Sigma_{p} \rightarrow \Sigma_{i}, j \in \mathcal{J}_{p}$, and $\tau_{j}^{\prime}: \Sigma_{c} \rightarrow \Sigma_{i}, j \in \mathcal{J}_{c}$ such that

$$
\mathcal{K}=\left.\left.\bigcap_{j \in \mathcal{J}_{p}} \mathcal{M}\right|_{\tau_{j}} ^{-1} \cap \bigcap_{j \in \mathcal{J}_{c}} \mathcal{N}\right|_{\tau_{j}^{\prime}} ^{-1} \cap \operatorname{Mod}(\Theta)
$$

Spoiling interpolation by new models and sentences

Fact: (*) admits interpolation in INS if

- $\sigma_{i p}: \operatorname{Sen}\left(\Sigma_{i}\right) \rightarrow \mathbf{S e n}\left(\Sigma_{p}\right)$ is surjective and $\sigma_{c u}: \Sigma_{c} \rightarrow \Sigma_{u}$ is conservative $\left(-\mid \sigma_{c u}: \operatorname{Mod}\left(\Sigma_{u}\right) \rightarrow \operatorname{Mod}\left(\Sigma_{c}\right)\right.$ is surjective $)$, or
- $\sigma_{i c}: \operatorname{Sen}\left(\Sigma_{i}\right) \rightarrow \mathbf{S e n}\left(\Sigma_{c}\right)$ is surjective and $\sigma_{p u}: \Sigma_{p} \rightarrow \Sigma_{u}$ is conservative $\left(-\mid \sigma_{p u}: \operatorname{Mod}\left(\Sigma_{u}\right) \rightarrow \operatorname{Mod}\left(\Sigma_{p}\right)\right.$ is surjective $)$.

Fact: (*) admits interpolation in INS and in all its extensions by new models and sentences iff

- $\sigma_{i p}: \Sigma_{i} \rightarrow \Sigma_{p}$ is a retraction and $\sigma_{c u}: \Sigma_{c} \rightarrow \Sigma_{u}$ is a coretraction, or
- $\sigma_{i c}: \Sigma_{i} \rightarrow \Sigma_{c}$ is a retraction and $\sigma_{p u}: \Sigma_{p} \rightarrow \Sigma_{u}$ is a coretraction.

Conclusion

Interpolation is fragile - almost always!

Example in first-order logic

$-\Sigma_{N a t}=$ sort Nat opns 0:Nat,s:Nat \rightarrow Nat
$-\Sigma_{p}=\Sigma_{N a t}$ then bop: Nat $\times N a t \rightarrow N a t$

- add a new Σ_{p}-sentence φ ("data constraint") with

$$
\operatorname{Mod}(\varphi)=\mathcal{M}=\left\{A \in \operatorname{Mod}\left(\Sigma_{p}\right)|A|_{\Sigma_{N a t}}=\mathbb{N}\right\}
$$

$-\Sigma_{c}=\Sigma_{N a t}$ then _+_: Nat $\times N a t \rightarrow N a t$

- $\mathcal{N}=\operatorname{Mod}(\psi)$, where

$$
\begin{array}{r}
\psi \equiv(\forall x, y: N a t . x+0=x \wedge x+s(y)=s(x+y)) \Rightarrow \\
\forall x, y: N a t . x+y=y+x
\end{array}
$$

Clearly: $\varphi \models_{\Sigma_{p} \cup \Sigma_{c}} \psi$.
But: there is no interpolant for φ and ψ !
(since there is no morphism from Σ_{p} to $\Sigma_{N a t}$ and $\operatorname{Th}(\mathbb{N}) \not \vDash \psi$)

Example in first-order logic

$-\Sigma_{N a t}=$ sort Nat opns 0:Nat,s:Nat \rightarrow Nat
$-\Sigma_{p}=\Sigma_{N a t}$ then uop: Nat \rightarrow Nat

- add a new Σ_{p}-sentence φ ("data constraint") with $\operatorname{Mod}(\varphi)=\mathcal{M}=\left\{A \in \operatorname{Mod}\left(\Sigma_{p}\right)|A|_{\Sigma_{N a t}}=\mathbb{N}\right\}$
$\Sigma_{c}=\Sigma_{N a t}$ then _+_: Nat $\times N a t \rightarrow N a t$
- $\mathcal{N}=\operatorname{Mod}(\psi)$, where

$$
\begin{array}{r}
\psi \equiv(\forall x, y: N a t . x+0=x \wedge x+s(y)=s(x+y)) \Rightarrow \\
\forall x, y: N a t . x+y=y+x
\end{array}
$$

Clearly: $\varphi \models_{\Sigma_{p} \cup \Sigma_{c}} \psi$.
Now: we have $\tau: \Sigma_{p} \rightarrow \Sigma_{N a t}$, and $\tau(\varphi)$ is an interpolant for φ and ψ !

Can we spoil interpolation in propositional logic?

Amalgamation and interpolation

(*) admits weak amalgamation when for all $M \in \operatorname{Mod}\left(\Sigma_{p}\right), N \in \operatorname{Mod}\left(\Sigma_{c}\right)$ with $M\left|\sigma_{i_{i p}}=N\right|_{\sigma_{i c}}$ there is $K \in \operatorname{Mod}\left(\Sigma_{u}\right)$ such that $\left.K\right|_{\sigma_{p u}}=M$ and $\left.K\right|_{\sigma_{c u}}=N$.

- In FO, EQ, PL, and many other standard institutions: all signature pushouts admit amalgamation.

Fact: If $(*)$ admits weak amalgamation and all classes of Σ_{i}-models are definable then $(*)$ admits interpolation (in INS and in every its extension by new sentences).

Fact: If $(*)$ does not admit weak amalgamation then $(*)$ does not admit interpolation in an extension of INS by new sentences, and in any further its extension by new sentences.

Further work

- Repeat similar characterisations for Craig-Robinson (or parameterised) interpolation:
- concepts and techniques carry over, results can be adjusted easily.
- Apply the results in the context of special commutative squares of signature morphisms used in particular applications.

