
MFPS 2021 Preliminary Proceedings

Two Guarded Recursive Powerdomains for Applicative Simulation

Rasmus Ejlers Møgelberg1,2

Department of Computer Science
IT University of Copenhagen

Denmark

Andrea Vezzosi1,3

Department of Computer Science
IT University of Copenhagen

Denmark

Abstract

Clocked Cubical Type Theory is a new type theory combining the power of guarded recursion with univalence and higher inductive
types (HITs). This type theory can be used as a metalanguage for synthetic guarded domain theory in which one can solve
guarded recursive type equations, also with negative variable occurrences, and use these to construct models for reasoning about
programming languages. Combining this with HITs allows for the use of type constructors familiar from set-theory based approaches
to semantics, such as quotients and finite powersets in these models.
In this paper we show how to reason about the combination of finite non-determinism and recursion in this type theory. Unlike
traditional domain theory which takes an ordering of programs as primitive, synthetic guarded domain theory takes the notion of
computation step as primitive in the form of a modal operator. We use this extra intensional information to define two guarded
recursive (finite) powerdomain constructions differing in the way non-determinism interacts with the computation steps. As an
example application of these we show how to prove applicative similarity a congruence in the cases of may- and must-convergence
for the untyped lambda calculus with finite non-determinism. Such results are usually proved using operational reasoning and
Howe’s method. Here we use an adaptation of a denotational method developed by Pitts in the context of domain theory.

Keywords: Type Theory, Guarded Recursion, Cubical Type Theory, Nondeterminism, Powerdomains, Applicative Similarity

1 Introduction

Over the past 20 years, step-indexing techniques [4] have become one of the most used tools for constructing
operational models of programming languages with combinations of advanced features such as recursive types,
polymorphism, concurrency and non-determinism. Often such models are beyond the scope of traditional
domain theoretic techniques, and also have the additional benefit of being more elementary. Guarded recursion
is an abstract form of step-indexing, in which the explicit steps are replaced by abstract computation steps in
the form of a delay modality .. This relieves the user of the book-keeping involved in explicit step-indexing
and reveals the underlying structure that makes these models work in the form of an introduction X → .X, a
guarded fixed point combinator of type (.X → X)→ X and solutions to guarded recursive domain equations.
In its multiclocked version, where the delay modality .κ is indexed by a clock κ and clocks can be universally
quantified, guarded recursion can moreover be used to encode coinductive types in type theory, allowing
productivity requirements on these to be encoded in types [6].

1 This work was supported by a research grant (13156) from VILLUM FONDEN.
2 Email: mogel@itu.dk
3 Email: avez@itu.dk

This paper will be published
in the proceedings of MFPS XXXVII

URL: https://www.coalg.org/calco-mfps2021/mfps/

mailto:mogel@itu.dk
mailto:avez@itu.dk

Møgelberg and Vezzosi

Clocked Cubical Type Theory (CCTT) [24] is a type theory combining multiclocked guarded recursion
with features from cubical type theory, in particular univalence and higher inductive types (HITs). The latter
are a form of inductive types defined not only by constructors, but also by equations. HITs have been used
to construct topological spaces such as the circle and the torus in type theory, but can also be used for free
structures, such as the free group on a set. In computer science, free structures can be used to form the
monads generated by algebraic theories. For example, the finite powerset monad, often used to model finite
non-determinism, can be generated by a binary union operation plus axioms of associativity, commutativity,
and idempotency, and can therefore be naturally represented as a HIT [8,20].

Combining HITs with guarded recursion provides a powerful metatheory in which one can reason about
programming languages and programs. This paper presents a worked example of this. We study the untyped
lambda calculus with finite non-determinism, and show how to construct a model of this in CCTT using
a guarded recursive type. The model construction takes as parameter a monad T with a union operation
∪ : TX×TX → TX for modelling non-determinism, as well as a step operation stepT : .κ(TX)→ TX, which
in combination with the fixed point operator allows us to model recursion.

We present two instantiations for T , corresponding to two different notions of observation on non-
deterministic programs. The first describes a notion of non-deterministic computation where all possible
branches of a computation are executed in parallel and we can observe all possible values that occur along the
way, even if there are diverging branches of the computation. This monad corresponds to may-convergence
and can be characterised as being generated by the operations ∪ and stepT with no equations between them.

The second instantiation corresponds to a notion of computation where all branches are evaluated in parallel,
but partial results are only available when all branches have terminated. This is simply the composition LκPf

of the free monad Lκ generated by the step operation and the finite powerset monad Pf . It turns out that
this composition is not itself a monad, but does have a sequencing operation sufficient for the purposes of this
paper. We claim that this composition corresponds to must-convergence.

As an example application of this model, and to substantiate the claim that these constructors correspond
to may- and must-convergence, respectively, we apply the model to a classical problem in lambda calculus,
namely that of proving that applicative similarity is a congruence. This was first proved by Abramsky [1] for
the lazy lambda calculus (without non-determinism) using domain theory and Stone duality, and this method
has since been extended to calculi with non-determinism [31]. Here we use a different method due to Pitts [34]
who used a domain theoretic model and a relation between syntax and semantics. We extend this proof to
non-determinism for both may- and must-equivalence, and adapt it to guarded recursion.

The two instantiations of T mentioned above are what we consider as examples of guarded recursive pow-
erdomains. In classical domain theory [2] a powerdomain is a domain theoretic correspondent to the powerset
construction in set theory. A number of different powerdomains exist, each characterising a different notion of
observation. One way of characterising the difference between these is in terms of enriched algebraic theories
which allow them to be classified in terms of inequations such as x ≤ x ∪ y. In the case of guarded recursion
the difference between the two guarded powerdomains studied here can be expressed in terms of equalities
describing the interaction between ∪ and stepT . This paper can therefore also be read as a first study of the
interaction of algebraic effects and guarded recursion.

1.1 Synthetic guarded domain theory

Until now most applications of guarded recursion and step-indexing have used these for operational reasoning for
programming languages. While these techniques are very useful for proving properties of programs, we believe
that there is a need for also developing guarded recursion as a tool for constructing denotational semantics.
Denotational methods have the benefit of often being more modular than the operational methods, and often
reveal the foundational mathematical building blocks of programming languages. Denotational semantics often
inspire new programming constructions or languages, as exemplified in monads [30], runners for computational
effects [37,3], homotopy type theory [36], or even guarded recursion itself [10].

Using guarded recursion for denotational semantics has several possible benefits over domain theory. The
first is that it appears to be more expressive than domain theory as illustrated by the many uses of step-
indexing for advanced programming languages. Another is that step-indexing and guarded recursion by many
are considered more elementary tools. A third is that guarded recursion appears to be more amenable to
effective formalisation in type theory and proof assistants, although some formalisations of classical domain
theory do exist [9,19], and in particular recent progress on such a formalisation in HoTT seems promising [17].

Initial steps towards such a synthetic guarded domain theory were taken by Birkedal, Møgelberg and
Paviotti [28,32] who showed how to construct models of the programming languages PCF and FPC mod-
elling recursion in these as guarded recursion, and proving the adequacy of these models entirely in a type
theory with guarded recursion. This paper can be viewed as an extension of these works to non-determinism.
Perhaps the main disadvantage of guarded recursion compared to domain theory is the intensional nature,
allowing the model to distinguish between computations that produce the same result in a different number of

2

Møgelberg and Vezzosi

steps. The present paper shows that using universal quantification over clocks allows to localise the steps and
to prove properties that do not refer to steps, using the models.

1.2 Related work

Most proofs of applicative similarity being a congruence use operational arguments [25,26], in particular Howe’s
method [21]. More recently, an abstract version of Howe’s method has been developed [15] to handle languages
with algebraic effects in a uniform way. This method uses domain theory to handle recursion. It would be
interesting to see if the method described here generalises to a similar uniform method for computational
effects, but this requires first developing a theory of algebraic effects in guarded type theory.

Step-indexing and guarded recursion based operational techniques have previously been used for languages
with non-determinism. For example, Schwinghammer et al. [35] construct an operational model for reasoning
about a typed programming language with recursive types, polymorphism and non-determinism and use it
to prove contextual equivalences of programs. Bizjak et al. [11] show how to construct a similar model using
guarded recursion and topos logic. These works use complex operational techniques including >>-closure. Our
goal is different, namely to develop a theory of denotational semantics in a type theory with guarded recursion.

The above mentioned works on non-determinism [25,26,35,11] study countable non-determinism, rather
than finite non-determinism. This is generally considered a harder problem. For example, this forces the step-
indexing used by Schwinghammer et al. [35] to be transfinite, whereas the underlying model of the Clocked
Cubical Type Theory is based on natural number step-indexing. Likewise, defining powerdomains in domain
theory for countable non-determinism is much harder than the finite case [5,18]. We discuss the possibility of
extending our approach to countable non-determinism in Section 8.

As described in Section 3, our partiality monad Lκ is strongly related to the coinductive partiality monad,
and our use of it is similar to previous uses in semantics of recursion [9,12,16]. Interaction trees [39] are a
general data structure combining the coinductive partiality monad with computational effects. Our guarded
powerdomain monads can perhaps be seen as a form of guarded interaction trees for non-determinism, except
that the use of HITs allows us to consider these up to an equational theory.

1.3 Overview

The paper is organised as follows: We first recall the basics of Cubical Type Theory in Section 2, in particular
path types and higher inductive types. Section 3 then recalls Clocked Cubical Type Theory, the extension
of Cubical Type Theory with multiclocked guarded recursion. Section 4 defines the guarded powerdomain
for may-convergence and Section 5 presents our proof that applicative may-similarity is a congruence using a
denotational model. Section 6 defines a guarded powerdomain for must-convergence, and Section 7 presents
our proof that applicative must-similarity is a congruence. We conclude in Section 8.

2 Cubical type theory

Cubical Type Theory (CTT) [14] is a variant of Homotopy Type Theory (HoTT) [36] based on the cubical
model of the univalence axiom, and specifically designed to compute with univalence. It moreover has the
benefit of combining more easily with guarded recursion than HoTT, which was the reason for using it as a
base for Clocked Cubical Type Theory as we shall describe in Section 3. Reading this paper does not require
deep knowledge of CTT, and this section recalls the basic notions from CTT and HoTT that we shall need.

Perhaps the most fundamental difference between CTT and Martin-Löf type theory is that the identity type
in the latter is replaced in CTT by a type of paths PathA(x, y) between two elements x, y : A. We will often
write the path type infix as x = y, and say that x and y are path equal if there is an element of x = y. Cubical
Type Theory represent paths as maps from an abstract interval type I, with endpoints 0 and 1. In particular
a lambda abstraction like λi.t will build a path of type t[0/i] = t[1/i]. This allows more canonical proofs of
equality than just reflexivity, and so to give computational content to principles like function extensionality and
univalence. Path equality is still substitutive, in the sense that any element of type P (x) can be transported
along a path x = y to construct an element of P (y). In the following we will not rely on details about the
specific primitives of CTT, which can be found in [14], and [38] for their incarnation in the Agda proof assistant.

Types can be classified according to the complexity of their path equality: We say a type is a mere
proposition if any two elements are path equal, and that a type is a homotopy set, or simply a set, if its path
equality type is a mere proposition. These predicates can be expressed in the type theory as types isProp(A)
and isSet(A) for a type A. Given any universe of types U, we can form a universe of mere propositions Prop
whose elements are pairs of an element of U and a proof that it is propositional. For A : Prop we will often
write A itself rather than its first projection.

Cubical Type Theory also supports Higher Inductive Types (HITs), which allow to define an inductive
type by declaring constructors also for its path equality, rather than only for its elements. For example, the

3

Møgelberg and Vezzosi

propositional truncation ||A|| of a type A is defined as a higher inductive type with the following constructors

| − | : A→ ||A|| squash : Π(x y : ||A||). x = y

This defines the least proposition extending A in the sense that any map f : A → B into a proposition B,
defines a unique map f : ||A|| → B, such that f(|a|) = f(a) for all a. If B is a set, then such an extension
still exists if Π(x y : A).f x = f y [23]. For any two propositions A and B their conjunction A ∧ B is given
by the cartesian product A × B, their disjunction A ∨ B by truncating their disjoint union ||A + B||, while
the true and false propositions are given by the unit and the empty type. Univalence implies that any two
logically equivalent propositions are equal, so associativity and commutativity of disjunction and other such
laws hold as path equalities. Given a predicate P : A → Prop, universal quantification ∀a : A.P a is given by
the dependent function type Π(a : A).P a, while existential quantification ∃a : A.P a is given by truncating the
dependent pair type ||Σa : A.P a|| as generally it will not be propositional otherwise. As ||Q|| and Q coincide
when Q is a proposition, so do ∃a : A.P a and Σa : A.P a when P a uniquely determines a.

2.1 Finite Powerset

The finite powerset Pf(A) [8,20] of a type is another example of a higher inductive type defined by the following
constructors

{−} : A→ Pf(A)

∪ : Pf(A)→ Pf(A)→ Pf(A)

assoc : Π(X Y Z : Pf(A)). X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z
comm : Π(X Y : Pf(A)). X ∪ Y = Y ∪X

idem : Π(X : Pf(A)). X ∪X = X

plus two equalities ensuring that Pf(A) is a set [24]. Note that we restrict ourselves to non-empty finite
powersets. We say that a pair of a type B and a binary operation f : B → B → B is a join-semilattice 4 if B
is a set and f is associative, commutative and idempotent. It can then be shown that Pf(A) is the free join-
semilattice generated by A, and as such maps Pf(A)→ B which preserve ∪ correspond to maps A→ B for any
join-semilattice (B, f). We use this to define the membership predicate x ∈ X, as Prop forms a join-semilattice
with disjunction. Membership satisfies the following equations

x ∈ {y} = ||x = y|| x ∈ (X ∪ Y) = x ∈ X ∨ x ∈ Y

If X : Pf(A) we write ∀a ∈ X.Q(a) to mean Π(a : A). a ∈ X → Q(a) and similarly for ∃a ∈ X.Q(a).
The finite powerset also supports the structure of a monad, and in particular, given f : A → Pf(B) we

write ∪a∈Xf a for the bind operation, defined using the free join-semilattice structure. Given f : A → B we
write Pf(f) : Pf(A)→ Pf(B) for the functor action of the finite powerset, defined as Pf(f)X

def
= ∪a∈X{f a}.

Finally, recall [29, Lemma 4.1] that if f : A→ B, X : Pf(A), and b : B, then

b ∈ Pf(f)X ' ∃a ∈ X.f a = b (1)

3 Clocked cubical type theory

Clocked Cubical Type Theory [24] extends Cubical Type Theory with the constructions of Clocked Type
Theory [7,27], a type theory with Nakano style guarded recursion, multiple clocks and ticks. This section
recalls each of these concepts, but in a simplified form, omitting constructions related to tick irrelevance.

The fundamental notion in guarded recursion is that of a time step on a clock. Clocks are introduced as
assumptions of the form κ : clock in the context, and time steps are represented as tick assumptions of the
form α : κ. The type . (α : κ).A classifies computations that in the next time step (as represented by the
tick α) return elements of A. When α does not appear in A we simply write .κA for this type. Elements of
. (α :κ).A are introduced by tick abstraction λ(α :κ).t and eliminated by tick application t [α]. The rules are
similar to those for function types, except that tick application requires the eliminated term t not to depend
on α, nor any of the variables bound before α. This rules out terms like λx.λ(α :κ).x [α] [α] : .κ .κ A → .κA,

4 This is a slight misuse of terminology, since join-semilattices are usually assumed to also have a unit

4

Møgelberg and Vezzosi

κ : clock ∈ Γ

Γ, α : κ `
Γ,TimeLess(Γ′) ` t : . (α :κ).A Γ, β : κ,Γ′ `

Γ, β : κ,Γ′ ` t [β] : A [β/α]

Γ, α : κ ` t : A

Γ ` λ(α :κ).t : . (α :κ).A

Γ, κ : clock ` t : A

Γ ` Λκ.t : ∀κ.A
Γ ` t : ∀κ.A Γ ` κ′ : clock

Γ ` t[κ′] : A[κ′/κ]

Fig. 1. Selected typing rules for Clocked Cubical Type Theory [24]. The telescope TimeLess(Γ′) is composed of the timeless
assumptions in Γ′, i.e. interval variables and faces (as in Cubical Type Theory) as well as clock variables.

which collapse two steps into one. Interval variables are considered timeless and therefore exempt from this
restriction, which is necessary to prove that tick application preserves equalities:

(λp. λ(α :κ).λi. (p i [α])) : x =. (α:κ).A y → (. (α :κ).x [α] =A y [α]) (2)

In fact, the above map is an equivalence of types, and this extensionality principle is one of the main reasons
CTT is used rather than HoTT. One consequence is that . preserves truncation levels. In particular, if
. (α :κ).isProp(A [α]) then also isProp(. (α :κ).(A [α])) [29, Lemma 3.1] and similarly for sets.

The delay type allows to safely introduce a fixpoint combinator fixκ of type (.κA→ A)→ A and satisfying
the path equality fixκ t = t (λ(α :κ).fixκt) for any t. We can use fixκ to define guarded recursive types, i.e. ones
where the recursive occurrences are guarded by .κ. An example is the partiality monad mapping A : U to
LκA

def
= fixκ(λ(X : .κU). A + . (α :κ).X [α]). The path equality between this type and its unfolding gives rise

to a type equivalence
LκA ' A+ .κLκA

We use nowL and stepL to denote the two inclusions into LκA up to the above equivalence.

nowL : A→ LκA stepL : .κLκA→ LκA

An element of LκA represents a possibly non-terminating computation of an element of A. For example, the
element ⊥= fixκ(stepL) represents divergence. We say that (A, δ) is a delay algebra if δ has type .κA → A.
The pair (LκA, stepL) is the free delay algebra generated by A in the sense that any map f : A → B where
(B, δ) is a delay algebra defines a unique f : LκA→ B such that

f(nowL a) = f a f(stepL x) = δ(λ(α :κ).f(x [α]))

The monad structure is then defined with nowL as the unit, and multiplication µL : LκLκA→ LκA defined as
the unique (delay algebra)-homomorphism extending the identity.

The clock quantification type former ∀κ.A is introduced by clock abstraction, and eliminated by application
to a clock. It behaves much like a Π-type, except that clock is not a type, but has a similar status to the
interval I. Clock quantification localises guarded recursion on a clock, and in particular supports a map
force : ∀κ. .κ A→ ∀κ.A, inverse to λx. λκ.λ(α :κ).x [κ], allowing to safely eliminate .κ.

The main use case for clock quantification is to encode coinductive types. For example ∀κ.LκA is the final
coalgebra for the functor F (X) = A + X, if A is clock irrelevant, i.e., if the canonical map A → ∀κ.A is an
equivalence. The notion of clock irrelevance is closed under all basic type formers as well as inductive types and
(under certain restrictions [24]) higher inductive types. In particular, the inductive types used in this paper
to represent syntax are all clock irrelevant. This encoding of coinductive types is originally due to Atkey and
McBride [6] and presumes the existence of a clock constant κ0, which we achieve by just initially assuming
κ0 : clock.

More generally for every (indexed) functor F which commutes with clock quantification we have that
∀κ.fixκ(λX.F (. (α : κ).X [α])) is the final coalgebra of F , i.e. its coinductive fixpoint [24]. The collection of
functors commuting with clock quantification is closed under a long list of constructors including truncations,
finite powersets and sum types as expressed in the following type equivalences.

∀κ.||A|| ' ||∀κ.A|| ∀κ.Pf(A) ' Pf(∀κ.A) ∀κ.(A+B) ' ∀κ.A+ ∀κ.B

5

Møgelberg and Vezzosi

4 A powerdomain for may-convergence

Define the may powerdomain as the unique solution to the guarded recursive equation

Pκ3(A) ' Pf(A+ .κPκ3(A))

Formally, Pκ3 can be defined as a fixed point fixκ(λ(X : .κU).Pf(A+ . (α :κ).X [α])) similarly to the definition
of LκA, but in the rest of this paper we will not give such definitions explicitly. The type constructor Pκ3 comes
equipped with the following operations

∪ : Pκ3(A)→ Pκ3(A)→ Pκ3(A) now3 : A→ Pκ3(A) step3 : .κPκ3(A)→ Pκ3(A)

where ∪ is inherited from Pf and therefore defines a join-semilattice and

now3 (a) = {inl(a)} step3 (a) = {inr(a)}

defines a unit and a delay algebra structure. In particular, this means that Pκ3(A) can represent diverging
computations (⊥ = fixκ(step3)), as well as values. An element of Pκ3(A) may also have both converging and
diverging branches, as for example {a,⊥}.

The next lemma states that for a set A, Pκ3(A) is the free algebra for the theory combining delay and union
with no interaction between the two.

Lemma 4.1 Let A be a set, let B be a set with both a join-semilattice structure and a delay algebra structure,
and let f : A → B. Then there is a unique map Pκ3(A) → B extending f and commuting with the join-
semilattice and delay-algebra structures.

In terms of algebraic theories, Pκ3 can therefore be seen as generated by the theories of join-semilattices
and delay-algebras with no operations between them. As a special case of the lemma one can define a bind
operation mapping a : Pκ3(A) and f : A→ Pκ3B to a >>=f : Pκ3B which then equips Pκ3 with a monad structure
with unit given by now3 . Bind moreover commutes with these operations as in the following equations

(step3 a >>=f) = step3 λ(α :κ).(a [α] >>=f) (3)
((a ∪ b) >>=f) = (a >>=f) ∪ (b >>=f) (4)

5 Applicative may-simulation

The type constructor Pκ3 should be seen as a guarded recursive powerdomain for may-convergence. Intuitively,
this is true because an element of Pκ3(A) describes a set of values (of type A) that the computation has returned
now, and a set of computations that we can choose to further evaluate, but may also choose not to, if we are
only interested in testing if a program may evaluate to a particular value. This should be seen in contrast to
the must-powerdomain of Section 6 which will force all branches of a computation tree to be evaluated fully
before the result values can be inspected. In this section we substantiate that claim by using Pκ3 to prove
applicative may-similarity a congruence.

We start by recalling the untyped lambda calculus with binary non-determinism and the notion of applica-
tive may-similarity. We use informal binding notation here for readability, using the grammar

M,N ::= M N | λλx.M |M orN

for terms. This could for example be implemented more formally as an inductive family using de Bruijn indices.
Note the use of λλ to distinguish it from the meta-level lambda. A value is a closed term of the form λλx.M ,
and we shall use Λ and Val for the types of closed lambda terms and values respectively, which we will assume
are sets (and indeed are if formalised using de Bruijn indices). These are moreover clock irrelevant, which can
be shown by embedding them into the inductive types of all (also open) terms, and the fact that all inductive
types are clock irrelevant [24].

We define two operational semantics. The first one is a big-step operational semantics formulated as a
relation ⇓3: Λ× Val→ Prop defined inductively in the standard way

V = W

V ⇓3 W

M ⇓3 λλx.M ′ N ⇓3 V ′ M ′[V ′/x] ⇓3 V

MN ⇓3 V

M ⇓3 V ∨N ⇓3 V

M orN ⇓3 V

6

Møgelberg and Vezzosi

One can also similarly define a small-step operational semantics and prove this equivalent to the big-step
semantics using standard methods.

The second operational semantics is less familiar but has the benefit of being suitable for guarded recursive
reasoning. It uses the monad Pκ3 to model recursion and non-determinism, but since parts of the development
in this section will be reused later, we will define the operational semantics relative to a monad T , which can be
instantiated to be Pκ3. We will assume that T has operations ∪ and stepT providing T with a join-semilattice
structure as well as a delay-algebra structure satisfying the equations (3) and (4). In fact we shall see later
that not all axioms for monads are needed for our developments.

Using this, we define an evaluation function eval : Λ→ T (Val) as

eval (λλx.M) = pure (λλx.M)

eval (M N) = evalM >>=λ(λλx.M ′). evalN >>=λV. stepT (λ(α :κ).eval (M ′[V/x]))

eval (M orN) = evalM ∪ evalN

where pure refers to the unit of the monad T . Note that the match on (λλx.M ′) in the application case is
exhaustive, since values can only be lambda abstractions. To lift this to a big step relation, we will assume
given a lifting of T to predicates as follows.

Definition 5.1 A lifting of a monad T to predicates is a function that maps a predicate P : A → Prop to a
predicate T̂ (P) : T (A)→ Prop satisfying the following properties

(i) T̂ (P)(T (f)(a)) = T̂ (P ◦ f)(a)

(ii) T̂ (P)(pure (a)) = P (a)

(iii) T̂ (P)(stepT (a)) = . (α :κ).T̂ (P)(a [α])

(iv) T̂ (P)(m >>=λx.t) = T̂ (λx.T̂ (P)(t))(m)

(v) T̂ (P)(a ∪ b) = T̂ (P)(a) ∧ T̂ (P)(b)

Note that a unique such lifting can be defined for Pκ3 using Lemma 4.1 since Prop is a set, and ∧ and .

define a join-semilattice and delay-algebra structure on Prop, so T̂ (P) can be defined as the extension of P .
Specialising to T = Pκ3 we make the following definition.

Definition 5.2 Let T̂ be the lifting of Pκ3 to predicates, let Q : Val → Prop be a predicate on values and let
M : Λ. Define

M ⇓κ3 Q
def
= T̂Q(eval(M)) : Prop

One can then define a more standard big step operational semantics as

M ⇓κ3 V
def
= M ⇓κ3 (λW.(V = W))

Intuitively M ⇓κ3 Q means that if M terminates to a value, that value will satisfy Q. In particular, M ⇓κ3 V
will hold for any V if M diverges, unlike the statement M ⇓3 V which guarantees termination.

To express the precise relationship between the two semantics, we introduce a predicate of may-convergence
on the powerdomain Pκ3. Since termination cannot be expressed as a predicate on guarded recursive types
directly, it must be expressed as a predicate on ∀κ.Pκ3(−), which captures global behaviour of Pκ3 [28]. If
m : ∀κ.Pκ3(A) and a : A define m ⇓∀P3

a as the proposition inductively generated by the following introductions

λκ.now3 (a) ⇓∀P3
a

m ⇓∀P3
a

λκ.step3 (λ(α :κ).m [κ]) ⇓∀P3
a

m ⇓∀P3
a ∨m′ ⇓∀P3

a

λκ.m [κ] ∪m′ [κ] ⇓∀P3
a

This means that these rules should be read as constructors of a HIT which also has propositional truncation
operators as a constructor. The relationship between the two semantics can then be expressed as follows.

Proposition 5.3 The statements M ⇓3 V and (λκ.eval(M)) ⇓∀P3
V are logically equivalent.

Finally, the next lemma makes the intuition for M ⇓κ3 Q stated above precise. As the notation used in the
lemma suggests, κ can appear free in Qκ.

7

Møgelberg and Vezzosi

Lemma 5.4 Let A be clock irrelevant, Qκ a family over A for each κ, and m : ∀κ.Pκ3(A). The statements
∀κ.P̂κ3Qκ(m [κ]) and ∀a.m ⇓∀P3

a → ∀κ.Qκ(a) are logically equivalent. As a consequence ∀κ.M ⇓κ3 Qκ is
equivalent to M ⇓3 V → ∀κ.Qκ(V).

5.1 Applicative may-similarity

We now recall the notion of applicative similarity, as originally studied by Abramsky [1] for the pure lambda
calculus and adapt it to finite non-determinism in the case of may-convergence. Say that a relation R on closed
terms is an applicative may-simulation if MRN and M ⇓3 λλx.M ′ implies

∃N ′. N ⇓3 λλ y.N ′ ∧ (∀(V : Val).M ′[V/x]RN ′[V/x])

Applicative may-similarity is the greatest applicative may-simulation. We define this by universally quantifying
a clock in a guarded recursive definition. First define

≤κVal : Val→ Val→ Prop
≤κ3 : Λ→ Λ→ Prop

λλx.M ≤κVal λλ y.N
def
= . (α :κ).(∀V :Val.M [V/x] ≤κ3 N [V/y])

M ≤κ3 N
def
= M ⇓κ3 λV.(∃W.N ⇓3 W ∧ V ≤κVal W)

The statementM ≤κ3 N should be read as stating that ifM terminates, then also N terminates, and moreover,
applying the resulting terms to the same value results in the related results later. Note the asymmetry in the
use of operational semantics: The evaluation of M uses the guarded operational semantics which ensures that
if M diverges, then M ≤κ3 N is true. On the other hand, once M converges to a value, N must also converge,
and expressing this requires the inductive operational semantics. The delay in the definition of ≤κVal ensures
well-definedness: unfolding the definition of ≤κ3 in ≤κVal gives a guarded recursive definition.

Applicative similarity is extended to open terms by defining M ≤κ3 N to mean Mσ ≤κ3 Nσ for all substi-
tutions σ mapping all free variables in M and N to values. Finally, we localise the steps in the definition of
M ≤κ3 N by universally quantifying κ and thereby pass to a coinductive type:

M ≤3 N
def
= ∀κ.M ≤κ3 N

Lemma 5.5 ≤3 is the greatest applicative may-simulation.

We now proceed to prove that applicative may-similarity is a congruence. Most proofs of this use syntactic
arguments, but here we use a semantic method developed by Pitts [34] in the context of domain theory, which
we adapt to guarded recursion. As a first step we construct a denotational semantics of the untyped lambda
calculus.

5.2 Denotational semantics

Like the operational semantics, the denotational semantics is parametrised by a monad T equipped with a join-
semilattice structure and a delay algebra structure, satisfying (3) and (4). Closed terms will be interpreted as
elements of the type Dκ defined by the following equations.

SValκ
def
= .κ(SValκ → T (SValκ)) Dκ def

= T (SValκ)

Here the definition of SValκ should be read as a guarded recursive definition, and states that semantic values
can be considered effectful computations on semantic values, but that this unfolding takes a single computation
step. Define a semantic application · : Dκ ×Dκ → Dκ as

d · d′ = d >>=λf. d′ >>=λv. stepT (λ(α :κ).f [α] v)

and using this we define the operational semantics J−Kκ : Λ(n) → (SValκ)n → Dκ where Λ(n) is the set of
terms with at most n free variables, as

JxiK
κ
ρ = pure (ρ i) Jλλxn+1.MKκρ = pure (λ(α :κ).(λd.JMKκ(ρ, d)))

JM NKκρ = JMKκρ · (JNKκρ) JM orNKκρ = JMKκρ ∪ JNKκρ

8

Møgelberg and Vezzosi

Note that the interpretation of values factor through pure : SValκ → Dκ via J−KκVal : Val→ SValκ.

Theorem 5.6 (Soundness) T (J−KκVal)(evalM) = JMKκ

We now specialise T to Pκ3 for the following notation and corollary. If Q : A→ Prop and m : Pκ3A, we shall
use the infix notation m ↓κ3 Q for T̂Qm, where T̂ is the lifting of Pκ3.

Corollary 5.7 The statements JMKκ ↓κ3 Q and M ⇓κ3 Q ◦ J−KκVal are equivalent.

5.3 Relating syntax and semantics

We now construct a relation between syntax and semantics that will allow us to use the model to reason about
the operational semantics. The relation is similar to the one constructed by Pitts [34] in the setting of domain
theory, but whereas Pitts must provide a technical argument for the existence of the relation, which is far from
obvious in the domain theoretic setting, in our setting the relation exists simply by guarded recursion.

In this section we specialise the model from the general monad T to Pκ3, and define two relations, one on
values and one on general terms as follows

�κ : Dκ × Λ→ Prop

�κVal : SValκ × Val→ Prop

d �κ M def
= d ↓κ3 λv.(∃V.M ⇓3 V ∧ v �κVal V)

v �κVal λλx.M
def
= . (α :κ).(∀v′, V ′.v′ �κVal V ′ → (v [α](v′)) �κ M [V ′/x])

This is well-defined, because unfolding the definition of �κ in the definition of �κVal gives a guarded recursive
definition of �κVal. If ρ : (SValκ)n and σ : Valn write ρ �κVal σ to mean ρ1 �κVal σ1 ∧ . . . ∧ ρn �κVal σn.

Lemma 5.8 (Fundamental lemma) If ρ �κVal σ then JMKκρ �κ Mσ.

The fundamental lemma is proved by induction on M . Using this, one can prove the following correspon-
dence between �κ and ≤3

Lemma 5.9 If M and N are closed terms then M ≤3 N is equivalent to ∀κ.JMKκ �κ N .

The left to right direction is proved by showing that �κ is upward closed in its second argument. The other
direction is proved using guarded recursion. Note that as a consequence of Lemma 5.8 and 5.9 it follows that
≤3 is a reflexive relation.

Theorem 5.10 ≤3 is a congruence, i.e., if M ≤3 N and C[−] is a context then also C[M] ≤3 C[N].

Proof. Using reflexivity it suffices to show that if M ≤3 N and M ′ ≤3 N ′ then MM ′ ≤3 N N ′, M orM ′ ≤3

N orN ′ and λλx.M ≤3 λλx.N . The cases of application and choice can be reduced to the statements that if
d �κ M and d′ �κ N then d · d′ �κ M N and d ∪ d′ �κ M orN , which can be proved by guarded recursion.
To prove λλx.M ≤3 λλx.N it suffices to prove that .κ(∀V.M [V/x] ≤3 N [V/x]). By definition of applicative
may-similarity for open terms, however, we know that M [V/x] ≤3 N [V/x]. 2

6 A powerdomain for must-convergence

We now introduce our powerdomain construction Pκ2 for must-convergence. This should have an inclusion
now2 : A → Pκ2(A), a join-semilattice structure ∪ and a delay algebra structure step2. However, when
considering must-convergence, a term M orN diverges if M diverges even if N converges. To enforce that
in our powerdomain we use equations to enforce parallel evaluation of subcomputations and stating that
terminating values are postponed until all subcomputations have been evaluated fully:

step2(x) ∪ step2(y) = step2(λ(α :κ).x [α] ∪ y [α]) (5)
step2(x) ∪ now2(y) = step2(λ(α :κ).(x [α] ∪ now2(y))) (6)

These equations (together with the derivable symmetric version of (6)) allow steps to bubble up the syntax
tree, to a normal form consisting of a (possibly infinite) sequence of computation steps followed by a finite set
of values. Following this intuition we define

Pκ2(A)
def
= Lκ(Pf(A))

9

Møgelberg and Vezzosi

This has the benefit over, say a HIT given by the equations above, of giving direct access to the set of possible
values returned by a computation that must converge.

By definition Pκ2 carries a delay-algebra structure, and the inclusion of A into Pκ2(A) can be defined as

now2(a)
def
= nowL ({a})

The join-semilattice can be defined by guarded recursion using the equations (5), (6), the symmetrisation of
(6) and

nowL x ∪ nowL y
def
= nowL (x ∪ y)

A natural question is whether Pκ2 defines a monad. Since it is the composite of two monads, it is sufficient that
there is a distributive law of monads, and indeed a natural candidate is easily defined as

ζ : PfL
κ → LκPf ζ(X)

def
= ∪x∈XLκ({−})(x)

However, this only defines a distributive law of the monad Pf over Lκ considered as a functor, not a monad.

Proposition 6.1 Of the four diagrams for distributive laws over monads:

Lκ PfPfL
κ PfL

κPf LκPfPf

PfL
κ LκPf PfL

κ LκPf

Pf PfL
κLκ LκPfL

κ LκLκPf

PfL
κ LκPf PfL

κ LκPf

Lκ({−})
{−}

Pf(ζ)

∪

ζ

Lκ(∪)
ζ ζ

nowL
Pf(nowL)

ζ

Pf(µL)

Lκζ

µL

ζ ζ

all but the last commute.

A counterexample to the last is {stepL (λ(α : κ).nowL (nowL x)), nowL (stepL λ(β : κ).nowL x)} which
is mapped by the lower composite to stepL (λ(α : κ).nowL {x})) and by the upper to stepL λ(α :
κ).stepL λ(β :κ).nowL {x}. Note that these only differ by a finite number of computation steps, i.e., are equal up
to weak bisimilarity. We conjecture that this is generally true and that Pκ2 is a monad up to weak bisimilarity.

As a consequence, using ζ to define the multiplication of Pκ2 does not define a monad. Nevertheless, it does
define a bind operation.

Lemma 6.2 The bind operation induced by ζ maps f : A→ Pκ2(B) and a : Pκ2(A) to

a >>=LλX. ∪x∈X f(x)

and satisfies the equations (now2(a) >>=f) = f(a) and (a >>=now2) = a, and moreover defines a homomorphism
of delay-algebras as well as join-semilattices in a. It does not satisfy the associativity axiom.

Since the associativity axiom is not used in our development, the proofs done in the previous section for a
general monad T carry over to this case, as we shall see.

7 Applicative must-simulation

We now show how our techniques from the may-convergence case apply to show that applicative must-similarity
is a congruence also in the case of must-convergence. First we set up the operational semantics. In the case of
the standard big-step semantics, define the predicate ⇓2⊆ Λ× Pf(Val) as

M ⇓2 X N ⇓2 Y
M orN ⇓2 X ∪ Y λλx.M ⇓2 {λλx.M}

M ⇓2 X N ⇓2 Y ∀(λλ y.M ′) ∈ X,V ∈ Y. M ′[V/y] ⇓2 Zλλ y.M ′,V

M N ⇓2 ∪V ′∈X,V ∈Y ZV ′,V

10

Møgelberg and Vezzosi

The judgement M ⇓2 X states that M must converge and that the possible values that it can converge to is
X.

The evaluation function eval : Λ→ Pκ2(Val) is defined by specialising the general definition given in Section 5.
We also define a relation M ⇓κ2 Q stating that if M terminates, it will terminate to a set of values satisfying
Q : Pf(Val) → Prop. Note that Q is a predicate on sets of values, rather than values themselves (as was the
case for M ⇓κ3 Q). This allows us to express properties e.g. by existential quantification over outcome values,
as needed e.g. in the definition of must-similarity below. To define M ⇓κ2 Q, consider first a lifting L̂κQ of
predicates Q : A→ Prop to LκA defined as

L̂κQ(nowL a)
def
= Q(a) L̂κQ(stepL a)

def
= . (α :κ).L̂κQ(a [α])

and note that this also satisfies items i and iv of Definition 5.1. Define M ⇓κ2 Q
def
= L̂κQ(eval(M)).

The relationship between these two operational semantics is similar to the one between ⇓3 and ⇓κ3. First
define, for m : ∀κ.LκA and a : A a termination predicate m ⇓∀2 a as an inductive family in Prop like so:

m ⇓∀2 a
(λκ. stepL (λ(_ :κ).mκ)) ⇓∀2 a (λ_. nowL a) ⇓∀2 a

Proposition 7.1 The statements M ⇓2 V and (λκ. evalM) ⇓∀2 V are logically equivalent.

Lemma 7.2 Let A be clock irrelevant, Qκ a family over A, and m : ∀κ. LκA. The statements ∀κ.L̂κQκ(mκ)
and m ⇓∀2 a → ∀κ.Qκ(a) are logically equivalent. As a consequence the statements M ⇓2 V → ∀κ.Qκ(V) and
∀κ.M ⇓κ2 Qκ are equivalent.

Say that a relation R on closed terms is an applicative must-simulation if MRN implies

M ⇓2 U → ∃V.N ⇓2 V ∧ ∀(λλx.N ′ ∈ V).∃(λλx.M ′ ∈ U). (∀(W : Val).M ′[W/x]RN ′[W/x])

Define M ≤κ2 N by guarded recursion to be

M ⇓κ2 λU.∃V.N ⇓2 V ∧ ∀(λλ y.N ′ ∈ V).∃(λλx.M ′ ∈ U). . (α :κ).(∀W.M ′[W/x] ≤κ2 N ′[W/x])

This is extended to open terms by defining M ≤κ2 N to mean Mσ ≤κ2 Nσ for all substitutions σ mapping all
free variables in M and N to closed terms. Write M ≤2 N for ∀κ.M ≤κ2 N .

Lemma 7.3 ≤2 is the greatest applicative must-simulation.

Also in the case of the denotational semantics the general case described in Section 5.2 specialises to Pκ2.
None of the proofs or constructions rely on associativity of the bind operation, so also the soundness result
holds. For our applications of the denotational semantics, however, we need a variant of Corollary 5.7 which
applies to predicates on sets of values rather than on values themselves. This uses an infix notation m ↓κ Q
for L̂κQ(m).

Corollary 7.4 The statements JMKκ ↓κ Q and M ⇓κ2 Q ◦ Pf(J−KκVal) are equivalent.

7.1 Relating syntax and semantics

As in the case of may-convergence we now construct a relation between syntax and semantics. To simplify
syntax we introduce the lifting of a relation R : X×Y → Prop to a relation on powersets Pf(R) : PfX×PfY →
Prop defined as

Pf(R)(A,B) = ∀b ∈ B∃a ∈ A.R(a, b)

We define two relations between syntax and semantics by mutual guarded recursion (overwriting notation from
Section 5.3):

�κ : Dκ × Λ→ Prop

�κVal : SValκ × Val→ Prop

d �κ M def
= d ↓κ λA.∃B.M ⇓3 B ∧ Pf(�κVal)(A,B)

v �κVal λλx.M
def
= . (α :κ).∀v′, V ′.v′ �κVal V ′ → (v [α](v′)) �κ M [V ′/x]))

11

Møgelberg and Vezzosi

If ρ : (SValκ)n and σ : Valn write ρ �κ σ to mean ρ1 �κ σ1 ∧ . . . ∧ ρn �κ σn.

Lemma 7.5 (Fundamental lemma) If Γ `M and ρ �κ σ then JMKκρ �κ Mσ.

The proof of Lemma 7.5 is by induction on M . In particular the case of application requires some work,
and relies on the fact that Pf respects the monad structure of Pf in the sense that if f : X → Pf(X

′) and
g : Y → Pf(Y

′) map pairs related in R : X × Y → Prop to pairs related in Pf(S), then the extensions
f : Pf(X)→ Pf(X

′) and g : Pf(Y)→ Pf(Y
′) map pairs related in Pf(R) to pairs related in Pf(S).

Lemma 7.6 M ≤2 N iff ∀κ.JMKκ �κ N .

Similarly to the case of may-convergence, this implies that applicative may-similarity is a reflexive relation.
From this it follows that it is a congruence exactly as in the proof of Theorem 5.10.

Theorem 7.7 ≤2 is a congruence, i.e., if M ≤2 N and C[−] is a context then also C[M] ≤2 C[N].

8 Conclusion

The constructions of this paper illustrate how the combination of guarded recursion with higher inductive
types and univalence in Clocked Cubical Type Theory gives an expressive type theory for reasoning about
programming languages. In particular, this combination allows arguments known from domain theory involving
constructions such as recursive types to be represented in type theory. Moreover, the abstract setting of
synthetic guarded domain theory allows for these tools to be used in a much more elementary setting, far from
the mathematical complexity of domain theory. This is particularly clear in the construction of the relation
≤κ3 which in ordinary domain theory requires a non-trivial existence argument [34,33]. It also appears in our
definitions of the guarded powerdomains, which we define much more directly than the standard constructions
in domain theory [2].

It is unfortunate that the bind rule for Pκ2 is not associative. As mentioned, this does not affect our
constructions, and we conjecture that it is associative up to weak bisimilarity, and that this is enough for most
purposes. We believe the reason for the failure of associativity is that the equality (6) is not algebraic in the
sense that it only applies when one side is a value. One way to avoid this is to replace (5) and (6) by an
equation of the form

step2(x) ∪ y = step2(λ(α :κ).(x [α] ∪ y))

which means that to evaluate x∪y takes as many steps as the sum of steps used to evaluate x and y respectively,
rather than the maximum. In particular, this means that idempotency is lost (but may hold up to weak
bisimilarity) and one essentially works with finite multisets rather than the standard powerset.

Future work includes extending to the case of countable non-determinism. This could use the countable
powerset functor, which is also definable as a HIT [13]. We believe that the case of may-convergence generalises
directly to the countable case, but in the case of must-convergence the definition of ∪ as used here requires
deciding if all branches of a computation terminates. We believe this is a symptom of a much more fundamental
problem, namely that the partiality monad of guarded recursion describes termination in finite steps, whereas
the must-convergence predicate for countable non-determinism requires more steps to reach a fixed point.
Bizjak et al. [11] observe a similar problem in the operational setting and solve it using a combination of
>>-lifting and transfinite induction in the underlying step-indexing model. It would be interesting to see if
such an approach also applies to type theory.

Finally, it would be interesting to develop a general theory of combinations of algebraic effects such as state,
exceptions, and non-determinism (as studied here) with guarded recursion. The domain theoretic counterparts
of these effects are usually described algebraically using order-enriched theories [22], but as we have seen here,
in the setting of guarded recursion the intensional information of the individual steps allows us to describe the
interaction of these effects with recursion in terms of ordinary equations. This theory could then give rise to a
notion of guarded interaction trees [39] which would allow also equations between computations across steps
as well as guarded recursive definitions.

Acknowledgements. We thank the anonymous reviewers for many useful observations and suggestions.

References

[1] Samson Abramsky. The lazy lambda calculus, research topics in functional programming. 1990.

[2] Samson Abramsky and Achim Jung. Domain theory. Oxford University Press, 1994.

[3] Danel Ahman and Andrej Bauer. Runners in action. In European Symposium on Programming, pages 29–55. Springer, Cham,
2020.

12

Møgelberg and Vezzosi

[4] Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM
Trans. Program. Lang. Syst, 23(5):657–683, 2001.

[5] Krzysztof R Apt and Gordon D Plotkin. Countable nondeterminism and random assignment. Journal of the ACM (JACM),
33(4):724–767, 1986.

[6] Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. ACM SIGPLAN Notices, 48(9):197–
208, 2013.

[7] Patrick Bahr., Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The clocks are ticking: No more delays! In 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.

[8] Henning Basold, Herman Geuvers, and Niels van der Weide. Higher inductive types in programming. J. Univers. Comput.
Sci., 23(1):63–88, 2017.

[9] Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and denotational semantics in coq. In
International Conference on Theorem Proving in Higher Order Logics, pages 115–130. Springer, 2009.

[10] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps in synthetic guarded domain
theory: step-indexing in the topos of trees. Logical Methods in Computer Science, 8(4), 2012.

[11] Aleš Bizjak, Lars Birkedal, and Marino Miculan. A model of countable nondeterminism in guarded type theory. In Rewriting
and Typed Lambda Calculi, pages 108–123. Springer, 2014.

[12] Venanzio Capretta. General Recursion via Coinductive Types. Logical Methods in Computer Science, Volume 1, Issue 2,
2005.

[13] James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak bisimilarity. Mathematical
Structures in Computer Science, 29(1):67–92, 2019.

[14] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A constructive interpretation of
the univalence axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[15] Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. Effectful applicative bisimilarity: Monads, relators, and howe’s
method. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.

[16] Nils Anders Danielsson. Operational semantics using the partiality monad. In Proceedings of the 17th ACM SIGPLAN
international conference on Functional programming, pages 127–138, 2012.

[17] Tom de Jong and Martín Hötzel Escardó. Domain Theory in Constructive and Predicative Univalent Foundations. In
Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021),
volume 183 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[18] Pietro Di Gianantonio, Furio Honsell, and Gordon Plotkin. Uncountable limits and the lambda calculus. 1995.

[19] Robert Dockins. Formalized, effective domain theory in coq. In International Conference on Interactive Theorem Proving,
pages 209–225. Springer, 2014.

[20] Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite sets in homotopy type theory. In June
Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages 201–214. ACM, 2018.

[21] Douglas J Howe. Equality in lazy computation systems. In LICS, volume 89, pages 198–203, 1989.

[22] Martin Hyland and John Power. Discrete lawvere theories and computational effects. Theoretical Computer Science, 366(1-
2):144–162, 2006.

[23] Nicolai Kraus. The general universal property of the propositional truncation. In Hugo Herbelin, Pierre Letouzey, and
Matthieu Sozeau, editors, 20th International Conference on Types for Proofs and Programs, TYPES 2014, May 12-15, 2014,
Paris, France, volume 39 of LIPIcs, pages 111–145. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[24] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. Greatest hits: Higher inductive types in
coinductive definitions via induction under clocks, 2021. arXiv:2102.01969.

[25] Søren B Lassen and Corin S Pitcher. Similarity and bisimilarity for countable non-determinism and higher-order functions.
Electronic Notes in Theoretical Computer Science, 10:246–266, 1998.

[26] Søren Bøgh Lassen. Relational reasoning about functions and nondeterminism. PhD thesis, University of Aarhus, 1998.

[27] Bassel Mannaa, Rasmus Ejlers Møgelberg, and Niccolò Veltri. Ticking clocks as dependent right adjoints: Denotational
semantics for clocked type theory. Logical Methods in Computer Science, 16, 2020.

[28] Rasmus Ejlers Møgelberg and Marco Paviotti. Denotational semantics of recursive types in synthetic guarded domain theory.
In LICS, 2016.

[29] Rasmus Ejlers Møgelberg and Niccolò Veltri. Bisimulation as path type for guarded recursive types. Proceedings of the ACM
on Programming Languages, 3(POPL):1–29, 2019.

13

Møgelberg and Vezzosi

[30] Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–92, 1991.

[31] C-HL Ong. Non-determinism in a functional setting. In [1993] Proceedings Eighth Annual IEEE Symposium on Logic in
Computer Science, pages 275–286. IEEE, 1993.

[32] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. A model of pcf in guarded type theory. Electronic Notes in
Theoretical Computer Science, 319:333–349, 2015.

[33] Andrew M Pitts. Relational properties of domains. Information and computation, 127(2):66–90, 1996.

[34] Andrew M Pitts. A note on logical relations between semantics and syntax. Logic Journal of the IGPL, 5(4):589–601, 1997.

[35] Jan Schwinghammer, Aleš Bizjak, and Lars Birkedal. Step-indexed relational reasoning for countable nondeterminism. Logical
Methods in Computer Science, 9, 2013.

[36] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://
homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[37] Tarmo Uustalu. Stateful runners of effectful computations. Electronic Notes in Theoretical Computer Science, 319:403–421,
2015.

[38] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: a dependently typed programming language with
univalence and higher inductive types. Proceedings of the ACM on Programming Languages, 3(ICFP):1–29, 2019.

[39] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce, and Steve Zdancewic.
Interaction trees: representing recursive and impure programs in coq. Proceedings of the ACM on Programming Languages,
4(POPL):1–32, 2019.

A Omitted proofs

This is an appendix of proofs to be used in the review process only.

A.1 Section 5

The following is claimed in text in the paper.

Lemma A.1 The types Λ and Val, as well as all types of the form M ⇓3 V and M ⇓2 V are clock irrelevant.

Proof. Kristensen et al [24] prove a that the collection of clock irrelevant types is closed under inductive types,
but not inductive families of which Λ and Val are examples. Since these both embed into the inductive type
Tm of all (also open) terms, which is clock invariant, these can be shown to be clock irrelevant as follows.
We must show that the map Λ → ∀κ.Λ given by abstracting a fresh clock is an equivalence, and similarly for
Val. Since we assume a clock constant κ0, there is a map in the other direction given by evaluation at κ0.
Clearly the compositions starting and ending in Λ or Val are identities. We must show that t = λκ.t [κ0] for
any t : ∀κ.Λ. This is true since the same equation holds in Tm. In the cases of M ⇓3 V and M ⇓2 V , since
these are propositions, we just need to construct maps in both directions, which can be done as above. 2

Lemma A.2 Let m : ∀κ.Pκ3(A), f : ∀κ. A → Pκ3(B), then m ⇓∀P3
a and (λκ.f [κ] a) ⇓∀P3

b imply
λκ.(m [κ] >>=f [κ]) ⇓∀P3

b.

Proof. By induction on m ⇓∀P3
a, we have three cases. If m = λκ.now3 a then (m [κ] >>=f [κ]) = f [κ] a and

we conclude with our second assumption. If m = λκ.step3 λ(α : κ).m′ [κ] and m′ ⇓∀P3
a, then by induction

hypothesis we have
(λκ.m′ [κ] >>=f [κ]) ⇓∀P3

b

which impies
(λκ.step3 λ(α :κ).m′ [κ] >>=f [κ]) ⇓∀P3

b

which matches our goal by definition of the bind operator. If m = λκ.m [κ] ∪m′ [κ] with m ⇓∀P3
a+m′ ⇓∀P3

a

then we case split on the latter, apply the induction hypothesis and conclude by using that bind commutes
with ∪. 2

Lemma A.3 Let A be clock irrelevant, Qκ a family over A for each κ, and m : ∀κ.Pκ3(A). The statements
∀κ.P̂κ3Qκ(m [κ]) and ∀a.m ⇓∀P3

a→ ∀κ.Qκ(a) are logically equivalent.

14

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Møgelberg and Vezzosi

Proof. For the left to right direction we proceed by induction on m ⇓∀P3
a. We have three cases: if m =

λκ.now3 a we are done because P̂κ3Q
κ(now3 a) = Qκ(a). If m = λκ.step3 λ(α :κ).m′ [κ] and m′ ⇓∀P3

a we have
that our first assumption becomes

∀κ.. (α :κ).P̂κ3Q
κ(m′ [κ])

which is equivalent to
∀κ.P̂κ3Qκ(m′ [κ])

so we can conclude with the induction hypothesis on m′ ⇓∀P3
a. If m = λκ.m′ [κ] ∪ m′′ [κ] with m′ ⇓∀P3

a+m′′ ⇓∀P3
a our first assumption becomes

∀κ.P̂κ3Qκ(m′ [κ]) ∧ P̂κ3Q
κ(m′′ [κ])

then we can case split on the disjunction and proceed by induction hypothesis by projection the relevant side
of the above.

The opposite direction is proved by proving the following by guarded recursion

Π(m : ∀κ′.Pκ
′

3A).(∀a.m ⇓∀P3
a→ Qκ(a))→ P̂κ3Q

κ(m [κ])

As A is clock irrelevant we have that ∀κ′.Pκ′

3 (A) is equivalent to Pf(A+ ∀κ′.Pκ′

3 (A)), so we can also make use
of the induction principle for Pf . Indeed if m = λκ.m′ [κ] ∪m′′ [κ] then our assumption implies

∀a. (m′ ⇓∀P3
a+m′′ ⇓∀P3

a)→ ∀κ.Qκ(a)

and our goal becomes P̂κ3Q
κ(m′ [κ]) ∧ P̂κ3Q

κ(m′′ [κ]), so we can conclude by induction hypothesis on m′ and
m′′. Otherwise we are in the singleton case, which again splits in two: if m = λκ.step3 λ(α :κ).m′ [κ] then our
assumption implies

∀a.m′ ⇓∀P3
a→ ∀κ.Qκ(a)

and our goal becomes . (α :κ).P̂κ3Q
κ(m′ [κ]) so we can conclude by guarded recursion; if m = λκ.now3 a then

our assumption implies Qκ(a) which is what we need. 2

Proof of Proposition 5.3. For the left to right direction we proceed by induction on M ⇓3 V . If M = V
then eval(M) = now3 V and we are done. If we are in the case M N ⇓3 V given by M ⇓3 λλx.M ′ ∧ N ⇓3
V ′∧M ′[V ′/x] ⇓3 V , we obtain (λκ.eval(M)) ⇓∀P3

λλx.M ′∧(λκ.eval(N)) ⇓∀P3
V ′∧(λκ.eval(M ′[V ′/x])) ⇓∀P3

V by
induction hypothesis, and we conclude by two applications of lemma A.2 and the step3 rule for ⇓∀P3

. Finally
if we are in the case M orN ⇓3 V with M ⇓3 V ∨ N ⇓3 V we proceed by cases on the disjunction, then
induction hypothesis, and finally the ∪ rule of ⇓∀P3

.
In the opposite direction we observe that, by lemma A.3, proving

∀V. (λκ.eval(M)) ⇓∀P3
V →M ⇓3 V

only requires us to prove
∀κ.P̂κ3(M ⇓3 −)(eval(M))

which we also write ∀κ.M ⇓κ3 (M ⇓3 −). We then proceed proving ∀M.M ⇓κ3 (M ⇓3 −) by guarded recursion
and induction on M . If M = λλx.M ′ then we have to prove M ⇓3 λλx.M ′ which follows. If M = M ′N ′ then
by induction M ′ ⇓κ3 (M ′ ⇓3 −) and N ′ ⇓κ3 (N ′ ⇓3 −) which by covariance combine to

M ′ ⇓κ3 λ(λλx.P).N ′ ⇓κ3 λV ′.M ′ ⇓3 λλx.P ∧N ′ ⇓3 V ′

by guarded recursion we also have ∀P, V ′. .κ P [V ′/x] ⇓κ3 (P [V ′/x] ⇓3 −), so again by covariance we obtain

M ′ ⇓κ3 λ(λλx.P).N ′ ⇓κ3 λV ′. .κ P [V ′/x] ⇓κ3 λV. M ′ ⇓3 λλx.P ∧N ′ ⇓3 V ′ ∧ P [V ′/x] ⇓3 V

which implies
M ′ ⇓κ3 λ(λλx.P).N ′ ⇓κ3 λV ′. .κ P [V ′/x] ⇓κ3 λV. M ′N ′ ⇓3 V

15

Møgelberg and Vezzosi

which concludes our proof by the definition of eval (M ′N ′) and the fact that P̂κ3 satifies the properties of a
lifting of the monad Pκ3 to predicates (Definition 5.1). If M = M ′ orN ′ then by induction we get M ′ ⇓κ3
(M ′ ⇓3 −) ∧ N ′ ⇓κ3 (N ′ ⇓3 −) which by covariance imply M ′ ⇓κ3 (M ⇓3 −) ∧ N ′ ⇓κ3 (M ⇓3 −) which is
equivalent to our goal by evalM = evalM ′ ∪ evalN ′ and P̂κ3 mapping union to conjunction. 2

Proof of Lemma 5.4. The first statement of the lemma has already been proved as Lemma A.3. The second
statement is then proved follows

M ⇓3 V → ∀κ.Qκ(V) ' (λκ.evalM) ⇓∀P3
V → ∀κ.Qκ(V) (Proposition 5.3)

' ∀κ.L̂κ(Qκ)(evalM) (Lemma A.3)
= ∀κ.M ⇓κ3 Qκ (By definition)

2

A.2 Section 5.1

Proof of Lemma 5.5. We first show that ≤3 is an applicative simulation. For this, suppose M ≤3 N and
M ⇓3 λλx.M ′. We must show that

∃N ′.N ⇓3 λλ y.N ′ ∧ (∀V.M ′[V/x] ≤3 N ′[V/x])

By Lemma 5.4 then
∀κ.∃N ′.N ⇓3 λλ y.N ′ ∧ .κ(∀V.M ′[V/x] ≤κ3 N ′[V/x])

Since ∀κ commutes with prop. truncation and κ does not appear in N ⇓3 λλ y.N ′ and in the type that N ′ and
V range over, by clock irrelevance this implies

∃N ′.N ⇓3 λλ y.N ′ ∧ (∀V.∀κ.M ′[V/x] ≤κ3 N ′[V/x])

which is precisely what we wanted to prove.
Now suppose R is an applicative simulation. We will show that M RN implies M ≤κ3 N by guarded

recursion, which then, since κ does not appear in the hypothesis M RN means that M RN implies M ≤3 N .
Suppose now M RN . Then also

M ⇓3 λλx.M ′ → ∀κ′.∃N ′.N ⇓3 λλ y.N ′ ∧ (∀V.M ′[V/x]RN ′[V/x])

which by lemma 5.4 is equivalent to

∀κ′.M ⇓κ
′

3 λ(λλx.M ′).∃N ′.N ⇓3 λλ y.N ′ ∧ (∀V.M ′[V/x]RN ′[V/x])

which by application to κ, covariance of M ⇓κ3 (−), and guarded recursion, implies

M ⇓κ3 λ(λλx.M ′).∃N ′.N ⇓3 λλ y.N ′ ∧ .κ(∀V.M ′[V/x] ≤κ3 N ′[V/x])

which is equivalent to M ≤κ3 N . 2

B Section 5.2

Lemma B.1 (Substitution) If V is a value then JM [V/x]Kκρ = JMKκ(ρ, JV KκVal). As a consequence
Jλλx.MKκVal [α](JV KκVal) = JM [V/x]Kκ.

Proof. Variable cases are trivial.

Jλλxn+1.M [V/x]Kκρ = pure (λα.(λd.JM [V/x]Kκ(ρ, d)))

= pure (λα.(λd.JMKκ(ρ, JV KκVal, d)))

= Jλλxn+1.MKκ(ρ, JV KκVal)

16

Møgelberg and Vezzosi

The case of application is

J(M P)[V/x]Kκρ = J(M [V/x]) (P [V/x])Kκρ
= JM [V/x]Kκρ · JP [V/x]Kκρ
= JMKκ(ρ, JV KκVal) · JP Kκ(ρ, JV KκVal)
= JM P Kκ(ρ, JV KκVal)

Finally the case of non-determinism is

J(M orP)[V/x]Kκρ = J(M [V/x]) or(P [V/x])Kκρ
= JM [V/x]Kκρ ∪ JP [V/x]Kκρ
= JMKκ(ρ, JV KκVal) ∪ JP Kκ(ρ, JV KκVal)
= JM orP Kκ(ρ, JV KκVal)

For the last statement Jλλx.MKκVal [α](JV KκVal) is by definition (λv.JMKκ(v))(JV KκVal) = JM [V/x]Kκ. 2

Proof of Theorem 5.6. The proof is by guarded recursion and induction onM . The case ofM being a value
is trivial: JV Kκ = pure (JV KκVal) and T (J−KκVal)(evalV) = T (J−KκVal)(pure V) = pure JV KκVal.

In the case of application eval(M N) is defined to be

evalM >>=λ(λλx.M ′).evalN >>=λV.stepT (λ(α :κ).eval (M ′[V/x]))

Applying T (J−KκVal) to this gives (by naturality of bind)

evalM >>=λ(λλx.M ′).evalN >>=λV.T (J−KκVal)(stepT (λ(α :κ).eval (M ′[V/x])))

which by naturality of stepT equals

evalM >>=λ(λλx.M ′).evalN >>=λV.stepT (λ(α :κ).T (J−KκVal)(eval (M ′[V/x]))) (B.1)

By guarded recursion λ(α :κ).T (J−KκVal)(eval (M ′[V/x])) equals

λ(α :κ).JM ′[V/x]Kκ = λ(α :κ).JM ′Kκ(JV KκVal)
= λ(α :κ).Jλλx.M ′KκVal [α](JV KκVal)

and so by naturality of bind (B.1) equals

T (J−KκVal)(evalM) >>=λW.T (J−KκVal)(evalN) >>=λV.stepT λ(α :κ).W [α]V

which by the induction hypothesis equals

JMKκ >>=λW.JNKκ >>=λV.stepT (λ(α :κ).W [α]V)

which by definition is JMKκ · JNKκ, which again by definition is JM NKκ.
For the case of nondeterministic choice we compute using the induction hypothesis:

T J−KκVal(eval(M orN)) = T J−KκVal(evalM ∪ evalN)

= T J−KκVal(evalM) ∪ T J−KκVal(evalN)

= JMKκ ∪ JNKκ

= JM orNKκ

2

17

Møgelberg and Vezzosi

Proof of Corollary 5.7. The proof is by direct calculation

JMKκ ↓κ3 Q = T̂Q (JMKκ)

= T̂Q (T (J−KκVal)(evalM))

= T̂ (Q ◦ J−KκVal)(evalM)

= M ⇓κ3 Q ◦ J−KκVal

2

C Section 5.3

Lemma C.1 If M small step reduces to M ′ then d �κ M ′ implies d �κ M . If the reduction is deterministic
(i.e., does not use the rule N1 orN2 → Ni) then also d �κ M implies d �κ M ′.

Proof. Follows from the fact that M ′ ⇓3 (λλx.P) implies M ⇓3 (λλx.P), and also the other way around for
deterministic reductions. 2

Lemma C.2 If d �κ M and d′ �κ N then d · d′ �κ M N .

Proof. By induction on d and d′. If d = d0 ∪ d1 then d · d′ = (d0 · d′) ∪ (d1 · d′) and the statement to
be proved reduces to (d0 · d′ �κ M N) ∧ (d1 · d′ �κ M N). Since likewise the first assumption reduces to
(d0 �κ M) ∧ (d1 �κ M) the case follows by induction. If d = step3 (d′′) then

d · d′ = step3 (λ(α :κ).((d′′ [α]) · d′))

and the statement to be proved reduces to . (α : κ).(d′′ [α] · d′ �κ M N). Since likewise the first assumption
reduces to . (α :κ).((d′′ [α]) �κ M) the case follows by guarded recursion. Similar reductions apply to the cases
of d = now3 (v) and d′ = d′0 ∪ d′1 and d′ = step3 (d′′).

In the last case d = now3 (v) and d′ = now3 (v′). By hypothesis then there merely exist λλx.M ′ and V
such that M ⇓3 λλx.M ′ and N ⇓3 V and moreover v �κVal λλx.M ′ and v′ �κVal V . By applying the definition
v �κVal λλx.M ′ to v′ �κVal V we obtain

. (α :κ).v [α](v′) �κ M ′[V ′/x]

which means precisely that d · d′ �κ M ′[V ′/x]. By Lemma F.6 and coincidence of the small step and big step
operational semantics, we then conclude d · d′ �κ M N . 2

Lemma C.3 If d �κ M and d′ �κ N then d ∪ d′ �κ M orN .

Proof. We need to show d �κ M orN ∧ d′ �κ M orN which follows from the premises and lemma F.6 2

Proof of Lemma 5.8. By induction on M . The case of variables is trivial. In the case of abstraction, since
Jλλx.MKκρ = now3 (λα.λv.JMKκ(ρ, v)) and (λλx.M)σ ⇓3 (λλx.M)σ, we must prove that

. (α :κ).(∀v, V.v �κVal V → (JMKκ(ρ, v)) �κ Mσ[V/x])

which follows from the induction hypothesis for M . The case of application follows from lemma F.8, and the
case for choice follows from lemma F.9. 2

Lemma C.4 If M ≤3 M ′ and d �κ M then d �κ M ′.

Proof. The proof is by guarded recursion. Since d ↓κ3 Q is covariant in Q it suffices to show that

∃P.M ⇓3 (λλx.P)∧ . (α :κ).(∀v, V.v �κVal V → (f [α](v)) �κ P [V/x])

implies

∃P ′.M ′ ⇓3 (λλx.P ′)∧ . (α :κ).(∀v, V.v �κVal V → (f [α](v)) �κ P ′[V/x])

18

Møgelberg and Vezzosi

By Lemma 5.5 the assumption M ≤3 M ′ gives M ′ ⇓3 (λλx.P ′) and P [V/x] ≤3 P ′[V/x]. The proof then
follows by guarded recursion. 2

Proof of Lemma 5.9. If M ≤3 N , then since JMKκ �κ M also JMKκ �κ N by Lemma F.10. The proof then
follows by abstracting κ. For the other direction we prove that JMKκ �κ N implies M ≤κ3 N using guarded
recursion. Since for any value V , by Lemma 5.8 now3 (JV KκVal) �κ V which means the same as JV Kκ �κVal V
the assumption JMKκ �κ N implies

JMKκ ↓κ3 f.∃N ′.N ⇓3 λλ y.N ′ ∧ . (α :κ).(∀V.f [α](JV KκVal) �
κ N ′[V/x])

which by Theorem 5.6 is equivalent to

M ⇓κ3λ(λλx.M ′).∃N ′.N ⇓3 λλ y.N ′ ∧ . (α :κ).(∀V.Jλλx.M ′KκVal [α](JV KκVal) �
κ N ′[V/x])

which, since

Jλλx.M ′KκVal [α](JV KκVal) = JM ′Kκ(JV KκVal) = JM ′[V/x]Kκ

is equivalent to

M ⇓κ3λ(λλx.M ′).∃N ′.N ⇓3 λλ y.N ′ ∧ . (α :κ).(∀V.JM ′[V/x]Kκ �κ N ′[V/x])

which by guarded recursion implies M ≤κ3 N . 2

D Section 6

Lemma D.1 The following maps are finite union structure homomorphisms

(i) nowL : PfA→ LκPfA

(ii) Lκ(∪) : LκPf
2A→ LκPfA

(iii) LκPf(f) for any f .

Proof. In the first case, note that nowL (X∪Y) = nowL X∪nowL Y by definition. To prove that Lκ(∪)(X∪Y) =
Lκ(∪)(X) ∪ Lκ(∪)(Y) consider the different cases for X and Y . If X = nowL (X ′), Y = nowL (Y ′) we get

Lκ(∪)(nowL (X ′) ∪ nowL (Y ′)) = Lκ(∪)(nowL (X ′ ∪ Y ′))
= nowL (∪(X ′ ∪ Y ′))
= nowL ((∪X ′) ∪ (∪Y ′))
= nowL (∪X ′) ∪ nowL (∪Y ′)

All other cases are by guarded recursion, for example

Lκ(∪)(stepL (X ′) ∪ nowL (Y ′)) = Lκ(∪)(stepL (λ(α :κ).X ′ [α] ∪ nowL (Y ′)))

= stepL (λ(α :κ).Lκ(∪)(X ′ [α] ∪ nowL (Y ′)))

= stepL (λ(α :κ).Lκ(∪)(X ′ [α]) ∪ Lκ(∪)(nowL (Y ′))))

= stepL (λ(α :κ).Lκ(∪)(X ′ [α]) ∪ (nowL (∪Y ′))))
= stepL (λ(α :κ).Lκ(∪)(X ′ [α])) ∪ (nowL (∪Y ′)))
= Lκ(∪)(X ′) ∪ Lκ(∪)(nowL (Y ′))

where guarded recursion is used in the third equality.
The last case is proved by guarded recursion and induction on A and B. In the case of A = nowL (A′),

19

Møgelberg and Vezzosi

B = nowL (B′) we get

LκPf(f)(A ∪B) = LκPf(f)(nowL (A′ ∪B′))
= nowL (Pf(f)(A′ ∪B′))
= nowL (Pf(f)(A′) ∪ Pf(f)(B′))

= nowL (Pf(f)(A′)) ∪ nowL (Pf(f)(B′))

= LκPf(f)(A) ∪ LκPf(f)(B)

using naturality of ∪ in the third equality. The other cases follow by guarded recursion, for example in the
case of A = nowL (A′), B = stepL (B′) we get

LκPf(f)(A ∪B) = LκPf(f)(stepL (λ(α :κ).(nowL (A′) ∪B′ [α])))

= stepL (λ(α :κ).LκPf(f)(nowL (A′) ∪B′ [α]))

= stepL (λ(α :κ).LκPf(f)(nowL (A′)) ∪ LκPf(f)(B′ [α]))

= stepL (λ(α :κ).nowL (Pf(f)(A′)) ∪ LκPf(f)(B′ [α]))

= nowL (Pf(f)(A′)) ∪ stepL (λ(α :κ).LκPf(f)(B′ [α]))

= LκPf(f)(nowL (A′)) ∪ LκPf(f)(stepL (λ(α :κ).B′ [α]))

= LκPf(f)(A) ∪ LκPf(f)(B)

2

Proof of Proposition 6.1. First observe that ζA is natural in A: If f : A→ B then by Lemma D.1 LκPff is a
homomorphism and so also both LκPf(f) ◦ ζA and ζB ◦PfL

κ(f) are homomorphisms from PfL
κ(A)→ LκPf(B).

To show that they are equal it thus suffices to show that their compositions with {−} : LκA → PfL
κA are

equal. This is done as follows

LκPf(f) ◦ ζA ◦ {−} = LκPf(f) ◦ Lκ({−})
= Lκ({−}) ◦ Lκ(f)

= ζB ◦ {−} ◦ Lκ(f)

= ζB ◦ PfL
κ(f) ◦ {−}

We now verify the required equations

ζA(Pf(nowL (−))(X)) = nowL (X) if X : PfA (D.1)
ζA({−}(d)) = Lκ({−})(d) if d : LκA (D.2)

ζA(∪X) = Lκ(∪)(ζ(Pf(ζ)(X))) if X : Pf
2LκA (D.3)

For equation (D.1) note that ζA ◦ Pf(nowL (−)) : PfA → LκPfA is a homomorphism, and so is nowL by
Lemma D.1. Therefore it suffices to show the equality in the case of X = {x}, in which case the left hand
side reduces to ζ({nowL (x)}) = nowL ({x}), which is the same as the right hand side. Equation (D.2) holds by
definition of ζ.

For (D.3) note that by Lemma D.1 both sides describe homomorphisms Pf
2LκA → LκPf(A), and so it

suffices to prove the case of X = {Y }. In this case the left hand side reduces to ζ(∪({Y })) = ζ(Y) and the
right hand side to

Lκ(∪)(ζ(Pf(ζ)({Y }))) = Lκ(∪)(ζ({ζ(Y)}))
= Lκ(∪)(Lκ({−})(ζ(Y)))

= ζ(Y)

using ζ ◦ {−} = Lκ({−}) in the second equality.
For failure of the last commutative diagram consider the counter example with

X = {stepL (λ(α :κ).nowL (nowL x)), nowL (stepL λ(β :κ).nowL x)} : Pf(Lκ(LκA))

20

Møgelberg and Vezzosi

In this case

ζA(Pf(µL)(X)) = ζ({µL(stepL (λ(α :κ).nowL (nowL x))), µL(nowL (stepL λ(β :κ).nowL x))})
= ζ({stepL (λ(α :κ).nowL x), stepL λ(β :κ).nowL x})
= ζ({stepL (λ(α :κ).nowL x)})
= stepL (λ(α :κ).nowL {x}))

and

µL(Lκ(ζ)(ζ(X))) = µL(Lκ(ζ)(stepL (λ(α :κ).nowL {nowL x} ∪ nowL {stepL λ(β :κ).nowL x}})))
= µL(Lκ(ζ)(stepL (λ(α :κ).nowL {nowL x, stepL λ(β :κ).nowL x})))
= µL(stepL (λ(α :κ).nowL ζ({nowL x, stepL λ(β :κ).nowL x}))))
= µL(stepL (λ(α :κ).nowL stepL λ(β :κ).{nowL x, nowL x}))))
= µL(stepL (λ(α :κ).nowL stepL λ(β :κ).{nowL x}))
= stepL λ(α :κ).stepL λ(β :κ).{nowL x}

2

Proof of Proposition 6.1. The bind operation induced by ζ maps a : LκPf(A) and f : A → LκPfB to
µ(LκPf(f))(a) where µ : LκPfL

κPf → LκPf is the multiplication defined as Lκ(∪) ◦ µL ◦ Lκ(ζ). The proof is by
guarded recursion and induction on a. In the case of a = stepL (a′) the bind operation applied to a is

µ ◦ Lκ(Pf(f))(stepL (a′)) = Lκ(∪) ◦ µL ◦ Lκ(ζ)(stepL (λ(α :κ).Lκ(Pf(f))(a′ [α])))

= stepL (λ(α :κ).Lκ(∪) ◦ µL ◦ Lκ(ζ)(Lκ(Pf(f))(a′ [α])))

= stepL (λ(α :κ).µ(Lκ(Pf(f))(a′ [α])))

= stepL (λ(α :κ).a′ [α] >>=LλX. ∪x∈X f(x))

= stepL (a′) >>=LλX. ∪x∈X f(x)

using guarded recursion in the 4th equality. In the case of m = nowL (a′) we proceed by cases on a′. If a′ = {x}
the left hand side reduces to

µ ◦ Lκ(Pf(f))(nowL {x}) = Lκ(∪) ◦ µL ◦ Lκ(ζ)(nowL {f(x)})
= Lκ(∪) ◦ µL(nowL ζ({f(x)}))
= Lκ(∪) ◦ µL(nowL Lκ({−})(f(x)))

= Lκ(∪)(Lκ({−})(f(x)))

= f(x)

and the right hand side nowL {x} >>=LλX.∪x∈X f(x) also simply reduces to f(x). In the final case of a′ = X∪Y
the left hand side reduces to

µ ◦ Lκ(Pf(f))(nowL (X ∪ Y)) = Lκ(∪) ◦ µL ◦ Lκ(ζ) ◦ Lκ(Pf(f))(nowL (X ∪ Y))

= Lκ(∪) ◦ µL ◦ Lκ(ζ)(nowL Pf(f)(X ∪ Y))

= Lκ(∪) ◦ µL ◦ Lκ(ζ)(nowL (Pf(f)(X) ∪ Pf(f)(Y)))

= Lκ(∪) ◦ µL(nowL (ζ(Pf(f)(X)) ∪ ζ(Pf(f)(Y))))

= Lκ(∪)(ζ(Pf(f)(X)) ∪ ζ(Pf(f)(Y)))

= Lκ(∪)(ζ(Pf(f)(X))) ∪ Lκ(∪)(ζ(Pf(f)(Y)))

using Lemma D.1 in the last equality. Note that

Lκ(∪)(ζ(Pf(f)(X))) = Lκ(∪) ◦ µL(nowL (ζ(Pf(f)(X))))

= Lκ(∪) ◦ µL(Lκ(ζ)(nowL (Pf(f)(X))))

= Lκ(∪) ◦ µL ◦ Lκ(ζ)(LκPf(f)(nowL (X)))

= ∪x∈Xf(x)

21

Møgelberg and Vezzosi

the last equality using the induction hypothesis. By a similar calculation for Lκ(∪)(ζ(Pf(f)(Y))) we conclude
that

µ ◦ Lκ(Pf(f))(nowL (X ∪ Y)) = (∪x∈Xf(x)) ∪ (∪x∈Y f(x))

= ∪x∈X∪Y f(x)

= nowL (X ∪ Y) >>=LλZ. ∪x∈Z f(x)

as desired.
By definition, a >>=LλX. ∪x∈X f(x) is a delay-homomorphism in a. To see that it also is a finite union

structure homomorphism, suppose a = b ∪ c and consider cases for b and c. Suppose first b = nowL X and
c = nowL Y . Then b ∪ c = nowL (X ∪ Y) and

a >>=LλZ. ∪z∈Z f(z) = (∪x∈Xf(x)) ∪ (∪y∈Y f(y))

= (b >>=LλX. ∪x∈X f(x)) ∪ (c >>=LλX. ∪x∈X f(x))

In the other cases, a is of the form step2(λ(α :κ).b′ [α] ∪ c′ [α]), for some b′ and c′, and by guarded recursion
then a >>=LλZ. ∪z∈Z f(z) equals

stepL (λ(α :κ).(b′ [α] ∪ c′ [α]) >>=LλZ. ∪z∈Z f(z))

= stepL (λ(α :κ).(b′ [α] >>=LλZ. ∪z∈Z f(z)) ∪ (c′ [α] >>=LλZ. ∪z∈Z f(z)))

which equals (b >>=LλZ. ∪z∈Z f(z)) ∪ (c >>=LλZ. ∪z∈Z f(z)).
Finally, for the two equations stated in the lemma

(now2(a) >>=f) = (nowL ({a}) >>=LλZ. ∪z∈Z f(z)) = f(a)

and (a >>=now2) = a is an easy induction on a. 2

Lemma D.2 If f : A→ B → LκPf(C) and X : PfA,m : LκB then

(∪x∈X(m >>=Lλy.f x y)) = (m >>=Lλy. ∪x∈X f x y)

Proof. By induction on m and X. If m = nowL y then both hand sides reduce to ∪x∈Xf x y. If X = {x} then
both hand sides reduce to m >>=Lλy.f x y. If X = Y ∪ Z and m = stepL (λ(α :κ).m′) then

(∪x∈X(m >>=Lλy.f x y)) = (∪x∈Y (m >>=Lλy.f x y)) ∪ (∪x∈Z(m >>=Lλy.f x y))

= (m >>=Lλy. ∪x∈Y f x y) ∪ (m >>=Lλy. ∪x∈Z f x y)

= (stepL (λ(α :κ).m′ [α] >>=Lλy. ∪x∈Y f x y)

∪ (stepL (λ(α :κ).m′ [α] >>=Lλy. ∪x∈Z f x y)

= stepL (λ(α :κ).(m′ [α] >>=Lλy. ∪x∈Y (f x y))

∪ (m′ [α] >>=Lλy. ∪x∈Z (f x y)))

= stepL (λ(α :κ).(∪x∈Y (m′ [α] >>=Lλy.f x y))

∪ (∪x∈Z(m′ [α] >>=Lλy.f x y)))

= stepL (λ(α :κ).(∪x∈X(m′ [α] >>=Lλy.f x y)))

= stepL (λ(α :κ).(m′ [α] >>=Lλy. ∪x∈X (f x y)))

= m >>=Lλy. ∪x∈X (f x y)

using the induction hypothesis 3 times. 2

Lemma D.3 If f : A→ B → LκPfC and m : LκPfA,n : LκPfB then

(m >>=λx.(n >>=λy.f x y)) = (m >>=LλX.n >>=LλY. ∪x∈X ∪y∈Y f x y)

22

Møgelberg and Vezzosi

Proof. By Proposition 6.1 and Lemma D.2

(m >>=λx.(n >>=λy.f x y)) = (m >>=LλX. ∪x∈X (n >>=LλY. ∪y∈Y f x y))

= (m >>=LλX.n >>=LλY. ∪x∈X ∪y∈Y f x y)

2

E Section 7

Lemma E.1 Let A be clock irrelevant, Q a family over A, and m : ∀κ. LκA. The statements ∀κ.L̂κQ(mκ)

and m ⇓∀2 a→ ∀κ.Q(a) are logically equivalent. Moreover, m ⇓∀2 a→ Q(a) implies L̂κQ(mκ).

Proof. The left to right implication of the first statement is proved by induction onm ⇓∀2 a. Ifm = λ_. nowL a,
then ∀κ.L̂κQ(nowL a) = ∀κ.Q(a) and we are done. In the other case m = λκ. stepL (λ(_ :κ).m′ κ) for some m′
satisfying m′ ⇓∀2 a. In this case, the other assumption is

∀κ.L̂κQ(stepL (λ(_ :κ).m′ κ)) = ∀κ. .κ L̂κQ(m′ κ)

which is equivalent to ∀κ.L̂κQ(m′ κ), and so by induction we conclude ∀κ.Q(a) as desired.
The opposite direction follows from the last statement of the lemma, so we prove that instead by proving

the following by guarded recursion

Π(m : ∀κ′. Lκ
′
A).(m ⇓∀2 a→ Q(a))→ L̂κQ(mκ)

Since A is clock irrelevant the type ∀κ′. Lκ′
A is the final coalgebra for A+− so we can proceed by cases on m

like before. In the first casem = λ_. nowL a, from which we can provem ⇓∀2 a, and so our premise implies Q(a),
which is exactly what we need to prove. In the other case m = λκ. stepL (λ(_ :κ).m′ κ), for some m′ : ∀κ.LκA
then our premise implies (m′ ⇓∀2 a → Q(a)), and so by guarded recursion we conclude .κ L̂κQ(m′ κ) which is
precisely the statement L̂κQ(mκ). 2

Lemma E.2 Let A be a set and clock irrelevant, and m : ∀κ.LκA. Then m ⇓∀2 a0 ∧m ⇓∀2 a1 imply a0 = a1.

Proof. By induction on the convergence proofs. 2

Lemma E.3 Let V : PfA and A clock irrelevant. (λκ.mκ ∪ nκ) ⇓∀2 V is logically equivalent to ∃Vm, Vn.V =
Vm ∪ Vn ∧m ⇓∀2 Vm ∧ n ⇓∀2 Vn

Proof. By induction on the convergence proofs, and case splitting on m and n. 2

Lemma E.4 Let A,B be sets, and a : A. Let B be clock irrelevant. Let m : ∀κ.LκB, and f : B → ∀κ.LκA.
Then (λκ.mκ >>=Lλx.f x κ) ⇓∀2 a is logically equivalent to ∃x.m ⇓∀2 x ∧ f x ⇓∀2 a.

Proof. By induction on the convergence proofs, and case splitting on m. By clock irrelevance of B we have
two cases for m, either m = λκ.nowL b or m = λκ.stepL λ(α :κ).m′ κ. Let us say n for (λκ.mκ >>=Lλx.f x κ).

In the left to right direction, if m = λκ.nowL b then m ⇓∀2 b and n = f b ⇓∀2 a. In the case of m =
λκ.stepL λ(α :κ).m′ κ, we proceed by induction on the convergence proof for n. In this case n = λκ.stepL λ(α :
κ).n′ κ where n′ = λκ.m′ κ >>=Lλx.f x κ. The induction hypothesis on n′ then gives ∃x.m′ ⇓∀2 x ∧ f x ⇓∀2 a
which implies the same statement for m.

In the right to left direction, recall that the left hand side is also a proposition, so we can proceed by
induction on the proof m ⇓∀2 x. The base case is m = λκ.nowL x so that n = λκ.f x κ and we can conclude.
The other case is m = λκ.stepL λ(α : κ).m′ κ with m′ ⇓∀2 a. By induction hypothesis on the latter we get
n′ ⇓∀2 a for n′ as in the other direction, and then we can conclude with the step rule for convergence. 2

Lemma E.5 Let A,B be clock irrelevant sets, X : PfA, and Y : PfB. Then (λκ. ∪x∈X f xκ) ⇓∀2 Y is logically
equivalent to ∃(F : (x : A)→ x ∈ X → PfB).Y = ∪x∈XF x ∧ ∀x ∈ X.f x ⇓∀2 F x

Proof. We prove both directions of the equivalence at the same time, by induction on X. The singleton case
is trivial. What is left is the case where X = X0 ∪X1. Then ∪x∈Xf xκ = (∪x∈X0

f xκ) ∪ (∪x∈X1
f xκ) and by

23

Møgelberg and Vezzosi

lemma E.3 we have (λκ. ∪x∈X f xκ) ⇓∀2 Y equivalent to

∃Y0, Y1.Y = Y0 ∪ Y1 ∧ (λκ. ∪x∈Xi f xκ) ⇓∀2 Yi for i = 0, 1

which, by induction hypotheses for Xi, is equivalent to

∃Y0, Y1.Y = Y0 ∪ Y1 ∧ ∃Fi.Yi = ∪x∈XiFi x ∧ ∀x ∈ Xi.fx ⇓∀2 Fi x for i = 0, 1.

Finally we need to show the above equivalent to

∃(F : (x : A)→ x ∈ X0 ∪X1 → PfB).Y = ∪x∈X0∪X1
F x ∧ ∀x ∈ X0 ∪X1.f x ⇓∀2 F x.

One direction is trivial, in the other we need to combine the two Fi into a single F : (x : A)→ x ∈ (X0∪X1)→
PfB. For every x there is a map [F0 x, F1 x] : x ∈ X0 + x ∈ X1 → PfB, and we need to show that this defines
a map from x ∈ X0 ∪ X1, i.e., from the propositional truncation of x ∈ X0 + x ∈ X1. To do this, we must
show that different proofs are mapped to path equal elements. The interesting case is when one proof proves
that x ∈ X0, and the other one proves x ∈ X1. In this case, by lemma E.2 we know that F0x = F1x, since f x
converges to both. Since PfB is a set, this is enough to define F . It also follows that Y0∪Y1 = ∪x∈X0∪X1F x.2

Lemma E.6 (λκ.mκ >>=λx.n κ >>=λy.f x y κ) ⇓∀2 V is logically equivalent to ∃X,Y.m ⇓∀2 X∧n ⇓∀2 Y ∧∃F.V =
∪x∈X,y∈Y F x y ∧ ∀x ∈ X, y ∈ Y.f x y ⇓∀2 F x y

Proof. By lemma D.3 we have

(mκ >>=λx.n κ >>=λy.f x y κ) = (mκ >>=LλX.nκ >>=LλY. ∪x∈X ∪y∈Y f x y)

The above means we can apply lemma E.4 twice to show the left hand side of the lemma we are proving is
equivalent to

∃X,Y.m ⇓∀2 X ∧ n ⇓∀2 Y ∧ ∪x∈X ∪y∈Y f x y ⇓∀2 V
then by lemma E.5 we have ∪x∈X ∪y∈Y f x y ⇓∀2 V is equivalent to

∃F.V = ∪x∈XF x ∧ ∀x ∈ X. ∪y∈Y f x y ⇓∀2 F x

which, again by lemma E.5, is equivalent to

∃FX .V = ∪x∈XFX x ∧ ∀x ∈ X.∃FY .FX x = ∪y∈Y FY y ∧ ∀y ∈ Y.f x y ⇓∀2 FY y

Since FY is uniquely determined by lemma E.2, by the axiom of unique choice (which is a theorem in homotopy
type theory) the above is equivalent to

∃FX .V = ∪x∈XFX x ∧ ∃F.∀x ∈ X.FX x = ∪y∈Y F x y ∧ ∀y ∈ Y.f x y ⇓∀2 F x y

Since then V = ∪x∈X,y∈Y F x y, this completes the proof. 2

Proof of Proposition 7.1. Left to right is by induction on M ⇓2 V . Right to left is by case splitting on
M and by lexicographic induction on the height of (λκ. evalM), which is finite because we are given that it
converges, and the height of M . In either direction we have three cases: M = λλx.M ′, M = M0 orM1, and
M = N P . The abstraction case is trivial.

For M = M0 orM1 we have that M ⇓2 V is equivalent to

∃V0, V1.V = V0 ∪ V1 ∧M0 ⇓2 V0 ∧M1 ⇓2 V1

while λκ.evalM ⇓∀2 V is equivalent, by lemma E.3, to

∃V0, V1.V = V0 ∪ V1 ∧ (λκ.evalM0) ⇓2 V0 ∧ (λκ.evalM1) ⇓2 V1

since evalM = evalM0 ∪ evalM1. In either direction the induction hypothesis completes the proof.

24

Møgelberg and Vezzosi

For M = N P we have that M ⇓2 V is equivalent to

∃X,Y.N ⇓2 X ∧ P ⇓2 Y ∧ ∃Z.V = ∪W∈X,W ′∈Y ZW W ′∧
∀(λλx.N ′) ∈ X,W ′ ∈ Y.N ′[W ′/x] ⇓2 Z (λλx.N ′)W ′

while, since
eval (N P) = evalN >>=λ(λλx.N ′).evalP >>=λW ′.stepL λ(α :κ).eval (N ′[W ′/x])

(λκ.evalM) ⇓∀2 V is equivalent to

∃X,Y.(λκ.evalN) ⇓∀2 X ∧ (λκ.evalP) ⇓∀2 Y ∧ ∃Z.V = ∪W∈X,W ′∈Y ZW W ′∧
∀(λλx.N ′) ∈ X,W ′ ∈ Y.(λκ.eval (N ′[W ′/x])) ⇓∀2 Z (λλx.N ′)W ′

by lemma E.6, and the rule for (λκ.stepL m) ⇓2 a. In either direction the induction hypothesis completes the
proof. 2

Proof of Lemma 7.2. The first statement has already been proved as Lemma E.1. The second statement is
proved as follows.

M ⇓2 V → ∀κ.Qκ(V) ' (λκ.evalM) ⇓∀2 V → ∀κ.Qκ(V)

' ∀κ.L̂κ(evalM)Qκ

= ∀κ.M ⇓κ2 Qκ

2

Proof of Lemma 7.3. We first show that ≤2 is an applicative bisimulation. For this, suppose M ≤2 N and
M ⇓2 X. We must show that

∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X). (∀V : Val.M ′[V/x] ≤2 N
′[V/x])

By Lemma 7.2 then

∀κ.∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X). . (α :κ).(∀V : Val.M ′[V/x] ≤κ2 N ′[V/x]).

Since ∀κ commutes with propositional truncation and κ does not appear in N ⇓2 Y and in the type that N ′
and V range over, by clock irrelevance this implies

∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X).(∀V : Val.∀κ.M ′[V/x] ≤κ2 N ′[V/x])

which is precisely what we wanted to prove.
Now suppose R is an applicative simulation. We will show that M RN implies M ≤κ2 N by guarded

recursion, which then, since κ does not appear in the hypothesis M RN means that M RN implies M ≤2 N .
Suppose now M RN . Then also

M ⇓2 X → ∀κ′.∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X). (∀P.M ′[P/x]RN ′[P/x])

which, by lemma 7.2, is equivalent to

∀κ′.M ⇓κ
′

2 λX.∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X). (∀P.M ′[P/x]RN ′[P/x])

which by application to κ, covariance of M ⇓κ2, and guarded recursion, implies

M ⇓κ2 λX.∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.M ′ ∈ X). .κ (∀P.M ′[P/x] ≤κ2 N ′[P/x])

which is equivalent to M ≤κ2 N . 2

25

Møgelberg and Vezzosi

Proof of Corollary 7.4. The proof is by direct calculation

JMKκ ↓κ Q = L̂κQ (JMKκ)

= L̂κQ (LκPf(J−KκVal)(evalM)) (Theorem 5.6)

= L̂κ(Q ◦ Pf(J−KκVal))(evalM)

= M ⇓κ2 Q ◦ Pf(J−KκVal)

2

F Section 7.1

Lemma F.1 Pf respects the monad structure of Pf in the sense that

(i) If R(a, b) then Pf({a}, {b})
(ii) If f : X → Pf(X

′) and g : Y → Pf(Y
′) such that R(a, b) implies PfS(f(x), g(y)) then also Pf(A,B)

for A : PfX,B : PfY implies PfS(f(A), g(B)) where f and g are the unique extensions of f and g to
homomorphisms.

Proof. The first statement is trivial. For the second statement, suppose b′ ∈ g(B). Then there exists b ∈ B
such that b′ ∈ g(b). Since PfR(A,B) there is an a such that R(a, b), and then PfS(f(a), g(b)) by assumption.
Since b′ ∈ g(b) there is an a′ ∈ f(a) such that S(a′, b′). Since f(a) ⊆ f(A), also a′ ∈ f(A) completing the
proof. 2

In particular, if f : X → X ′ and A : PfX, we can write f [A] or {f(x) | x ∈ A} : Pf(X
′) for the functorial

action of Pf applied to f defined as {−} ◦ f . If S(f(x), g(y)) whenever R(x, y) also PfS(f [A], g[B]) whenever
PfR(A,B).

Lemma F.2 Let A : Pf(LκX) and suppose ζ(A) = nowL (A′). If a ∈ A then a = nowL (a′) for some a′ in A′.

Proof. By induction on A. If A = {nowL (a′)} the lemma follows trivially since ζA = nowL ({a′}). In the case
of A = A1 ∪ A2 such that ζ(A1) = nowL (A′1) and ζ(A2) = nowL (A′2), branch on a ∈ A1 or a ∈ A2. In the
former case a = nowL (a′) for some a′ ∈ A′1 and so also a′ ∈ A′ = A′1 ∪ A′2. The other case is symmetric, and
all other cases are in conflict with the assumption of the lemma. Since we are proving a proposition (a′ merely
exists) the cases for equalities in A are trivial. 2

Lemma F.3 Let X,Y : LκPf(A) then X ↓κ Z.∃z ∈ Z.ϕ(z) implies X ∪ Y ↓κ Z.∃z ∈ Z.ϕ(z).

Proof. By induction on X and Y . If X = nowL (X ′) and Y = nowL (Y ′) the lemma reduces to showing
that ∃x ∈ X ′.ϕ(x) implies ∃x ∈ X ′ ∪ Y ′.ϕ(x), which is easy. If X = stepL (X ′) and Y = stepL (Y ′) we
must show that . (α : κ).X ′ [α] ↓κ Z.∃z ∈ Z.ϕ(z) implies . (α : κ).X ′ [α] ∪ Y ′ [α] ↓κ Z.∃z ∈ Z.ϕ(z) which
follows by guarded recursion. If X = stepL (X ′) and Y = nowL (Y ′) we must show that . (α : κ).X ′ [α] ↓κ
Z.∃z ∈ Z.ϕ(z) implies . (α : κ).X ′ [α] ∪ nowL (Y ′) ↓κ Z.∃z ∈ Z.ϕ(z) which also follows by guarded recursion.
Finally, if X = nowL (X ′) and Y = stepL (Y ′) we must show that nowL (X ′) ↓κ Z.∃z ∈ Z.ϕ(z) implies
. (α :κ).nowL (X ′) ∪ Y ′ [α] ↓κ Z.∃z ∈ Z.ϕ(z) which also follows by guarded recursion. 2

Lemma F.4 Let R : X × Y → Prop, A : Pf(LκX) and B : PfY . If ∀b ∈ B.∃a ∈ A.a ↓κ a′.R(a′, b) then
ζ(A) ↓κ A′.∀b ∈ B.∃a ∈ A′.R(a, b)

Proof. The proof is by induction on A and B. We first consider the case where B = {b}. In this case the
lemma reduces to showing that

∃a ∈ A.a ↓κ a′.R(a′, b) (F.1)
implies

ζ(A) ↓κ A′.∃a ∈ A′.R(a, b) (F.2)
If A = {nowL (a)} then ζ(A) = nowL ({a}) and both statements reduce to R(a, b). If A = {stepL (a)} then
ζ(A) = Lκ({−})(stepL (a)), so in this case (F.1) reduces to stepL (a) ↓κ a′.R(a′, b) and the goal is to prove

Lκ({−})(stepL (a)) ↓κ A′.∃a ∈ A′.R(a, b)) = stepL (a) ↓κ a′.∃a ∈ {a′}.R(a, b))

= stepL (a) ↓κ a′.R(a′, b))

26

Møgelberg and Vezzosi

and so these are equivalent.
Suppose A = A1 ∪ A2 and ζ(A1) = nowL (A′1) and ζ(A2) = nowL (A′2). Then ζ(A) = nowL (A′1 ∪ A′2) and

we must prove that ∃a ∈ A1 ∪ A2.a ↓κ a′.R(a′, b) implies ∃a ∈ A′1 ∪ A′2.R(a, b). So, assume the former, and
suppose wlog that the a from the first statement is in A1. By Lemma F.2, a = nowL (a′) for some a′ ∈ A′1.
The assumption now states exactly that R(a′, b) and since also a′ ∈ A′1 ∪A′2 the proof of the case is complete.

Suppose now A = A1 ∪ A2, ζ(A1) = stepL (A′1) and ζ(A2) = stepL (A′2). Then ζ(A) = stepL (λ(α :
κ).A′1 [α] ∪A′2 [α]) and so (F.2) reduces to

. (α :κ).(A′1 [α] ∪A′2 [α]) ↓κ A′.∃a ∈ A′.R(a, b) (F.3)

Suppose now the a ∈ A of (F.1) is in A1, then by induction

. (α :κ).A′1 [α] ↓κ A′.∃a ∈ A′.R(a, b)

which implies (F.3) by Lemma F.3. The case of a ∈ A2 is symmetric.
Suppose now A = A1 ∪ A2 and ζ(A1) = stepL (A′1) and ζ(A2) = nowL (A′2). Then ζ(A) = stepL (λ(α :

κ).A′1 [α] ∪ nowL (A′2)) and so (F.2) reduces to

. (α :κ).(A′1 [α] ∪ nowL (A′2)) ↓κ A′.∃a ∈ A′.R(a, b) (F.4)

Suppose now the a ∈ A of (F.1) is in A1, then by induction

. (α :κ).A′1 [α] ↓κ A′.∃a ∈ A′.R(a, b)

which implies (F.4) by Lemma F.3. If a ∈ A2 then by induction

nowL (A′2) ↓κ A′.∃a ∈ A′.R(a, b)

which implies (F.4) by Lemma F.3. This completes the proof in the case of B = {b}.
If B = C ∪D then the hypothesis is equivalent to

(∀b ∈ C.∃a ∈ A.a ↓κ a′.R(a′, b)) ∧ (∀b ∈ D.∃a ∈ A.a ↓κ a′.R(a′, b))

which by induction implies

(ζ(A) ↓κ A′.∀b ∈ C.∃a ∈ A′.R(a, b)) ∧ (ζ(A) ↓κ A′.∀b ∈ D.∃a ∈ A′.R(a, b))

An easy induction shows that x ↓κ λy.Q preserves products in Q (since . preserves products), so the above
implies

ζ(A) ↓κ A′.(∀b ∈ C.∃a ∈ A′.R(a, b)) ∧ (∀b ∈ D.∃a ∈ A′.R(a, b))

which is equivalent to ζ(A) ↓κ A′.∀b ∈ B.∃a ∈ A′.R(a, b). 2

F.1 Proof of Lemma 7.5

Lemma F.5 If d, d′ : Dκ then

d · d′ = (d >>=LλX.d′ >>=LλY.ζ(X · Y) >>=LλZ.nowL (∪Z))

Proof. By Lemma D.3 d · d′ is equal to

d >>=LλX.d′ >>=LλY. ∪v∈X ∪v′∈Y v · v′

So it suffices to show that

ζ(X · Y) >>=LλZ.nowL (∪Z) = ∪v∈X ∪v′∈Y v · v′ (F.5)

27

Møgelberg and Vezzosi

For this, note first that

ζ(W) >>=LλZ.nowL (∪Z) = µLκ ◦ Lκ(λZ.nowL (∪Z))(ζ(W))

= µLκ ◦ Lκ(nowL ◦ ∪)(ζ(W))

= Lκ(∪)(ζ(W))

is homomorphic in W by Lemma D.1, and so both sides of (F.5) are homomorphic in both X and Y . Using
this, it suffices to show the equation in the case of X = {v} and Y = {v′}. In this case the left hand side
reduces to

ζ({v · v′}) >>=LλZ.nowL (∪Z) = Lκ({−})(v · v′) >>=LλZ.nowL (∪Z)

= v · v′ >>=LλZ.nowL (∪{Z})
= v · v′ >>=LλZ.nowL (Z)

= v · v′

2

Lemma F.6 If M small step reduces without choice to M ′ then d �κ M ′ holds iff d �κ M .

Proof. Follows from the fact that if M ′ ⇓2 U iff M ⇓2 U . 2

Lemma F.7 If v �κVal λλx.M and v′ �κVal V ′ then v · v′ �κ M [V ′/x].

Proof. Since v · v′ = stepL (λ(α :κ).v [α] v′) the goal reduces to

. (α :κ).v [α] v′ �κ M [V ′/x]

which follows directly from definition of v �κVal λλx.M . 2

Lemma F.8 If d �κ M and d′ �κ N then d · d′ �κ M N .

Proof. The proof is by guarded recursion and induction on d and d′. If d = stepL e then d·d′ �κ M N reduces to
. (α :κ).e [α] · d′ �κ M N , and the case follows by guarded recursion using the assumption . (α :κ).e [α] �κ M .
The case of d = nowL (e) and d′ = stepL (e′) is similar using that

nowL (e) · stepL (e′) = stepL (λ(α :κ).nowL (e) · (e′ [α]))

by Lemma F.5.
In the case of d = nowL (A) and d′ = nowL (B) the assumptions give us the mere existence of C,D such

that M ⇓2 C, N ⇓2 D, and

∀(λλx.M ′ ∈ C).∃(v ∈ A).∀V ′ ∈ D.∃v′ ∈ B.v �κVal λλx.M ′ × v′ �κVal V ′

which by Lemma F.7 implies

∀(λλx.M ′ ∈ C).∃(v ∈ A).∀V ′ ∈ D.∃v′ ∈ B.v · v′ �κ M ′[V ′/x]

For A,B,C,D as above write

A ·B = {v · v′ | v ∈ A, v′ ∈ B} C ·D = {M ′[V ′/x] | λλx.M ′ ∈ C, V ′ ∈ D}

then by two applications of Lemma F.1

∀(P ∈ C ·D).∃(d′′ ∈ A ·B).d′′ �κ P

Since d′′ �κ P = d′′ ↓κ λX.∃Y.P ⇓2 Y ∧ Pf(�κVal)(X,Y), by Lemma F.4 the above implies

ζ(A ·B) ↓κ λX ′∀P ∈ C ·D∃X ∈ X ′.∃Y.P ⇓2 Y × Pf(�κVal)(X,Y)

28

Møgelberg and Vezzosi

Since M ⇓2 C, N ⇓2 D together with ∀P ∈ C ·D∃Y.P ⇓2 Y implies ∃Z.M N ⇓2 Z, the above implies

ζ(A ·B) ↓κ λX ′.∃Z.M N ⇓2 Z.∀z ∈ Z.∃X ∈ X ′.∃x ∈ X.x �κVal z

which abreviates to
ζ(A ·B) ↓κ λX ′.∃Z.M N ⇓2 Z.∀z ∈ Z.∃x ∈ ∪X ′.x �κVal z

Finally, by Lemma F.5 nowL (A) · nowL (B) = ζ(A ·B) >>=LλX.nowL (∪X) the above can be rewritten to

nowL (A) · nowL (B) ↓κ λX.∃Z.M N ⇓2 Z.∀z ∈ Z.∃x ∈ X.x �κVal z

which is exactly the statement nowL (A) · nowL (B) �κ M N as desired. 2

Lemma F.9 If d �κ M and d′ �κ N then d ∪ d′ �κ M orN .

Proof. As in the proof of Lemma F.8, the lemma reduces to the case of d = nowL U and d′ = nowL V using
guarded recursion. In this case the assumptions give us M ⇓2 X and N ⇓2 Y so that we can conclude
M orN ⇓2 X ∪ Y . We also get ∀(λλx.P ∈ X).∃(f ∈ U).f �κVal λλx.P and same for Y and V . Since d ∪ d′ =
nowL (U ∪ V) we are left to prove

∀(λλx.P ∈ X ∪ Y).∃(f ∈ U ∪ V).f �κVal λλx.P

which follows from case splitting on λλx.P ∈ X ∪ Y and applying the appropriate assumption. 2

Proof of Lemma 5.8. By induction on M . The case of variables is trivial. In the case of abstraction, since
Jλλx.MKκρ = now2(λ(α :κ).λv.JMKκ(ρ, v)) and (λλx.M)σ ⇓2 (λλx.M)σ, we must prove that

. (α :κ).(∀v, V.v �κVal V → JMKκ(ρ, v) �κ Mσ[V/x])

which follows from the induction hypothesis for M . The case of application follows from lemma F.8, and the
case for choice follows from lemma F.9. 2

Lemma F.10 If M ≤2 M
′ and d �κ M then d �κ M ′.

Proof. The proof is by guarded recursion. Since d ↓κ Q is covariant in Q it suffices to show that

∃Y.M ⇓3 Y × ∀(λλx.P ∈ Y).∃(f ∈ X). . (α :κ).(∀v, V.v �κ V → (f [α](v)) �κ P [V/x]))

implies

∃Y ′.M ′ ⇓3 Y ′ × ∀(λλx.P ′ ∈ Y ′).∃(f ∈ X). . (α :κ).(∀v, V.v �κ V → (f [α](v)) �κ P ′[V/x]))

By Lemma 7.3 the assumption M ≤2 M ′ gives M ′ ⇓3 Y ′ and ∀(λλx.P ′ ∈ Y ′).∃(λλx.P ∈ Y).∀V.P [V/x] ≤2

P ′[V/x]. The proof then follows by guarded recursion. 2

Proof of Lemma 7.6. The left to right direction follows by showing that �κ is upwards closed in its second
component. For the other direction we prove that JMKκ �κ N implies M ≤κ2 N using guarded recursion. If
V is a value then by Lemma 5.8 JV Kκ �κ V and so also JV KκVal �κVal V . The assumption JMKκ �κ N therefore
implies

JMKκ ↓κ λX.∃Y.N ⇓3 Y ∧ ∀(λλx.N ′ ∈ Y).∃(f ∈ X). . (α :κ).(∀V.f [α](JV KκVal) �
κ N ′[V/x])

which by Corollary 7.4 implies M ⇓κ2 λX.Q(X) where Q(X) is

∃Y.N ⇓2 Y ∧ ∀(λλx.N ′ ∈ Y).∃(f ∈ Pf(J−KκVal)(X)). . (α :κ).(∀V.f [α](JV KκVal) �
κ N ′[V/x])

By (1) f ∈ Pf(J−KκVal)(X) implies ∃(λλx.P) ∈ X.f = Jλλx.P KκVal so Q(X) implies

∃Y.N ⇓2 Y ∧ ∀(λλx.N ′ ∈ Y).∃((λλx.P) ∈ X). . (α :κ).(∀V.Jλλx.P KκVal [α](JV KκVal) �
κ N ′[V/x])

29

Møgelberg and Vezzosi

Using a substitution lemma for the denotational semantics M ⇓κ2 λX.Q(X) therefore implies

M ⇓κ2 λX.∃Y.N ⇓2 Y ∧ ∀(λλ y.N ′ ∈ Y).∃(λλx.P ∈ X). . (α :κ).(∀V.JP [V/x]Kκ �κ N ′[V/x])

which by guarded recursion implies M ≤κ2 N . 2

30

	Introduction
	Synthetic guarded domain theory
	Related work
	Overview

	Cubical type theory
	Finite Powerset

	Clocked cubical type theory
	A powerdomain for may-convergence
	Applicative may-simulation
	Applicative may-similarity
	Denotational semantics
	Relating syntax and semantics

	A powerdomain for must-convergence
	Applicative must-simulation
	Relating syntax and semantics

	Conclusion
	References
	Omitted proofs
	Section 5
	Section 5.1

	Section 5.2
	Section 5.3
	Section 6
	Section 7
	Section 7.1
	Proof of Lemma 7.5

