A Fibrational Approach to Automata Theory
Eilenberg-type Correspondences in One

Liang-Ting Chen Henning Urbat

TU Braunschweig

CALCO 2015
Algebraic description of regular languages:

- Eilenberg’s variety theorem (Eilenberg, 1974),
- and a long list of variants
 - (Reutenauer, 1980)
 - (Pin, 1995)
 - ... (Polák, 2001)
 - (Straubing, 2002)
 - (Gehrke et al., 2009)
Motivation: a zoo of Eilenberg’s variety theorems

Algebraic description of regular languages:

- Eilenberg’s variety theorem (Eilenberg, 1974),
- and a long list of variants
 - (Reutenauer, 1980)
 - (Pin, 1995)
 - ...
 - (Polák, 2001)
 - (Straubing, 2002)
 - (Gehrke et al., 2009)
Motivation: coalgebraic unification

Can we unify all of them?

😊 General (Local) Variety Theorem (Adámek et al., 2014 & 2015)

😔 Highly technical.

😢 Two independent arguments.

😢 An interesting instance (Straubing, 2002) is missing.

Goal

1. General Local Variety Theorem
 ➔ General Variety Theorem.

2. Cover all interesting instances.
Motivation: coalgebraic unification

Can we unify all of them?

😊 General (Local) Variety Theorem (Adámek et al., 2014 & 2015)

😔 Highly technical.

😔 Two independent arguments.

😔 An interesting instance (Straubing, 2002) is missing.

Goal

1. General Local Variety Theorem
 → General Variety Theorem.
2. Cover all interesting instances.
Motivation: coalgebraic unification

Can we unify all of them?

😊 General (Local) Variety Theorem (Adámek et al., 2014 & 2015)

😔 Highly technical.

😔 Two independent arguments.

😔 An interesting instance (Straubing, 2002) is missing.

Goal

1. General Local Variety Theorem
 \[\rightarrow\] General Variety Theorem.

2. Cover all interesting instances.
Definition

A **variety of regular languages** is a set of regular languages closed under

- **Boolean ops.** \cap, \cup, $(-)^c$, \emptyset, Σ^*, Δ^*, \ldots
- **Derivatives** $a^{-1}L = \{ w \in \Sigma^* \mid aw \in L \}$ and La^{-1}
- **Preimages** $f^{-1}(L)$ for any monoid homomorphism $\Delta^* \xrightarrow{f} \Sigma^*$.

Example

1. The variety of all regular languages.
2. The variety of star-free languages.
Background

Definition

A **variety of regular languages** is a set of regular languages closed under

Boolean ops. $\cap, \cup, (-)^C, \emptyset, \Sigma^*, \Delta^*, \ldots$

Derivatives $a^{-1}L = \{ w \in \Sigma^* \mid aw \in L \}$ and La^{-1}

Preimages $f^{-1}(L)$ for any monoid homomorphism $\Delta^* \xrightarrow{f} \Sigma^*$.

Example

1. The variety of all regular languages.
2. The variety of star-free languages.
Pseudovarieties of monoids

Definition

A pseudovariety of monoids is a class of finite monoids closed under

1. finite products,
2. submonoids, and
3. quotients.

Example

1. The pseudovariety of all finite monoids.
2. The pseudovariety of aperiodic monoids.
A centerpiece of algebraic automata theory ...

Theorem (Eilenberg, 1974)

\[
\left(\text{varieties of regular languages} \right) \cong \left(\text{pseudovarieties of monoids} \right)
\]

And, this is not the only interesting class of regular languages.
Pin’s variety theorem

A positive variety is closed under \(\cap, \cup \), derivatives, and preimages.

Theorem (Pin, 1995)

\[
\left(\text{positive varieties of regular languages} \right) \supseteq \left(\text{pseudovarieties of ordered monoids} \right)
\]
Polák’s variety theorem

A disjunctive variety is closed under \(\cup \), derivatives, and preimages.

Theorem (Polák, 2001)

\[
\left(\text{disjunctive varieties of regular languages} \right) \cong \left(\text{pseudovarieties of idempotent semirings} \right)
\]
An xor variety is closed under symmetric differences \oplus, derivatives, and preimages.

Theorem (Reutenauer, 1980)

\[
\left(\begin{array}{c}
\text{xor varieties} \\
\text{of regular languages}
\end{array} \right) \sqsubseteq \left(\begin{array}{c}
pseudovarieties \text{ of} \\
\text{algebras over } \mathbb{Z}_2
\end{array} \right)
\]
A **local variety** over \(\Sigma \) is a class of languages \(L \subseteq \Sigma^* \) closed under \(\cup, \cap, (\neg)^C, \emptyset, \Sigma^* \) and derivatives.

A **local pseudovariety** over \(\Sigma \) is a class of \(M \leftarrow \Sigma^* \) closed under quotients and subdirect products.

Theorem (Gehrke, Grigorieff and Pin, 2008)

For each alphabet \(\Sigma \),

\[
\left(\text{local varieties of regular languages over } \Sigma \right) \cong \left(\text{local pseudovarieties of monoid over } \Sigma \right)
\]
Local Eilenberg theorems

1. A local variety over Σ is a class of languages $L \subseteq \Sigma^*$ closed under \cup, \cap, $(\cdot)^C$, \emptyset, Σ^* and derivatives.

2. A local pseudovariety over Σ is a class of $M \hookrightarrow \Sigma^*$ closed under quotients and subdirect products.

Theorem (Gehrke, Grigorieff and Pin, 2008)

For each alphabet Σ,

\[
\begin{pmatrix}
\text{local varieties of} \\
\text{regular languages over } \Sigma
\end{pmatrix}
\cong
\begin{pmatrix}
\text{local pseudovarieties} \\
\text{of monoid over } \Sigma
\end{pmatrix}
\]
Let \mathcal{C} and \mathcal{D} be predual categories. General Local Variety Theorem:

Theorem (Adámek, Milius, Myers, and Urbat, 2014)

\[
\left(\text{local varieties of regular } \mathcal{C}\text{-languages over } \Sigma \right) \cong \left(\text{local pseudovarieties of } \mathcal{D}\text{-monoid over } \Sigma \right)
\]

General Variety Theorem:

Theorem (Adámek, Milius, Myers, and Urbat, 2015)

\[
\left(\text{varieties of regular } \mathcal{C}\text{-languages} \right) \cong \left(\text{pseudovarieties of } \mathcal{D}\text{-monoid} \right)
\]
Instances of General Local Variety Theorem

<table>
<thead>
<tr>
<th>\mathcal{C}/\mathcal{D}</th>
<th>local var. closed under</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bool/Set</td>
<td>$\neg, \cap, \cup, \emptyset, \Sigma^*$</td>
</tr>
<tr>
<td>$\text{DistLat}/\text{Pos}$</td>
<td>$\cap, \cup, \emptyset, \Sigma^*$</td>
</tr>
<tr>
<td>$\lor\text{-SLat}/\lor\text{-SLat}$</td>
<td>\cup, \emptyset</td>
</tr>
<tr>
<td>$\mathbb{Z}_2\text{-Vec}/\mathbb{Z}_2\text{-Vec}$</td>
<td>\oplus, \emptyset</td>
</tr>
<tr>
<td>BR/Set^*</td>
<td>\oplus, \cup, \emptyset</td>
</tr>
</tbody>
</table>

Organising local varieties as an opfibration to get non-local correspondences.
An opfibration of local varieties, informally

1. \(f_*(V) \) is the “largest” local variety closed under \(f \)-preimages.
2. \(p \) is equivalent to a functor \(\text{Free}(\text{Mon} \mathcal{D}) \to \text{Pos} \).
An opfibration of local varieties, informally

1. \(f_*(V) \) is the “largest” local variety closed under \(f \)-preimages.

2. \(p \) is equivalent to a functor \(\text{Free}(\text{Mon}D) \to \text{Pos} \).
Definition

The category \textbf{LAN} consists of

- **objects** (Σ, V), a local variety V of regular languages of Σ;
- **morphisms** $(\Sigma, V) \xrightarrow{f} (\Delta, W)$, a morphism $\Sigma^* \xrightarrow{f} \Delta^*$ s.t. V is closed under f-preimages

\[
\begin{array}{ccc}
W & \xrightarrow{\sim} & V \\
\downarrow & & \downarrow \\
\text{Reg}(\Delta) & \xrightarrow{f^{-1}} & \text{Reg}(\Sigma)
\end{array}
\]

with a projection $p: \textbf{LAN} \rightarrow \textbf{Free}(\text{Mon}\mathcal{D})$.
The category \mathbf{LPV} consists of

objects (Σ, P), a local pseudovariety V of monoids over Σ

morphisms $(\Sigma, P) \xrightarrow{f} (\Delta, Q)$, a monoid morphism f such that:

$$
\begin{array}{ccc}
\Psi \Sigma^* & \xrightarrow{f} & \Psi \Delta^* \\
\downarrow \exists e_M \in P & \quad & \downarrow \forall e_N \in Q \\
M & \rightarrow & N
\end{array}
$$

with a projection $p: \mathbf{LPV} \rightarrow \text{Free}(\text{Mon}\mathcal{D})$.
An opfibrations of local varieties and related structures

LAN the opfibration of local varieties of languages in C.

LPV the opfibration of local pseudovarieties of \mathcal{D}-monoids.

PFMon the opfibration of finitely generated profinite \mathcal{D}-monoids.
An opfibrations of local varieties and related structures

\[\text{FLan} \quad \text{the opfibration of local varieties of languages in} \ C. \]

\[\text{LPV} \quad \text{the opfibration of local pseudovarieties of} \ D\text{-monoids.} \]

\[\text{PFMon} \quad \text{the opfibration of finitely generated profinite} \ D\text{-monoids}. \]
The connection between local and global

\[\text{LAN} \cong \text{LPV} \]

\[\text{Free(Mon}\mathcal{D}) \]

Theorem (Fibrational Variety Isomorphism)

Opfibrations LAN and LPV are isomorphic.
The key observation

\[\text{LAN} \xrightarrow{\cong} \text{LPV} \xrightarrow{\cong} \text{PFMon} \]

Free(Mon\(\mathcal{D}\))

Global sections of

LAN varieties of regular languages in \(\mathcal{C}\)

PFMon profinite equational theories of \(\mathcal{D}\)-monoids

Corollary

\[\text{varieties of regular } \mathcal{C}\text{-languages} \xrightarrow{\cong} \text{profinite equational theories of } \mathcal{D}\text{-monoid} \]
The key observation

\[
\text{LAN} \xrightarrow{\mathcal{R}} \text{LPV} \xrightarrow{\mathcal{R}} \text{PFMon}
\]

Free(Mon\(\mathcal{D}\))

Global sections of

LAN varieties of regular languages in \(C\)

PFMon profinite equational theories of \(\mathcal{D}\)-monoids

Corollary

\[
\begin{pmatrix}
\text{varieties of regular } C\text{-languages} \\
\end{pmatrix}
\mathcal{R}
\begin{pmatrix}
\text{profinite equational theories of } \mathcal{D}\text{-monoid}
\end{pmatrix}
\]
Correspondence between pseudovarieties and profinite equations

Modification of (Reiterman, 1982) & (Banaschewski, 1983):

Theorem

\[
\begin{pmatrix}
(\text{profinite equational theories of } D\text{-monoid}) \\
(\text{theories of } D\text{-monoid})
\end{pmatrix}
\cong
\begin{pmatrix}
(\text{pseudovarieties}) \\
(\text{of } D\text{-monoids})
\end{pmatrix}
\]
General Variety Theorem as a corollary

Corollary

\[
\left(\text{varieties of regular } C\text{-languages} \right) \cong \left(\text{pseudovarieties of } D\text{-monoids} \right)
\]

Proof.

By Fibrational Isomorphism and Reiterman’s Correspondence. \(\square\)
Change of base, for free!

For each subcategory S, take the pullback along the inclusion

$$
\begin{align*}
\text{LAN}_C & \leftarrow \text{LAN} \\
\downarrow p_C & \downarrow p \\
S & \xrightarrow{j} \text{Free}(\text{MonD})
\end{align*}
\quad
\begin{align*}
\text{PFMon}_C & \leftarrow \text{PFMon} \\
\downarrow q'_C & \downarrow q' \\
S & \xrightarrow{j} \text{Free}(\text{MonD})
\end{align*}
$$

Corollary

$$
\left(\begin{array}{c} S\text{-varieties of} \\ \text{regular } C \text{-languages} \end{array} \right) \mathrel{\overset{\mathcal{R}}{\subseteq}} \left(\begin{array}{c} \text{profinite equational} \\ S\text{-theories of } D \text{-monoids} \end{array} \right)
$$

The missing case (Straubing, 2002) is a special instance when

1. $C/D = \text{Set/BA}$ and
2. S is a non-full subcategory on all free D-monoids.
Change of base, for free!

For each subcategory S, take the pullback along the inclusion

$$\begin{align*}
\text{LAN}_C & \xleftarrow{p_C} \text{LAN} \\
S & \xrightarrow{j} \text{Free}(\text{Mon}_D)
\end{align*}$$

$$\begin{align*}
\text{PFMon}_C & \xleftarrow{q'_C} \text{PFMon} \\
S & \xrightarrow{j} \text{Free}(\text{Mon}_D)
\end{align*}$$

Corollary

$$\left(\begin{array}{c}
S\text{-varieties of regular } C\text{-languages} \\
\end{array} \right) \cong \left(\begin{array}{c}
\text{profinite equational } S\text{-theories of } D\text{-monoids}
\end{array} \right)$$

The missing case (Straubing, 2002) is a special instance when

1. $C/D = \text{Set}/\text{BA}$ and
2. S is a non-full subcategory on all free D-monoids.
Conclusion

General Local Variety Theorem \implies General Variety Theorem.

Varieties of regular languages are dual to profinite equational theories.

Eilenberg’s variety theorem $=$ Reiterman’s theorem $+$ duality.

What is categorical Reiterman’s theorem ...

A 2-duality between pseudovarieties and “profinite monads”?

Thank you for your attention.
Conclusion

- Genearl Local Variety Theorem \implies General Variety Theorem.

- Varieties of regular languages are dual to profinite equational theories.

- Eilenberg’s variety theorem = Reiterman’s theorem + duality.

What is categorical Reiterman’s theorem ...
A 2-duality between pseudovarieties and “profinite monads”?

Thank you for your attention.
Conclusion

General Local Variety Theorem \implies General Variety Theorem.

Varieties of regular languages are dual to profinite equational theories.

Eilenberg’s variety theorem $= \text{Reiterman’s theorem} + \text{duality}$.

What is categorical Reiterman’s theorem ...
A 2-duality between pseudovarieties and “profinite monads”?

Thank you for your attention.
General Local Variety Theorem \implies General Variety Theorem.

Varieties of regular languages are dual to profinite equational theories.

Eilenberg’s variety theorem $=$ Reiterman’s theorem $+$ duality.

What is categorical Reiterman’s theorem ... A 2-duality between pseudovarieties and “profinite monads”?

Thank you for your attention.