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Structure vs Power: The Great Divide

Structure:

compositionality, semantics

How we can master the complexity
of computer systems and software?

Power:

expressiveness, complexity

How we can harness the power of
computation and recognize its
limits?

A shocking fact: the current state of the art is almost disjoint communities of
researchers studying Structure and Power respectively, with no common technical
language or tools.

This is a major obstacle to fundamental progress in Computer Science.

An analogy: the Grothendieck program in algebraic geometry. The (very abstract)
tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:

twenty years ago he was firm in his conviction that he DID want to solve
Diophantine equations, and that he DID NOT wish to represent functors
– and now he is amused to discover himself representing functors in
order to solve Diophantine equations!
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The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which
exemplifies ”Structure”, to finite model theory, which exemplifies ”Power”.

”The Pebbling Comonad in Finite Model Theory”, SA, Anuj Dawar and
Pengming Wang, LiCS 2017.

”Relating Structure to Power: comonadic semantics for computational
resources”, SA and Nihil Shah, extended abstract in CMCS proceedings,
conference version submitted.
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The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity
n > 0.

A relational structure for σ is A = (A, {RA | R ∈ σ})), where RA ⊆ An.

A homomorphism of σ-structures f : A→ B is a function f : A→ B such that,
for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f (a1), . . . , f (an))) ∈ RB.

There notions are pervasive in

logic (model theory),

computer science (databases, constraint satisfaction, finite model theory)

combinatorics (graphs and graph homomorphisms).

Our setting will be R(σ), the category of relational structures and
homomorphisms.
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Model theory and deception

In model theory, we see a structure, not “as it really is” (up to isomorphism)
but only up to definable properties.

The crucial notion is equivalence of structures up to the equivalence ≡L

induced by the logic L:

A ≡L B
∆⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

It is always true that if a class of structures K is definable in L, then K must
be saturated under ≡L.

In most cases of interest in FMT, the converse is true too.

In descriptive complexity, we seek to characterize a complexity class C (for
decision problems) as those classes of structures K (e.g. graphs) definable in
L.
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Syntax-independent characterizations of logical equivalence

A classic theme in Model theory: e.g. the Keisler-Shelah theorem.

Especially important in finite model theory, where model comparison games
such as Ehrenfeucht-Fräıssé games, pebble games and bisimulation games
play a central role.

The EF-game between A and B. In the i ’th round, Spoiler moves by choosing an
element in A or B; Duplicator responds by choosing an element in the other
structure. Duplicator wins after k rounds if the relation {(ai , bi ) | 1 ≤ i ≤ k} is a
partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B.

The Ehrenfeucht-Fräıssé theorem says that a winning strategy for Duplicator in
the k-round EF game characterizes the equivalence ≡Lk , where Lk is the
fragment of first-order logic of formulas with quantifier rank ≤ k.

Similarly, there are k-pebble games, and bismulation games payed to depth k.
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A new perspective

We shall study these games, not as external artefacts, but as semantic
constructions in their own right.

For each type of game G, and value of the resource parameter k, we shall
define a corresponding comonad Ck on R(σ).

The idea is that Duplicator strategies for the existential version of G-games
from A to B will be recovered as coKleisli morphisms CkA→ B.

Thus the notion of local approximation built into the game is internalised
into the category of σ-structures and homomorphisms.

This leads to comonadic and coalgebraic characterisations of a number of
central concepts in Finite Model Theory and combinatorics.
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The EF comonad

Given a structure A, the universe of EkA is A≤k , the non-empty sequences of
length ≤ k.

The counit map εA : EkA→ A sends a sequence [a1, . . . , an] to an.

How do we lift the relations on A to EkA?

Given e.g. a binary relation R, we define REkA to the set of pairs (s, t) such that

s v t or t v s (in prefix order)

RA(εA(s), εA(t)).

Given a homomorphism f : EkA→ B, we define the coextension f ∗ : A≤k → B≤k

by
f ∗[a1, . . . , aj ] = [b1, . . . , bj ],

where bi = f [a1, . . . , ai ], 1 ≤ i ≤ j .

This is easily verified to yield a comonad on R(σ).
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CoKleisli maps are strategies
Intuitively, an element of A≤k represents a play in A of length ≤ k.

A coKleisli morphism EkA→ B represents a Duplicator strategy for the
existential Ehrenfeucht-Fräıssé game with k rounds:

Spoiler plays only in A, and bi = f [a1, . . . , ai ] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi ) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA→ B.

2 Duplicator has a winning strategy for the existential
Ehrenfeucht-Fräıssé game with k rounds, played from A to B.

3 For every existential positive sentence ϕ with quantifier rank ≤ k,
A |= ϕ ⇒ B |= ϕ.
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Spoiler plays only in A, and bi = f [a1, . . . , ai ] represents Duplicator’s response in
B to the i ’th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have
been played, the induced relation {(ai , bi ) | 1 ≤ i ≤ k} is a partial homomorphism
from A to B.

Theorem

The following are equivalent:

1 There is a homomorphism EkA→ B.

2 Duplicator has a winning strategy for the existential
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From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the
asymmetric existential-positive case.

Let’s see!

Let S be the set of coKleisli morphisms EkA→ B, and T be the set of coKleisli
morphisms EkB→ A.

We define A↔E
k B iff there are non-empty sets F ⊆ S , G ⊆ T , which are locally

invertible in the following sense:

1 For all f ∈ F , s ∈ A≤k , for some g ∈ G , g∗f ∗(s) = s.

2 For all g ∈ G , t ∈ B≤k , for some f ∈ F , f ∗g∗(t) = t.

Proposition

The following are equivalent:

1 A↔E
k B.

2 There is a winning strategy for Duplicator in the k-round
Ehrenfeucht-Fräıssé game between A and B.
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A fixpoint characterization

Define set functions Γ : P(S)→ P(T ), ∆ : P(T )→ P(S):

Γ(F ) = {g ∈ T | ∀t ∈ B≤k .∃f ∈ F . f ∗g∗t = t},
∆(G ) = {f ∈ S | ∀s ∈ A≤k .∃g ∈ G . g∗f ∗s = s}.

These functions are monotone. Moreover, a pair of sets (F ,G ) is locally invertible
iff F ⊆ ∆(G ) and G ⊆ Γ(F ).

Thus existence of a locally invertible pair is equivalent to the existence of
non-empty F such that F ⊆ Θ(F ), where Θ = ∆Γ.

Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint
of Θ being non-empty. (N.B. Θ(∅) = ∅).

If A and B are finite, so is S , and we can construct the greatest fixpoint by a
finite descending sequence

S ⊇ Θ(S) ⊇ Θ2(S) ⊇ · · ·
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Logical equivalences
We will be interested in three logics in relation to the EF-comonad:

One is Lk , the fragment of first-order logic of quantifier rank ≤ k.

Another is ∃Lk , the existential-positive fragment of Lk .

Finally, Lk(#), the extension of Lk with counting quantifiers. These have
the form ∃≤n, ∃≥n, where the semantics of A |= ∃≥nx . ψ is that there exist
at least n distinct elements of A satisying ψ.

We can generically define two equivalences based on our indexed comonads Ek :

A �E
k B iff there are coKleisli morphisms EkA→ B and EkB→ A. Note

that there need be no relationship between these morphisms.

A ∼=E
k B iff A and B are isomorphic in the coKleisli category Kl(Ek).

Theorem
1 For all structures A and B: A ≡∃Lk B ⇐⇒ A �E

k B.

2 For all structures A and B: A ≡Lk B ⇐⇒ A↔E
k B.

3 For all finite structures A and B: A ≡Lk (#) B ⇐⇒ A ∼=E
k B.
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Pebble Games

Similar but subtly different to EF-games

Spoiler moves by placing one from a fixed set of pebbles on an element of A or B;
Duplicator responds by placing their matching pebble on an element of the other
structure.

Duplicator wins if after each round, the relation defined by the current positions of
the pebbles is a partial isomorphism

Thus there is a “sliding window” on the structures, of fixed size. It is this size
which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank,
k-pebble games correspond to bounding the number of variables which can be
used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only
plays in A, and Duplicator responds in B.
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The pebbling comonad

Given a structure A, the universe of PkA is (k× A)+, the set of finite non-empty
sequences of moves (p, a). Note this will be infinite even if A is finite.
We showed that this is essential!

The counit map εA : EkA→ A sends a sequence [(p1, a1), . . . , (pn, an)] to an.

How do we lift the relations on A to EkA?

Given e.g. a binary relation R, we define RPkA to the set of pairs (s, t) such that

s v t or t v s

If s v t, then the pebble index of the last move in s does not appear in the
suffix of s in t; and symmetrically if t v s.

RA(εA(s), εA(t)).

Given a homomorphism f : PkA→ B, we define the coextension f ∗ : PkA→ PkB

by
f ∗[(p1, a1), . . . , (pj , aj)] = [(p1, b1), . . . , (pj , bj)],

where bi = f [(p1, a1), . . . , (pi , ai )], 1 ≤ i ≤ j .
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Logical equivalences
Again, we will be interested in three logics in relation to the pebbling comonad:

One is Lk , the k-variable fragment of (infinitary) first-order logic.

Another is ∃Lk , the existential-positive fragment of Lk .

Finally, Lk(#), the extension of Lk with counting quantifiers.

Again, we can generically define two equivalences:

A �P
k B iff there are coKleisli morphisms PkA→ B and PkB→ A.

A ∼=P
k B iff A and B are isomorphic in the coKleisli category Kl(Pk).

Interestingly, the intermediate equivalence A↔P
k B (back-and-forth without

isomorphism) can be defined from just a single pair of morphisms f : PkA→ B

and g : PkB→ A, satisfying a certain “compatibility” relation.

Theorem

1 For all structures A and B: A ≡∃Lk

B ⇐⇒ A �P
k B.

2 For all finite structures A and B: A ≡Lk

B ⇐⇒ A↔P
k B.

3 For all finite structures A and B: A ≡Lk (#) B ⇐⇒ A ∼=P
k B.
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The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also
covers the well-known construction of unfolding a Kripke structure into a tree
(“unravelling”).

For the modal case, we assume that the relational vocabulary σ contains only
symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If
there are no unary symbols, such structures are exactly the labelled transition
systems.

Modal logic localizes its notion of satisfaction in a structure to a world.
We reflect this by using the category of pointed relational structures (A, a).

For k > 0 we define a comonad Mk , where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k.

The universe of Mk(A, a) comprises [a], which is the distinguished element,
together with all sequences of the form [a0, α1, a1, . . . , αj , aj ], where a = a0,
1 ≤ j ≤ k, and RA

αi
(ai , ai+1), 0 ≤ i < j .
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symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If
there are no unary symbols, such structures are exactly the labelled transition
systems.

Modal logic localizes its notion of satisfaction in a structure to a world.
We reflect this by using the category of pointed relational structures (A, a).

For k > 0 we define a comonad Mk , where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k.

The universe of Mk(A, a) comprises [a], which is the distinguished element,
together with all sequences of the form [a0, α1, a1, . . . , αj , aj ], where a = a0,
1 ≤ j ≤ k, and RA

αi
(ai , ai+1), 0 ≤ i < j .

Samson Abramsky (Department of Computer Science, University of Oxford)Relating Structure to Power: Comonadic semantics for computational resources 16 / 30



The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also
covers the well-known construction of unfolding a Kripke structure into a tree
(“unravelling”).

For the modal case, we assume that the relational vocabulary σ contains only
symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If
there are no unary symbols, such structures are exactly the labelled transition
systems.

Modal logic localizes its notion of satisfaction in a structure to a world.
We reflect this by using the category of pointed relational structures (A, a).

For k > 0 we define a comonad Mk , where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k .

The universe of Mk(A, a) comprises [a], which is the distinguished element,
together with all sequences of the form [a0, α1, a1, . . . , αj , aj ], where a = a0,
1 ≤ j ≤ k, and RA

αi
(ai , ai+1), 0 ≤ i < j .

Samson Abramsky (Department of Computer Science, University of Oxford)Relating Structure to Power: Comonadic semantics for computational resources 16 / 30



The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also
covers the well-known construction of unfolding a Kripke structure into a tree
(“unravelling”).

For the modal case, we assume that the relational vocabulary σ contains only
symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If
there are no unary symbols, such structures are exactly the labelled transition
systems.

Modal logic localizes its notion of satisfaction in a structure to a world.
We reflect this by using the category of pointed relational structures (A, a).

For k > 0 we define a comonad Mk , where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k .

The universe of Mk(A, a) comprises [a], which is the distinguished element,
together with all sequences of the form [a0, α1, a1, . . . , αj , aj ], where a = a0,
1 ≤ j ≤ k, and RA

αi
(ai , ai+1), 0 ≤ i < j .

Samson Abramsky (Department of Computer Science, University of Oxford)Relating Structure to Power: Comonadic semantics for computational resources 16 / 30



Simulation and Bisimulation
The resource index of Mk corresponds to the level of approximation in simulation
�k and bisimulation ∼k .

Theorem

Let A, B be Kripke structures, with a ∈ A and b ∈ B, and k > 0. The following
are equivalent:

1 There is a homomorphism f : Mk(A, a)→ (B, b).

2 a �k b.

3 There is a winning strategy for Duplicator in the k-round simulation game
from (A, a) to (B, b).

For bisimulation, we recall the notion of p-morphism (aka functional bisimulation).

This is a homomorphism f : A→ B of Kripke structures, which satisfies the
following additional properties: if f (a) = b, then PB(b) implies PA(s), and if
RB
α (b, b′), then for some a′, RA

α (a, a′) and f (a′) = b′.

It is not immediately obvious how to adapt the notion of p-morphism to match the
finite levels of approximation ∼k . The modal comonad offers an elegant solution.
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Bisimulation approximants as spans

We say that f : Mk(A, a)→ (B, b) is a coKleisli p-morphism if
f ∗ : Mk(A, a)→Mk(B, b) is a p-morphism of Kripke structures.

We write f : Mk(A, a) Z⇒ (B, b) to indicate that f is a coKleisli p-morphism.

Proposition

Let f : Mk(A, a) Z⇒ (B, b) be a coKleisli p-morphism. Then a ∼k b.

We define (A, a)↔M
k (B, b) iff there is a span of coKleisli p-morphisms

(A, a)⇐ \ Mk(C, c) Z⇒Mk(B, b)

Theorem

For pointed Kripke structures (A, a) and (B, b): a ∼k b iff (A, a)↔M
k (B, b).
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Modal Equivalences
We have the modal fragment Mk , which arises from the standard translation of
(multi)modal logic into first-order logic, for formulas of modal depth ≤ k.

There is also the existential positive fragment, where we omit 2 and negation.

More interestingly, there are graded modalities 3n
α, 2n

α, where A, a |= 3n
αϕ if

there are at least n Rα-successors of a which satisfy ϕ.

There is a corresponding notion of graded bisimulation (De Rijke). This is in turn
related to resource bisimulation (Corradini, de Nicola and Labella), which has
been studied in the concurrency setting.

The two notions were shown to coincide for image-finite Kripke structures by
(Aceto, Ingolfsdottir and Sack).

Theorem
1 For all Kripke structures A and B: A ≡∃Mk B ⇐⇒ A �M

k B.

2 For all Kripke structures A and B: A ≡Mk B ⇐⇒ A↔M
k B.

3 For all image-finite Kripke structures A and B: A ≡Mk (#) B ⇐⇒ A ∼=M
k B.
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Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial
combinatorial parameters of structures using the indexed comonadic structure.

Conceptually, we can think of the morphisms f : CkA→ B in the co-Kleisli
category for Ck as those which only have to respect the k-local structure of A.

The lower the value of k, the less information available to Spoiler, and the easier
it is for Duplicator to have a winning strategy. Equivalently, the easier it is to have
a morphism from A to B in the co-Kleisli category.

What about morphisms A→ CkB?

Restricting the access to B makes it harder for Duplicator to win the
homomorphism game.
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Coalgebras: a novel perspective
Another fundamental aspect of comonads is that they have an associated notion
of coalgebra.

A coalgebra for a comonad (G , ε, δ) is a morphism α : A→ GA such that the
following diagrams commute:

A
α - CkA

CkA

α

?

Ckα
- CkCkA

δA

?

A
α - CkA

A

εA

?

id
A

-

We should only expect a coalgebra structure to exist when the k-local information
on A is sufficient to determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras.
Given a structure A, we can ask: what is the least value of k such that a
Ck -coalgebra exists on A? We call this the coalgebra number of A.
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Coalgebra numbers

Theorem
For the pebbling comonad, the coalgebra number of A corresponds precisely
to the tree-width of A.

For the Ehrenfeucht-Fräıssé comonad, the coalgebra number of A
corresponds precisely to the tree-depth of A.

For the modal comonad, the coalgebra number of (A, a) corresponds
precisely to the synchronization tree depth of a in A.

The main idea behind these results is that coalgebras on A are in bijective
correspondence with decompositions of A of the appropriate form.

We thus obtain categorical characterizations of these key combinatorial
parameters.
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Tree depth and the Ehrenfeucht-Fräıssé comonad

A forest is a poset (F ,≤) such that, for all x ∈ F , the set of predecessors is a
finite chain.

A forest cover for G is a forest (F ,≤) such that V ⊆ F , and if v _ v ′, then v↑v ′.

The tree-depth td(G ) is defined to be minF ht(F ), where F ranges over forest
covers of G .

Given a σ-structure A, the Gaifman graph G(A) is (A,_), where a_ a′ iff for
some relation R ∈ σ, for some (a1, . . . , an) ∈ RA, a = ai , a

′ = aj , i 6= j . The
tree-depth of A is td(G(A)).

Theorem
Let A be a finite σ-structure, and k > 0. There is a bijective correspondence
between

1 Ek -coalgebras α : A→ EkA.

2 Forest covers of G(A) of height < k.
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Tree width

A tree (T ,≤) is a forest with a least element (the root).

The unique path from x to x ′ is the set path(x , x ′) := [x ∧ x ′, x ] ∪ [x ∧ x ′, x ′],
where we use interval notation: [y , y ′] := {z ∈ T | y ≤ z ≤ y ′}.

A tree-decomposition of a graph G = (V ,_) is a tree (T ,≤) together with a
labelling function λ : T → P(V ) satisfying the following conditions:

(TD1) for all v ∈ V , for some x ∈ T , v ∈ λ(x);

(TD2) if v _ v ′, then for some x ∈ T , {v , v ′} ⊆ λ(x);

(TD3) if v ∈ λ(x) ∩ λ(x ′), then for all y ∈ path(x , x ′), v ∈ λ(y).

The width of a tree decomposition is given by maxx∈T |λ(x)| − 1.

We define the tree-width tw(G ) of a graph G as minT width(T ), where T ranges
over tree decompositions of G .

This parameter plays a fundamental role in combinatorics, algorithms and
parameterized complexity.
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Tree-width and pebbling

We shall now give an alternative formulation of tree-width which will provide a
useful bridge to the coalgebraic characterization.

It is also interesting in its own right: it clarifies the relationship between
tree-width and tree-depth, and shows how pebbling arises naturally in connection
with tree-width.

A k-pebble forest cover for a graph G = (V ,_) is a forest cover (V ,≤) together
with a pebbling function p : V → k such that, if v _ v ′ with v ≤ v ′, then for all
w ∈ (v , v ′], p(v) 6= p(w).

Theorem
Let G be a finite graph. The following are equivalent:

1 G has a tree decomposition of width < k.

2 G has a k-pebble forest cover.
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Treewidth as coalgebra number

Theorem
Let A be a finite σ-structure. There is a bijective correspondence between:

1 Pk -coalgebras α : A→ PkA

2 k-pebble forest covers of G(A).

We write κP(A) for the coalgebra number of A with respect to the the pebbling
comonad.

Theorem

For all finite structures A: tw(A) = κP(A)− 1.
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Indexed and graded structure

Our comonads Ek , Pk , Mk are not merely discretely indexed by the resource
parameter. In each case, there is a functor (Z+,≤)→ Comon(R(σ)).

Thus if k ≤ l there is a natural transformation with components

ik,lA : EkA→ ElA

which preserves the counit and comultiplication; and similarly for the other
comonads.

Concretely, this is just including the plays of up to k rounds in the plays of up to l
rounds, k ≤ l .

We can also see our comonads as (trivially) graded, by viewing them as oplax
monoidal functors

(Z+,≤,min, 1)→ ([C,C], ◦, I ).

Given k ≤ l , we have e.g. Ek ⇒ EkEk ⇒ EkEl .

The question is whether there are more interesting graded structures which arise
naturally in considering richer logical and computational settings.
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Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.

However, there is an elegant means of passing to infinite levels. We shall illustrate
this with the modal comonad.

Using the inclusion morphisms described in the previous discussion of indexed
structure, for each structure A we have a diagram

M1A→M2A→ · · · →MkA→ · · ·

By taking the colimits of these diagrams, we obtain a comonad Mω, which
corresponds to the usual unfolding of a Kripke structure to all finite levels.

This will correspond to the bisimulation approximant ∼ω, which coincides with
bisimulation itself on image-finite structures.

Transfinite extensions are also possible. Similar constructions can be applied to
the other comonads. This provides a basis for lifting the comonadic analysis to
the level of infinite models.
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Final Remarks

Our three comonadic constructions show a striking unity, but also some very
interesting differences.

Need to understand better what makes these constructions work, and what
the scope of these ideas are.

Currently investigating the guarded fragment. Other natural candidates
include existential second-order logic, and branching quantifiers and
dependence logic.

Wider horizons: can we connect with significant meta-algorithms, such as
decision procedures for guarded logics based on the tree model property, or
algorithmic metatheorems such as Courcelle’s theorem?

The wider issue: can we get Structure and Power to work with each other to
address genuinely deep questions?
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Envoi

Let’s not forget to dream!
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