Relating Structure to Power:
 Comonadic semantics for computational resources

Samson Abramsky
Department of Computer Science, University of Oxford

Structure vs Power: The Great Divide

Structure:

- compositionality, semantics
- How we can master the complexity of computer systems and software?

Power:

- expressiveness, complexity
- How we can harness the power of computation and recognize its limits?

Structure vs Power: The Great Divide

Structure:

- compositionality, semantics
- How we can master the complexity of computer systems and software?

Power:

- expressiveness, complexity
- How we can harness the power of computation and recognize its limits?

A shocking fact: the current state of the art is almost disjoint communities of researchers studying Structure and Power respectively, with no common technical language or tools.

Structure vs Power: The Great Divide

Structure:

- compositionality, semantics
- How we can master the complexity of computer systems and software?

Power:

- expressiveness, complexity
- How we can harness the power of computation and recognize its limits?

A shocking fact: the current state of the art is almost disjoint communities of researchers studying Structure and Power respectively, with no common technical language or tools.

This is a major obstacle to fundamental progress in Computer Science.

Structure vs Power: The Great Divide

Structure:

- compositionality, semantics
- How we can master the complexity of computer systems and software?

Power:

- expressiveness, complexity
- How we can harness the power of computation and recognize its limits?

A shocking fact: the current state of the art is almost disjoint communities of researchers studying Structure and Power respectively, with no common technical language or tools.

This is a major obstacle to fundamental progress in Computer Science.
An analogy: the Grothendieck program in algebraic geometry. The (very abstract) tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Structure vs Power: The Great Divide

Structure:

- compositionality, semantics
- How we can master the complexity of computer systems and software?

Power:

- expressiveness, complexity
- How we can harness the power of computation and recognize its limits?

A shocking fact: the current state of the art is almost disjoint communities of researchers studying Structure and Power respectively, with no common technical language or tools.

This is a major obstacle to fundamental progress in Computer Science.
An analogy: the Grothendieck program in algebraic geometry. The (very abstract) tools developed there were ultimately critical for concrete results, e.g. Wiles/FLT.

Mazur quoting Lenstra:
twenty years ago he was firm in his conviction that he DID want to solve Diophantine equations, and that he DID NOT wish to represent functors - and now he is amused to discover himself representing functors in order to solve Diophantine equations!

The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which exemplifies "Structure", to finite model theory, which exemplifies "Power".

The topic for this talk

We shall discuss a novel approach to relating categorical semantics, which exemplifies "Structure", to finite model theory, which exemplifies "Power".

- "The Pebbling Comonad in Finite Model Theory", SA, Anuj Dawar and Pengming Wang, LiCS 2017.
- "Relating Structure to Power: comonadic semantics for computational resources", SA and Nihil Shah, extended abstract in CMCS proceedings, conference version submitted.

The setting: homomorphisms of relational structures

The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity $n>0$.

The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity $n>0$.

A relational structure for σ is $\left.\mathcal{A}=\left(A,\left\{R^{A} \mid R \in \sigma\right\}\right)\right)$, where $R^{\mathcal{A}} \subseteq A^{n}$.

The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity $n>0$.

A relational structure for σ is $\left.\mathcal{A}=\left(A,\left\{R^{A} \mid R \in \sigma\right\}\right)\right)$, where $R^{\mathcal{A}} \subseteq A^{n}$.
A homomorphism of σ-structures $f: \mathcal{A} \rightarrow \mathcal{B}$ is a function $f: A \rightarrow B$ such that, for each relation $R \in \sigma$ of arity n and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$:

$$
\left.\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{A}} \Rightarrow\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)\right) \in R^{\mathcal{B}} .
$$

The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity $n>0$.

A relational structure for σ is $\left.\mathcal{A}=\left(A,\left\{R^{A} \mid R \in \sigma\right\}\right)\right)$, where $R^{\mathcal{A}} \subseteq A^{n}$.
A homomorphism of σ-structures $f: \mathcal{A} \rightarrow \mathcal{B}$ is a function $f: A \rightarrow B$ such that, for each relation $R \in \sigma$ of arity n and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$:

$$
\left.\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{A}} \Rightarrow\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)\right) \in R^{\mathcal{B}} .
$$

There notions are pervasive in

- logic (model theory),
- computer science (databases, constraint satisfaction, finite model theory)
- combinatorics (graphs and graph homomorphisms).

The setting: homomorphisms of relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity $n>0$.

A relational structure for σ is $\left.\mathcal{A}=\left(A,\left\{R^{A} \mid R \in \sigma\right\}\right)\right)$, where $R^{\mathcal{A}} \subseteq A^{n}$.
A homomorphism of σ-structures $f: \mathcal{A} \rightarrow \mathcal{B}$ is a function $f: A \rightarrow B$ such that, for each relation $R \in \sigma$ of arity n and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$:

$$
\left.\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{A}} \Rightarrow\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)\right) \in R^{\mathcal{B}} .
$$

There notions are pervasive in

- logic (model theory),
- computer science (databases, constraint satisfaction, finite model theory)
- combinatorics (graphs and graph homomorphisms).

Our setting will be $\mathcal{R}(\sigma)$, the category of relational structures and homomorphisms.

Model theory and deception

Model theory and deception

- In model theory, we see a structure, not "as it really is" (up to isomorphism) but only up to definable properties.

Model theory and deception

- In model theory, we see a structure, not "as it really is" (up to isomorphism) but only up to definable properties.
- The crucial notion is equivalence of structures up to the equivalence $\equiv^{\mathcal{L}}$ induced by the logic \mathcal{L} :

$$
\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} \stackrel{\Delta}{\Longleftrightarrow} \quad \forall \varphi \in \mathcal{L} . \mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

Model theory and deception

- In model theory, we see a structure, not "as it really is" (up to isomorphism) but only up to definable properties.
- The crucial notion is equivalence of structures up to the equivalence $\equiv^{\mathcal{L}}$ induced by the logic \mathcal{L} :

$$
\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} \stackrel{\Delta}{\Longleftrightarrow} \quad \forall \varphi \in \mathcal{L} . \mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

- It is always true that if a class of structures \mathcal{K} is definable in \mathcal{L}, then \mathcal{K} must be saturated under $\equiv^{\mathcal{L}}$.

Model theory and deception

- In model theory, we see a structure, not "as it really is" (up to isomorphism) but only up to definable properties.
- The crucial notion is equivalence of structures up to the equivalence $\equiv^{\mathcal{L}}$ induced by the logic \mathcal{L} :

$$
\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} \stackrel{\Delta}{\Longleftrightarrow} \quad \forall \varphi \in \mathcal{L} . \mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

- It is always true that if a class of structures \mathcal{K} is definable in \mathcal{L}, then \mathcal{K} must be saturated under $\equiv^{\mathcal{L}}$.
- In most cases of interest in FMT, the converse is true too.

Model theory and deception

- In model theory, we see a structure, not "as it really is" (up to isomorphism) but only up to definable properties.
- The crucial notion is equivalence of structures up to the equivalence $\equiv^{\mathcal{L}}$ induced by the logic \mathcal{L} :

$$
\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} \stackrel{\Delta}{\Longleftrightarrow} \quad \forall \varphi \in \mathcal{L} . \mathcal{A} \models \varphi \Longleftrightarrow \mathcal{B} \models \varphi .
$$

- It is always true that if a class of structures \mathcal{K} is definable in \mathcal{L}, then \mathcal{K} must be saturated under $\equiv^{\mathcal{L}}$.
- In most cases of interest in FMT, the converse is true too.
- In descriptive complexity, we seek to characterize a complexity class C (for decision problems) as those classes of structures \mathcal{K} (e.g. graphs) definable in \mathcal{L}.

Syntax-independent characterizations of logical equivalence

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.
- Especially important in finite model theory, where model comparison games such as Ehrenfeucht-Fraïssé games, pebble games and bisimulation games play a central role.

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.
- Especially important in finite model theory, where model comparison games such as Ehrenfeucht-Fraïssé games, pebble games and bisimulation games play a central role.

The EF-game between \mathcal{A} and \mathcal{B}. In the i 'th round, Spoiler moves by choosing an element in A or B; Duplicator responds by choosing an element in the other structure. Duplicator wins after k rounds if the relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial isomorphism.

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.
- Especially important in finite model theory, where model comparison games such as Ehrenfeucht-Fraïssé games, pebble games and bisimulation games play a central role.

The EF-game between \mathcal{A} and \mathcal{B}. In the i 'th round, Spoiler moves by choosing an element in A or B; Duplicator responds by choosing an element in the other structure. Duplicator wins after k rounds if the relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial isomorphism.

In the existential EF-game, Spoiler only plays in \mathcal{A}, and Duplicator responds in \mathcal{B}.

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.
- Especially important in finite model theory, where model comparison games such as Ehrenfeucht-Fraïssé games, pebble games and bisimulation games play a central role.

The EF-game between \mathcal{A} and \mathcal{B}. In the i 'th round, Spoiler moves by choosing an element in A or B; Duplicator responds by choosing an element in the other structure. Duplicator wins after k rounds if the relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial isomorphism.

In the existential EF-game, Spoiler only plays in \mathcal{A}, and Duplicator responds in \mathcal{B}.
The Ehrenfeucht-Fraïssé theorem says that a winning strategy for Duplicator in the k-round EF game characterizes the equivalence $\equiv^{\mathcal{L}_{k}}$, where \mathcal{L}_{k} is the fragment of first-order logic of formulas with quantifier rank $\leq k$.

Syntax-independent characterizations of logical equivalence

- A classic theme in Model theory: e.g. the Keisler-Shelah theorem.
- Especially important in finite model theory, where model comparison games such as Ehrenfeucht-Fraïssé games, pebble games and bisimulation games play a central role.

The EF-game between \mathcal{A} and \mathcal{B}. In the i 'th round, Spoiler moves by choosing an element in A or B; Duplicator responds by choosing an element in the other structure. Duplicator wins after k rounds if the relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial isomorphism.

In the existential EF-game, Spoiler only plays in \mathcal{A}, and Duplicator responds in \mathcal{B}.
The Ehrenfeucht-Fraïssé theorem says that a winning strategy for Duplicator in the k-round EF game characterizes the equivalence $\equiv^{\mathcal{L}_{k}}$, where \mathcal{L}_{k} is the fragment of first-order logic of formulas with quantifier rank $\leq k$.

Similarly, there are k-pebble games, and bismulation games payed to depth k.

A new perspective

A new perspective

- We shall study these games, not as external artefacts, but as semantic constructions in their own right.

A new perspective

- We shall study these games, not as external artefacts, but as semantic constructions in their own right.
- For each type of game G , and value of the resource parameter k, we shall define a corresponding comonad \mathbb{C}_{k} on $\mathcal{R}(\sigma)$.

A new perspective

- We shall study these games, not as external artefacts, but as semantic constructions in their own right.
- For each type of game G , and value of the resource parameter k, we shall define a corresponding comonad \mathbb{C}_{k} on $\mathcal{R}(\sigma)$.
- The idea is that Duplicator strategies for the existential version of G-games from \mathcal{A} to \mathcal{B} will be recovered as coKleisli morphisms $\mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$.

A new perspective

- We shall study these games, not as external artefacts, but as semantic constructions in their own right.
- For each type of game G , and value of the resource parameter k, we shall define a corresponding comonad \mathbb{C}_{k} on $\mathcal{R}(\sigma)$.
- The idea is that Duplicator strategies for the existential version of G-games from \mathcal{A} to \mathcal{B} will be recovered as coKleisli morphisms $\mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$.
- Thus the notion of local approximation built into the game is internalised into the category of σ-structures and homomorphisms.

A new perspective

- We shall study these games, not as external artefacts, but as semantic constructions in their own right.
- For each type of game G , and value of the resource parameter k, we shall define a corresponding comonad \mathbb{C}_{k} on $\mathcal{R}(\sigma)$.
- The idea is that Duplicator strategies for the existential version of G-games from \mathcal{A} to \mathcal{B} will be recovered as coKleisli morphisms $\mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$.
- Thus the notion of local approximation built into the game is internalised into the category of σ-structures and homomorphisms.
- This leads to comonadic and coalgebraic characterisations of a number of central concepts in Finite Model Theory and combinatorics.

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?
Given e.g. a binary relation R, we define $R^{\mathbb{E}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?
Given e.g. a binary relation R, we define $R^{\mathbb{E}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$ (in prefix order)

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?
Given e.g. a binary relation R, we define $R^{\mathbb{E}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$ (in prefix order)
- $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}(s), \varepsilon_{\mathcal{A}}(t)\right)$.

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?
Given e.g. a binary relation R, we define $R^{\mathbb{E}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$ (in prefix order)
- $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}(s), \varepsilon_{\mathcal{A}}(t)\right)$.

Given a homomorphism $f: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$, we define the coextension $f^{*}: A^{\leq k} \rightarrow B^{\leq k}$ by

$$
f^{*}\left[a_{1}, \ldots, a_{j}\right]=\left[b_{1}, \ldots, b_{j}\right],
$$

where $b_{i}=f\left[a_{1}, \ldots, a_{i}\right], 1 \leq i \leq j$.

The EF comonad

Given a structure \mathcal{A}, the universe of $\mathbb{E}_{k} \mathcal{A}$ is $A^{\leq k}$, the non-empty sequences of length $\leq k$.

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[a_{1}, \ldots, a_{n}\right]$ to a_{n}.
How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?
Given e.g. a binary relation R, we define $R^{\mathbb{E}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$ (in prefix order)
- $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}(s), \varepsilon_{\mathcal{A}}(t)\right)$.

Given a homomorphism $f: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$, we define the coextension $f^{*}: A^{\leq k} \rightarrow B^{\leq k}$ by

$$
f^{*}\left[a_{1}, \ldots, a_{j}\right]=\left[b_{1}, \ldots, b_{j}\right],
$$

where $b_{i}=f\left[a_{1}, \ldots, a_{i}\right], 1 \leq i \leq j$.
This is easily verified to yield a comonad on $\mathcal{R}(\sigma)$.

CoKleisli maps are strategies

Intuitively, an element of $A^{\leq k}$ represents a play in \mathcal{A} of length $\leq k$.

CoKleisli maps are strategies

Intuitively, an element of $A^{\leq k}$ represents a play in \mathcal{A} of length $\leq k$.
A coKleisli morphism $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ represents a Duplicator strategy for the existential Ehrenfeucht-Fraïssé game with k rounds:

CoKleisli maps are strategies

Intuitively, an element of $A^{\leq k}$ represents a play in \mathcal{A} of length $\leq k$.
A coKleisli morphism $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ represents a Duplicator strategy for the existential Ehrenfeucht-Fraïssé game with k rounds:

Spoiler plays only in \mathcal{A}, and $b_{i}=f\left[a_{1}, \ldots, a_{i}\right]$ represents Duplicator's response in \mathcal{B} to the i 'th move by Spoiler.

CoKleisli maps are strategies

Intuitively, an element of $A^{\leq k}$ represents a play in \mathcal{A} of length $\leq k$.
A coKleisli morphism $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ represents a Duplicator strategy for the existential Ehrenfeucht-Fraïssé game with k rounds:

Spoiler plays only in \mathcal{A}, and $b_{i}=f\left[a_{1}, \ldots, a_{i}\right]$ represents Duplicator's response in \mathcal{B} to the i 'th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have been played, the induced relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial homomorphism from \mathcal{A} to \mathcal{B}.

CoKleisli maps are strategies

Intuitively, an element of $A^{\leq k}$ represents a play in \mathcal{A} of length $\leq k$.
A coKleisli morphism $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ represents a Duplicator strategy for the existential Ehrenfeucht-Fraïssé game with k rounds:

Spoiler plays only in \mathcal{A}, and $b_{i}=f\left[a_{1}, \ldots, a_{i}\right]$ represents Duplicator's response in \mathcal{B} to the i 'th move by Spoiler.

The winning condition for Duplicator in this game is that, after k rounds have been played, the induced relation $\left\{\left(a_{i}, b_{i}\right) \mid 1 \leq i \leq k\right\}$ is a partial homomorphism from \mathcal{A} to \mathcal{B}.

Theorem

The following are equivalent:
(1) There is a homomorphism $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$.
(2) Duplicator has a winning strategy for the existential Ehrenfeucht-Fraïssé game with k rounds, played from \mathcal{A} to \mathcal{B}.
(. For every existential positive sentence φ with quantifier rank $\leq k$, $\mathcal{A} \models \varphi \Rightarrow \mathcal{B} \models \varphi$.

From Forth to Back and Forth

From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the asymmetric existential-positive case.

From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the asymmetric existential-positive case.

Let's see!

From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the asymmetric existential-positive case.

Let's see!
Let S be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$, and T be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{B} \rightarrow \mathcal{A}$.

From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the asymmetric existential-positive case.

Let's see!
Let S be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$, and T be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{B} \rightarrow \mathcal{A}$.

We define $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff there are non-empty sets $F \subseteq S, G \subseteq T$, which are locally invertible in the following sense:
(1) For all $f \in F, s \in A^{\leq k}$, for some $g \in G, g^{*} f^{*}(s)=s$.
(2) For all $g \in G, t \in B^{\leq k}$, for some $f \in F, f^{*} g^{*}(t)=t$.

From Forth to Back and Forth

An obvious objection: the comonadic formulation apparently only captures the asymmetric existential-positive case.

Let's see!
Let S be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$, and T be the set of coKleisli morphisms $\mathbb{E}_{k} \mathcal{B} \rightarrow \mathcal{A}$.

We define $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff there are non-empty sets $F \subseteq S, G \subseteq T$, which are locally invertible in the following sense:
(1) For all $f \in F, s \in A^{\leq k}$, for some $g \in G, g^{*} f^{*}(s)=s$.
(2) For all $g \in G, t \in B^{\leq k}$, for some $f \in F, f^{*} g^{*}(t)=t$.

Proposition

The following are equivalent:
(1) $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{E}} \mathcal{B}$.
(2) There is a winning strategy for Duplicator in the k-round Ehrenfeucht-Fraïssé game between \mathcal{A} and \mathcal{B}.

A fixpoint characterization

Define set functions $\Gamma: \mathcal{P}(S) \rightarrow \mathcal{P}(T), \Delta: \mathcal{P}(T) \rightarrow \mathcal{P}(S)$:

$$
\begin{aligned}
\Gamma(F) & =\left\{g \in T \mid \forall t \in B^{\leq k} . \exists f \in F \cdot f^{*} g^{*} t=t\right\}, \\
\Delta(G) & =\left\{f \in S \mid \forall s \in A^{\leq k} . \exists g \in G \cdot g^{*} f^{*} s=s\right\} .
\end{aligned}
$$

A fixpoint characterization

Define set functions $\Gamma: \mathcal{P}(S) \rightarrow \mathcal{P}(T), \Delta: \mathcal{P}(T) \rightarrow \mathcal{P}(S)$:

$$
\begin{aligned}
\Gamma(F) & =\left\{g \in T \mid \forall t \in B^{\leq k} . \exists f \in F \cdot f^{*} g^{*} t=t\right\}, \\
\Delta(G) & =\left\{f \in S \mid \forall s \in A^{\leq k} . \exists g \in G \cdot g^{*} f^{*} s=s\right\} .
\end{aligned}
$$

These functions are monotone. Moreover, a pair of sets (F, G) is locally invertible iff $F \subseteq \Delta(G)$ and $G \subseteq \Gamma(F)$.

A fixpoint characterization

Define set functions $\Gamma: \mathcal{P}(S) \rightarrow \mathcal{P}(T), \Delta: \mathcal{P}(T) \rightarrow \mathcal{P}(S)$:

$$
\begin{aligned}
\Gamma(F) & =\left\{g \in T \mid \forall t \in B^{\leq k} . \exists f \in F \cdot f^{*} g^{*} t=t\right\}, \\
\Delta(G) & =\left\{f \in S \mid \forall s \in A^{\leq k} . \exists g \in G \cdot g^{*} f^{*} s=s\right\} .
\end{aligned}
$$

These functions are monotone. Moreover, a pair of sets (F, G) is locally invertible iff $F \subseteq \Delta(G)$ and $G \subseteq \Gamma(F)$.

Thus existence of a locally invertible pair is equivalent to the existence of non-empty F such that $F \subseteq \Theta(F)$, where $\Theta=\Delta \Gamma$.

A fixpoint characterization

Define set functions $\Gamma: \mathcal{P}(S) \rightarrow \mathcal{P}(T), \Delta: \mathcal{P}(T) \rightarrow \mathcal{P}(S)$:

$$
\begin{aligned}
\Gamma(F) & =\left\{g \in T \mid \forall t \in B^{\leq k} . \exists f \in F . f^{*} g^{*} t=t\right\}, \\
\Delta(G) & =\left\{f \in S \mid \forall s \in A^{\leq k} . \exists g \in G . g^{*} f^{*} s=s\right\} .
\end{aligned}
$$

These functions are monotone. Moreover, a pair of sets (F, G) is locally invertible iff $F \subseteq \Delta(G)$ and $G \subseteq \Gamma(F)$.

Thus existence of a locally invertible pair is equivalent to the existence of non-empty F such that $F \subseteq \Theta(F)$, where $\Theta=\Delta \Gamma$.

Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint of Θ being non-empty. (N.B. $\Theta(\varnothing)=\varnothing$).

A fixpoint characterization

Define set functions $\Gamma: \mathcal{P}(S) \rightarrow \mathcal{P}(T), \Delta: \mathcal{P}(T) \rightarrow \mathcal{P}(S)$:

$$
\begin{aligned}
\Gamma(F) & =\left\{g \in T \mid \forall t \in B^{\leq k} . \exists f \in F . f^{*} g^{*} t=t\right\}, \\
\Delta(G) & =\left\{f \in S \mid \forall s \in A^{\leq k} . \exists g \in G . g^{*} f^{*} s=s\right\} .
\end{aligned}
$$

These functions are monotone. Moreover, a pair of sets (F, G) is locally invertible iff $F \subseteq \Delta(G)$ and $G \subseteq \Gamma(F)$.

Thus existence of a locally invertible pair is equivalent to the existence of non-empty F such that $F \subseteq \Theta(F)$, where $\Theta=\Delta \Gamma$.

Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint of Θ being non-empty. (N.B. $\Theta(\varnothing)=\varnothing$).

If \mathcal{A} and \mathcal{B} are finite, so is S, and we can construct the greatest fixpoint by a finite descending sequence

$$
S \supseteq \Theta(S) \supseteq \Theta^{2}(S) \supseteq \cdots
$$

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

- One is \mathcal{L}_{k}, the fragment of first-order logic of quantifier rank $\leq k$.

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

- One is \mathcal{L}_{k}, the fragment of first-order logic of quantifier rank $\leq k$.
- Another is $\exists \mathcal{L}_{k}$, the existential-positive fragment of \mathcal{L}_{k}.

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

- One is \mathcal{L}_{k}, the fragment of first-order logic of quantifier rank $\leq k$.
- Another is $\exists \mathcal{L}_{k}$, the existential-positive fragment of \mathcal{L}_{k}.
- Finally, $\mathcal{L}_{k}(\#)$, the extension of \mathcal{L}_{k} with counting quantifiers. These have the form $\exists_{\leq n}, \exists_{\geq n}$, where the semantics of $\mathcal{A} \models \exists_{\geq n} x . \psi$ is that there exist at least n distinct elements of A satisying ψ.

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

- One is \mathcal{L}_{k}, the fragment of first-order logic of quantifier rank $\leq k$.
- Another is $\exists \mathcal{L}_{k}$, the existential-positive fragment of \mathcal{L}_{k}.
- Finally, $\mathcal{L}_{k}(\#)$, the extension of \mathcal{L}_{k} with counting quantifiers. These have the form $\exists_{\leq n}, \exists_{\geq n}$, where the semantics of $\mathcal{A} \models \exists_{\geq n} x . \psi$ is that there exist at least n distinct elements of A satisying ψ.

We can generically define two equivalences based on our indexed comonads \mathbb{E}_{k} :

- $\mathcal{A} \rightleftarrows{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff there are coKleisli morphisms $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{E}_{k} \mathcal{B} \rightarrow \mathcal{A}$. Note that there need be no relationship between these morphisms.
- $\mathcal{A} \cong{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic in the coKleisli category $\mathrm{KI}\left(\mathbb{E}_{k}\right)$.

Logical equivalences

We will be interested in three logics in relation to the EF-comonad:

- One is \mathcal{L}_{k}, the fragment of first-order logic of quantifier rank $\leq k$.
- Another is $\exists \mathcal{L}_{k}$, the existential-positive fragment of \mathcal{L}_{k}.
- Finally, $\mathcal{L}_{k}(\#)$, the extension of \mathcal{L}_{k} with counting quantifiers. These have the form $\exists_{\leq n}, \exists_{\geq n}$, where the semantics of $\mathcal{A} \models \exists_{\geq n} x . \psi$ is that there exist at least n distinct elements of A satisying ψ.

We can generically define two equivalences based on our indexed comonads \mathbb{E}_{k} :

- $\mathcal{A} \rightleftarrows{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff there are coKleisli morphisms $\mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{E}_{k} \mathcal{B} \rightarrow \mathcal{A}$. Note that there need be no relationship between these morphisms.
- $\mathcal{A} \cong{ }_{k}^{\mathbb{E}} \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic in the coKleisli category $\mathrm{KI}\left(\mathbb{E}_{k}\right)$.

Theorem

(1) For all structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv^{\exists \mathcal{L}_{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \rightleftarrows{ }_{k}^{\mathbb{E}} \mathcal{B}$.
(2) For all structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv^{\mathcal{L}_{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{E}} \mathcal{B}$.
(0) For all finite structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv^{\mathcal{L}_{k}(\#)} \mathcal{B} \Longleftrightarrow \mathcal{A} \cong_{k}^{\mathbb{E}} \mathcal{B}$.

Pebble Games

Pebble Games

Similar but subtly different to EF-games

Pebble Games

Similar but subtly different to EF-games
Spoiler moves by placing one from a fixed set of pebbles on an element of \mathcal{A} or \mathcal{B}; Duplicator responds by placing their matching pebble on an element of the other structure.

Pebble Games

Similar but subtly different to EF-games
Spoiler moves by placing one from a fixed set of pebbles on an element of \mathcal{A} or \mathcal{B}; Duplicator responds by placing their matching pebble on an element of the other structure.

Duplicator wins if after each round, the relation defined by the current positions of the pebbles is a partial isomorphism

Pebble Games

Similar but subtly different to EF-games
Spoiler moves by placing one from a fixed set of pebbles on an element of \mathcal{A} or \mathcal{B}; Duplicator responds by placing their matching pebble on an element of the other structure.

Duplicator wins if after each round, the relation defined by the current positions of the pebbles is a partial isomorphism

Thus there is a "sliding window" on the structures, of fixed size. It is this size which bounds the resource, not the length of the play.

Pebble Games

Similar but subtly different to EF-games
Spoiler moves by placing one from a fixed set of pebbles on an element of \mathcal{A} or \mathcal{B}; Duplicator responds by placing their matching pebble on an element of the other structure.

Duplicator wins if after each round, the relation defined by the current positions of the pebbles is a partial isomorphism

Thus there is a "sliding window" on the structures, of fixed size. It is this size which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank, k-pebble games correspond to bounding the number of variables which can be used in a formula.

Pebble Games

Similar but subtly different to EF-games
Spoiler moves by placing one from a fixed set of pebbles on an element of \mathcal{A} or \mathcal{B}; Duplicator responds by placing their matching pebble on an element of the other structure.

Duplicator wins if after each round, the relation defined by the current positions of the pebbles is a partial isomorphism

Thus there is a "sliding window" on the structures, of fixed size. It is this size which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank, k-pebble games correspond to bounding the number of variables which can be used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only plays in \mathcal{A}, and Duplicator responds in \mathcal{B}.

The pebbling comonad

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times \mathcal{A})^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite. We showed that this is essential!

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times A)^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite. We showed that this is essential!

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}.

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times A)^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite. We showed that this is essential!

The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times A)^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite.
We showed that this is essential!
The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

Given e.g. a binary relation R, we define $R^{\mathbb{P}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times A)^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite.
We showed that this is essential!
The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

Given e.g. a binary relation R, we define $R^{\mathbb{P}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times \mathcal{A})^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite.
We showed that this is essential!
The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

Given e.g. a binary relation R, we define $R^{\mathbb{P}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$
- If $s \sqsubseteq t$, then the pebble index of the last move in s does not appear in the suffix of s in t ; and symmetrically if $t \sqsubseteq s$.

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times \mathcal{A})^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite.
We showed that this is essential!
The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

Given e.g. a binary relation R, we define $R^{\mathbb{P}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$
- If $s \sqsubseteq t$, then the pebble index of the last move in s does not appear in the suffix of s in t ; and symmetrically if $t \sqsubseteq s$.
- $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}(s), \varepsilon_{\mathcal{A}}(t)\right)$.

The pebbling comonad

Given a structure \mathcal{A}, the universe of $\mathbb{P}_{\mathbf{k}} \mathcal{A}$ is $(\mathbf{k} \times \mathcal{A})^{+}$, the set of finite non-empty sequences of moves (p, a). Note this will be infinite even if \mathcal{A} is finite.
We showed that this is essential!
The counit map $\varepsilon_{\mathcal{A}}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathcal{A}$ sends a sequence $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]$ to a_{n}. How do we lift the relations on \mathcal{A} to $\mathbb{E}_{k} \mathcal{A}$?

Given e.g. a binary relation R, we define $R^{\mathbb{P}_{k} \mathcal{A}}$ to the set of pairs (s, t) such that

- $s \sqsubseteq t$ or $t \sqsubseteq s$
- If $s \sqsubseteq t$, then the pebble index of the last move in s does not appear in the suffix of s in t ; and symmetrically if $t \sqsubseteq s$.
- $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}(s), \varepsilon_{\mathcal{A}}(t)\right)$.

Given a homomorphism $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$, we define the coextension $f^{*}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{B}$ by

$$
f^{*}\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{j}, a_{j}\right)\right]=\left[\left(p_{1}, b_{1}\right), \ldots,\left(p_{j}, b_{j}\right)\right],
$$

where $b_{i}=f\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{i}, a_{i}\right)\right], 1 \leq i \leq j$.

Logical equivalences

Again, we will be interested in three logics in relation to the pebbling comonad:

- One is \mathcal{L}^{k}, the k-variable fragment of (infinitary) first-order logic.
- Another is $\exists \mathcal{L}^{k}$, the existential-positive fragment of \mathcal{L}^{k}.
- Finally, $\mathcal{L}^{k}(\#)$, the extension of \mathcal{L}^{k} with counting quantifiers.

Logical equivalences

Again, we will be interested in three logics in relation to the pebbling comonad:

- One is \mathcal{L}^{k}, the k-variable fragment of (infinitary) first-order logic.
- Another is $\exists \mathcal{L}^{k}$, the existential-positive fragment of \mathcal{L}^{k}.
- Finally, $\mathcal{L}^{k}(\#)$, the extension of \mathcal{L}^{k} with counting quantifiers.

Again, we can generically define two equivalences:

- $\mathcal{A} \rightleftarrows{ }_{k}^{\mathbb{P}} \mathcal{B}$ iff there are coKleisli morphisms $\mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{P}_{k} \mathcal{B} \rightarrow \mathcal{A}$.
- $\mathcal{A} \cong \mathbb{P} \mathcal{P}$ iff \mathcal{A} and \mathcal{B} are isomorphic in the coKleisli category $\operatorname{KI}\left(\mathbb{P}_{k}\right)$.

Logical equivalences

Again, we will be interested in three logics in relation to the pebbling comonad:

- One is \mathcal{L}^{k}, the k-variable fragment of (infinitary) first-order logic.
- Another is $\exists \mathcal{L}^{k}$, the existential-positive fragment of \mathcal{L}^{k}.
- Finally, $\mathcal{L}^{k}(\#)$, the extension of \mathcal{L}^{k} with counting quantifiers.

Again, we can generically define two equivalences:

- $\mathcal{A} \not \rightleftarrows_{k}^{\mathbb{P}} \mathcal{B}$ iff there are coKleisli morphisms $\mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{P}_{k} \mathcal{B} \rightarrow \mathcal{A}$.
- $\mathcal{A} \cong \mathbb{P} \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic in the coKleisli category $\mathrm{KI}\left(\mathbb{P}_{k}\right)$.

Interestingly, the intermediate equivalence $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{P}} \mathcal{B}$ (back-and-forth without isomorphism) can be defined from just a single pair of morphisms $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $g: \mathbb{P}_{k} \mathcal{B} \rightarrow \mathcal{A}$, satisfying a certain "compatibility" relation.

Logical equivalences

Again, we will be interested in three logics in relation to the pebbling comonad:

- One is \mathcal{L}^{k}, the k-variable fragment of (infinitary) first-order logic.
- Another is $\exists \mathcal{L}^{k}$, the existential-positive fragment of \mathcal{L}^{k}.
- Finally, $\mathcal{L}^{k}(\#)$, the extension of \mathcal{L}^{k} with counting quantifiers.

Again, we can generically define two equivalences:

- $\mathcal{A} \rightleftarrows \mathbb{P}_{k}^{\mathbb{B}}$ iff there are coKleisli morphisms $\mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{P}_{k} \mathcal{B} \rightarrow \mathcal{A}$.
- $\mathcal{A} \cong \mathbb{P} \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic in the coKleisli category $\mathrm{KI}\left(\mathbb{P}_{k}\right)$.

Interestingly, the intermediate equivalence $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{P}} \mathcal{B}$ (back-and-forth without isomorphism) can be defined from just a single pair of morphisms $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ and $g: \mathbb{P}_{k} \mathcal{B} \rightarrow \mathcal{A}$, satisfying a certain "compatibility" relation.

Theorem

(1) For all structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv \equiv^{\exists \mathcal{L}^{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \rightleftarrows{ }_{k}^{\mathbb{P}} \mathcal{B}$.
(2) For all finite structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv^{\mathcal{L}^{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \leftrightarrow_{k}^{\mathbb{P}} \mathcal{B}$.
(0) For all finite structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv \mathcal{L}^{k}(\#) \mathcal{B} \Longleftrightarrow \mathcal{A} \cong{ }_{k}^{\mathbb{P}} \mathcal{B}$.

The modal comonad

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

For the modal case, we assume that the relational vocabulary σ contains only symbols of arity at most 2.

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

For the modal case, we assume that the relational vocabulary σ contains only symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If there are no unary symbols, such structures are exactly the labelled transition systems.

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

For the modal case, we assume that the relational vocabulary σ contains only symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If there are no unary symbols, such structures are exactly the labelled transition systems.

Modal logic localizes its notion of satisfaction in a structure to a world. We reflect this by using the category of pointed relational structures (\mathcal{A}, a).

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

For the modal case, we assume that the relational vocabulary σ contains only symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If there are no unary symbols, such structures are exactly the labelled transition systems.

Modal logic localizes its notion of satisfaction in a structure to a world. We reflect this by using the category of pointed relational structures (\mathcal{A}, a).

For $k>0$ we define a comonad \mathbb{M}_{k}, where $\mathbb{M}_{k}(\mathcal{A}, a)$ corresponds to unravelling the structure \mathcal{A}, starting from a, to depth k.

The modal comonad

The flexibility of the comonadic approach is illustrated by showing that it also covers the well-known construction of unfolding a Kripke structure into a tree ("unravelling").

For the modal case, we assume that the relational vocabulary σ contains only symbols of arity at most 2.

We can thus regard a σ-structure as a Kripke structure for a multi-modal logic. If there are no unary symbols, such structures are exactly the labelled transition systems.

Modal logic localizes its notion of satisfaction in a structure to a world. We reflect this by using the category of pointed relational structures (\mathcal{A}, a).

For $k>0$ we define a comonad \mathbb{M}_{k}, where $\mathbb{M}_{k}(\mathcal{A}, a)$ corresponds to unravelling the structure \mathcal{A}, starting from a, to depth k.

The universe of $\mathbb{M}_{k}(\mathcal{A}, a)$ comprises [a], which is the distinguished element, together with all sequences of the form [$\left.a_{0}, \alpha_{1}, a_{1}, \ldots, \alpha_{j}, a_{j}\right]$, where $a=a_{0}$, $1 \leq j \leq k$, and $R_{\alpha_{i}}^{\mathcal{A}}\left(a_{i}, a_{i+1}\right), 0 \leq i<j$.

Simulation and Bisimulation

The resource index of \mathbb{M}_{k} corresponds to the level of approximation in simulation \preceq_{k} and bisimulation \sim_{k}.

Theorem

Let \mathcal{A}, \mathcal{B} be Kripke structures, with $a \in A$ and $b \in B$, and $k>0$. The following are equivalent:
(1) There is a homomorphism $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$.
(2) $a \preceq_{k} b$.
(3) There is a winning strategy for Duplicator in the k-round simulation game from (\mathcal{A}, a) to (\mathcal{B}, b).

Simulation and Bisimulation

The resource index of \mathbb{M}_{k} corresponds to the level of approximation in simulation \preceq_{k} and bisimulation \sim_{k}.

Theorem

Let \mathcal{A}, \mathcal{B} be Kripke structures, with $a \in A$ and $b \in B$, and $k>0$. The following are equivalent:
(1) There is a homomorphism $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$.
(2) $a \preceq_{k} b$.
(0) There is a winning strategy for Duplicator in the k-round simulation game from (\mathcal{A}, a) to (\mathcal{B}, b).

For bisimulation, we recall the notion of p-morphism (aka functional bisimulation).

Simulation and Bisimulation

The resource index of \mathbb{M}_{k} corresponds to the level of approximation in simulation \preceq_{k} and bisimulation \sim_{k}.

Theorem

Let \mathcal{A}, \mathcal{B} be Kripke structures, with $a \in A$ and $b \in B$, and $k>0$. The following are equivalent:
(1) There is a homomorphism $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$.
(2) $a \preceq_{k} b$.
(0) There is a winning strategy for Duplicator in the k-round simulation game from (\mathcal{A}, a) to (\mathcal{B}, b).

For bisimulation, we recall the notion of p-morphism (aka functional bisimulation).
This is a homomorphism $f: \mathcal{A} \rightarrow \mathcal{B}$ of Kripke structures, which satisfies the following additional properties: if $f(a)=b$, then $P^{\mathcal{B}}(b)$ implies $P^{\mathcal{A}}(s)$, and if $R_{\alpha}^{\mathcal{B}}\left(b, b^{\prime}\right)$, then for some $a^{\prime}, R_{\alpha}^{\mathcal{A}}\left(a, a^{\prime}\right)$ and $f\left(a^{\prime}\right)=b^{\prime}$.

Simulation and Bisimulation

The resource index of \mathbb{M}_{k} corresponds to the level of approximation in simulation \preceq_{k} and bisimulation \sim_{k}.

Theorem

Let \mathcal{A}, \mathcal{B} be Kripke structures, with $a \in A$ and $b \in B$, and $k>0$. The following are equivalent:
(1) There is a homomorphism $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$.
(2) $a \preceq_{k} b$.
(3) There is a winning strategy for Duplicator in the k-round simulation game from (\mathcal{A}, a) to (\mathcal{B}, b).

For bisimulation, we recall the notion of p-morphism (aka functional bisimulation).
This is a homomorphism $f: \mathcal{A} \rightarrow \mathcal{B}$ of Kripke structures, which satisfies the following additional properties: if $f(a)=b$, then $P^{\mathcal{B}}(b)$ implies $P^{\mathcal{A}}(s)$, and if $R_{\alpha}^{\mathcal{B}}\left(b, b^{\prime}\right)$, then for some $a^{\prime}, R_{\alpha}^{\mathcal{A}}\left(a, a^{\prime}\right)$ and $f\left(a^{\prime}\right)=b^{\prime}$.

It is not immediately obvious how to adapt the notion of p-morphism to match the finite levels of approximation \sim_{k}. The modal comonad offers an elegant solution.

Bisimulation approximants as spans

We say that $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$ is a coKleisli p-morphism if $f^{*}: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow \mathbb{M}_{k}(\mathcal{B}, b)$ is a p-morphism of Kripke structures.

Bisimulation approximants as spans

We say that $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$ is a coKleisli p-morphism if $f^{*}: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow \mathbb{M}_{k}(\mathcal{B}, b)$ is a p-morphism of Kripke structures.

We write $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ to indicate that f is a coKleisli p-morphism.

Proposition

Let $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ be a coKleisli p-morphism. Then $a \sim_{k} b$.

Bisimulation approximants as spans

We say that $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$ is a coKleisli p-morphism if $f^{*}: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow \mathbb{M}_{k}(\mathcal{B}, b)$ is a p-morphism of Kripke structures.

We write $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ to indicate that f is a coKleisli p-morphism.

Proposition

Let $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ be a coKleisli p-morphism. Then $a \sim_{k} b$.

We define $(\mathcal{A}, a) \leftrightarrow_{k}^{\mathbb{M}}(\mathcal{B}, b)$ iff there is a span of coKleisli p-morphisms

$$
(\mathcal{A}, a) \Leftrightarrow \mathbb{M}_{k}(\mathcal{C}, c) \mapsto \mathbb{M}_{k}(\mathcal{B}, b)
$$

Bisimulation approximants as spans

We say that $f: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow(\mathcal{B}, b)$ is a coKleisli p-morphism if $f^{*}: \mathbb{M}_{k}(\mathcal{A}, a) \rightarrow \mathbb{M}_{k}(\mathcal{B}, b)$ is a p-morphism of Kripke structures.

We write $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ to indicate that f is a coKleisli p-morphism.

Proposition

Let $f: \mathbb{M}_{k}(\mathcal{A}, a) \Leftrightarrow(\mathcal{B}, b)$ be a coKleisli p-morphism. Then $a \sim_{k} b$.

We define $(\mathcal{A}, a) \leftrightarrow_{k}^{\mathbb{M}}(\mathcal{B}, b)$ iff there is a span of coKleisli p-morphisms

$$
(\mathcal{A}, a) \Leftrightarrow \mathbb{M}_{k}(\mathcal{C}, c) \Leftrightarrow \mathbb{M}_{k}(\mathcal{B}, b)
$$

Theorem

For pointed Kripke structures (\mathcal{A}, a) and $(\mathcal{B}, b): a \sim_{k} b$ iff $(\mathcal{A}, a) \leftrightarrow_{k}^{\mathbb{M}}(\mathcal{B}, b)$.

Modal Equivalences

We have the modal fragment \mathcal{M}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

Modal Equivalences

We have the modal fragment \mathcal{M}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

There is also the existential positive fragment, where we omit \square and negation.

Modal Equivalences

We have the modal fragment \mathcal{N}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

There is also the existential positive fragment, where we omit \square and negation.
More interestingly, there are graded modalities $\diamond_{\alpha}^{n}, \square_{\alpha}^{n}$, where $\mathcal{A}, a \models \diamond_{\alpha}^{n} \varphi$ if there are at least $n R_{\alpha}$-successors of a which satisfy φ.

Modal Equivalences

We have the modal fragment \mathcal{N}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

There is also the existential positive fragment, where we omit \square and negation.
More interestingly, there are graded modalities $\diamond_{\alpha}^{n}, \square_{\alpha}^{n}$, where $\mathcal{A}, a \models \diamond_{\alpha}^{n} \varphi$ if there are at least $n R_{\alpha}$-successors of a which satisfy φ.

There is a corresponding notion of graded bisimulation (De Rijke). This is in turn related to resource bisimulation (Corradini, de Nicola and Labella), which has been studied in the concurrency setting.

Modal Equivalences

We have the modal fragment \mathcal{M}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

There is also the existential positive fragment, where we omit \square and negation.
More interestingly, there are graded modalities $\diamond_{\alpha}^{n}, \square_{\alpha}^{n}$, where $\mathcal{A}, a \models \diamond_{\alpha}^{n} \varphi$ if there are at least $n R_{\alpha}$-successors of a which satisfy φ.

There is a corresponding notion of graded bisimulation (De Rijke). This is in turn related to resource bisimulation (Corradini, de Nicola and Labella), which has been studied in the concurrency setting.

The two notions were shown to coincide for image-finite Kripke structures by (Aceto, Ingolfsdottir and Sack).

Modal Equivalences

We have the modal fragment \mathcal{M}_{k}, which arises from the standard translation of (multi)modal logic into first-order logic, for formulas of modal depth $\leq k$.

There is also the existential positive fragment, where we omit \square and negation.
More interestingly, there are graded modalities $\diamond_{\alpha}^{n}, \square_{\alpha}^{n}$, where $\mathcal{A}, a \models \diamond_{\alpha}^{n} \varphi$ if there are at least $n R_{\alpha}$-successors of a which satisfy φ.

There is a corresponding notion of graded bisimulation (De Rijke). This is in turn related to resource bisimulation (Corradini, de Nicola and Labella), which has been studied in the concurrency setting.

The two notions were shown to coincide for image-finite Kripke structures by (Aceto, Ingolfsdottir and Sack).

Theorem

(1) For all Kripke structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv{ }^{\exists \mathcal{M}_{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \rightleftarrows_{k}^{\mathbb{M}} \mathcal{B}$.
(2) For all Kripke structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv^{\mathcal{M}_{k}} \mathcal{B} \Longleftrightarrow \mathcal{A} \leftrightarrow_{k}^{\mathbb{M}} \mathcal{B}$.
(For all image-finite Kripke structures \mathcal{A} and $\mathcal{B}: \mathcal{A} \equiv \mathcal{M}_{k}(\#) \mathcal{B} \Longleftrightarrow \mathcal{A} \cong{ }_{k}^{\mathbb{M}} \mathcal{B}$.

Coalgebras and combinatorial parameters

Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial combinatorial parameters of structures using the indexed comonadic structure.

Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial combinatorial parameters of structures using the indexed comonadic structure.

Conceptually, we can think of the morphisms $f: \mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$ in the co-Kleisli category for \mathbb{C}_{k} as those which only have to respect the k-local structure of \mathcal{A}.

Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial combinatorial parameters of structures using the indexed comonadic structure.

Conceptually, we can think of the morphisms $f: \mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$ in the co-Kleisli category for \mathbb{C}_{k} as those which only have to respect the k-local structure of \mathcal{A}.

The lower the value of k, the less information available to Spoiler, and the easier it is for Duplicator to have a winning strategy. Equivalently, the easier it is to have a morphism from \mathcal{A} to \mathcal{B} in the co-Kleisli category.

Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial combinatorial parameters of structures using the indexed comonadic structure.

Conceptually, we can think of the morphisms $f: \mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$ in the co-Kleisli category for \mathbb{C}_{k} as those which only have to respect the k-local structure of \mathcal{A}.

The lower the value of k, the less information available to Spoiler, and the easier it is for Duplicator to have a winning strategy. Equivalently, the easier it is to have a morphism from \mathcal{A} to \mathcal{B} in the co-Kleisli category.

What about morphisms $\mathcal{A} \rightarrow \mathbb{C}_{k} \mathcal{B}$?

Coalgebras and combinatorial parameters

A beautiful feature of these comonads is that they let us capture crucial combinatorial parameters of structures using the indexed comonadic structure.

Conceptually, we can think of the morphisms $f: \mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B}$ in the co-Kleisli category for \mathbb{C}_{k} as those which only have to respect the k-local structure of \mathcal{A}.

The lower the value of k, the less information available to Spoiler, and the easier it is for Duplicator to have a winning strategy. Equivalently, the easier it is to have a morphism from \mathcal{A} to \mathcal{B} in the co-Kleisli category.

What about morphisms $\mathcal{A} \rightarrow \mathbb{C}_{k} \mathcal{B}$?
Restricting the access to \mathcal{B} makes it harder for Duplicator to win the homomorphism game.

Coalgebras: a novel perspective

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.

Coalgebras: a novel perspective

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.

A coalgebra for a comonad (G, ε, δ) is a morphism $\alpha: A \rightarrow G A$ such that the following diagrams commute:

Coalgebras: a novel perspective

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.

A coalgebra for a comonad (G, ε, δ) is a morphism $\alpha: A \rightarrow G A$ such that the following diagrams commute:

We should only expect a coalgebra structure to exist when the k-local information on A is sufficient to determine the structure of A.

Coalgebras: a novel perspective

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.

A coalgebra for a comonad (G, ε, δ) is a morphism $\alpha: A \rightarrow G A$ such that the following diagrams commute:

We should only expect a coalgebra structure to exist when the k-local information on A is sufficient to determine the structure of A.

Our use of indexed comonads \mathbb{C}_{k} opens up a new kind of question for coalgebras. Given a structure \mathcal{A}, we can ask: what is the least value of k such that a \mathbb{C}_{k}-coalgebra exists on \mathcal{A} ? We call this the coalgebra number of \mathcal{A}.

Coalgebra numbers

Theorem

- For the pebbling comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-width of \mathcal{A}.
- For the Ehrenfeucht-Fraïssé comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-depth of \mathcal{A}.
- For the modal comonad, the coalgebra number of (\mathcal{A}, a) corresponds precisely to the synchronization tree depth of a in \mathcal{A}.

Coalgebra numbers

Theorem

- For the pebbling comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-width of \mathcal{A}.
- For the Ehrenfeucht-Fraïssé comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-depth of \mathcal{A}.
- For the modal comonad, the coalgebra number of (\mathcal{A}, a) corresponds precisely to the synchronization tree depth of a in \mathcal{A}.

The main idea behind these results is that coalgebras on \mathcal{A} are in bijective correspondence with decompositions of \mathcal{A} of the appropriate form.

Coalgebra numbers

Theorem

- For the pebbling comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-width of \mathcal{A}.
- For the Ehrenfeucht-Fraïssé comonad, the coalgebra number of \mathcal{A} corresponds precisely to the tree-depth of \mathcal{A}.
- For the modal comonad, the coalgebra number of (\mathcal{A}, a) corresponds precisely to the synchronization tree depth of a in \mathcal{A}.

The main idea behind these results is that coalgebras on \mathcal{A} are in bijective correspondence with decompositions of \mathcal{A} of the appropriate form.

We thus obtain categorical characterizations of these key combinatorial parameters.

Tree depth and the Ehrenfeucht-Fraïssé comonad

A forest is a poset (F, \leq) such that, for all $x \in F$, the set of predecessors is a finite chain.

Tree depth and the Ehrenfeucht-Fraïssé comonad

A forest is a poset (F, \leq) such that, for all $x \in F$, the set of predecessors is a finite chain.

A forest cover for G is a forest (F, \leq) such that $V \subseteq F$, and if $v \frown v^{\prime}$, then $v \uparrow v^{\prime}$.

Tree depth and the Ehrenfeucht-Fraïssé comonad

A forest is a poset (F, \leq) such that, for all $x \in F$, the set of predecessors is a finite chain.

A forest cover for G is a forest (F, \leq) such that $V \subseteq F$, and if $v \frown v^{\prime}$, then $v \uparrow v^{\prime}$.
The tree-depth $\operatorname{td}(G)$ is defined to be $\min _{F} h t(F)$, where F ranges over forest covers of G.

Tree depth and the Ehrenfeucht-Fraïssé comonad

A forest is a poset (F, \leq) such that, for all $x \in F$, the set of predecessors is a finite chain.

A forest cover for G is a forest (F, \leq) such that $V \subseteq F$, and if $v \frown v^{\prime}$, then $v \uparrow v^{\prime}$.
The tree-depth $\operatorname{td}(G)$ is defined to be $\min _{F} h t(F)$, where F ranges over forest covers of G.

Given a σ-structure \mathcal{A}, the Gaifman graph $\mathcal{G}(\mathcal{A})$ is (A, \frown), where $a \frown a^{\prime}$ iff for some relation $R \in \sigma$, for some $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{A}}, a=a_{i}, a^{\prime}=a_{j}, i \neq j$. The tree-depth of \mathcal{A} is $\operatorname{td}(\mathcal{G}(\mathcal{A}))$.

Tree depth and the Ehrenfeucht-Fraïssé comonad

A forest is a poset (F, \leq) such that, for all $x \in F$, the set of predecessors is a finite chain.

A forest cover for G is a forest (F, \leq) such that $V \subseteq F$, and if $v \frown v^{\prime}$, then $v \uparrow v^{\prime}$.
The tree-depth $\operatorname{td}(G)$ is defined to be $\min _{F} h t(F)$, where F ranges over forest covers of G.

Given a σ-structure \mathcal{A}, the Gaifman graph $\mathcal{G}(\mathcal{A})$ is (A, \frown), where $a \frown a^{\prime}$ iff for some relation $R \in \sigma$, for some $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{A}}, a=a_{i}, a^{\prime}=a_{j}, i \neq j$. The tree-depth of \mathcal{A} is $\operatorname{td}(\mathcal{G}(\mathcal{A}))$.

Theorem

Let \mathcal{A} be a finite σ-structure, and $k>0$. There is a bijective correspondence between
(1) \mathbb{E}_{k}-coalgebras $\alpha: \mathcal{A} \rightarrow \mathbb{E}_{k} \mathcal{A}$.
(2) Forest covers of $\mathcal{G}(\mathcal{A})$ of height $<k$.

Tree width

Tree width

A tree (T, \leq) is a forest with a least element (the root).

Tree width

A tree (T, \leq) is a forest with a least element (the root).
The unique path from x to x^{\prime} is the set path $\left(x, x^{\prime}\right):=\left[x \wedge x^{\prime}, x\right] \cup\left[x \wedge x^{\prime}, x^{\prime}\right]$, where we use interval notation: $\left[y, y^{\prime}\right]:=\left\{z \in T \mid y \leq z \leq y^{\prime}\right\}$.

Tree width

A tree (T, \leq) is a forest with a least element (the root).
The unique path from x to x^{\prime} is the set path $\left(x, x^{\prime}\right):=\left[x \wedge x^{\prime}, x\right] \cup\left[x \wedge x^{\prime}, x^{\prime}\right]$, where we use interval notation: $\left[y, y^{\prime}\right]:=\left\{z \in T \mid y \leq z \leq y^{\prime}\right\}$.

A tree-decomposition of a graph $G=(V, \frown)$ is a tree (T, \leq) together with a labelling function $\lambda: T \rightarrow \mathcal{P}(V)$ satisfying the following conditions:

- (TD1) for all $v \in V$, for some $x \in T, v \in \lambda(x)$;
- (TD2) if $v \frown v^{\prime}$, then for some $x \in T,\left\{v, v^{\prime}\right\} \subseteq \lambda(x)$;
- (TD3) if $v \in \lambda(x) \cap \lambda\left(x^{\prime}\right)$, then for all $y \in \operatorname{path}\left(x, x^{\prime}\right), v \in \lambda(y)$.

Tree width

A tree (T, \leq) is a forest with a least element (the root).
The unique path from x to x^{\prime} is the set path $\left(x, x^{\prime}\right):=\left[x \wedge x^{\prime}, x\right] \cup\left[x \wedge x^{\prime}, x^{\prime}\right]$, where we use interval notation: $\left[y, y^{\prime}\right]:=\left\{z \in T \mid y \leq z \leq y^{\prime}\right\}$.

A tree-decomposition of a graph $G=(V, \frown)$ is a tree (T, \leq) together with a labelling function $\lambda: T \rightarrow \mathcal{P}(V)$ satisfying the following conditions:

- (TD1) for all $v \in V$, for some $x \in T, v \in \lambda(x)$;
- (TD2) if $v \frown v^{\prime}$, then for some $x \in T,\left\{v, v^{\prime}\right\} \subseteq \lambda(x)$;
- (TD3) if $v \in \lambda(x) \cap \lambda\left(x^{\prime}\right)$, then for all $y \in \operatorname{path}\left(x, x^{\prime}\right), v \in \lambda(y)$.

The width of a tree decomposition is given by $\max _{x \in T}|\lambda(x)|-1$.

Tree width

A tree (T, \leq) is a forest with a least element (the root).
The unique path from x to x^{\prime} is the set path $\left(x, x^{\prime}\right):=\left[x \wedge x^{\prime}, x\right] \cup\left[x \wedge x^{\prime}, x^{\prime}\right]$, where we use interval notation: $\left[y, y^{\prime}\right]:=\left\{z \in T \mid y \leq z \leq y^{\prime}\right\}$.

A tree-decomposition of a graph $G=(V, \frown)$ is a tree (T, \leq) together with a labelling function $\lambda: T \rightarrow \mathcal{P}(V)$ satisfying the following conditions:

- (TD1) for all $v \in V$, for some $x \in T, v \in \lambda(x)$;
- (TD2) if $v \frown v^{\prime}$, then for some $x \in T,\left\{v, v^{\prime}\right\} \subseteq \lambda(x)$;
- (TD3) if $v \in \lambda(x) \cap \lambda\left(x^{\prime}\right)$, then for all $y \in \operatorname{path}\left(x, x^{\prime}\right), v \in \lambda(y)$.

The width of a tree decomposition is given by $\max _{x \in T}|\lambda(x)|-1$.
We define the tree-width $\operatorname{tw}(G)$ of a graph G as $\min _{T}$ width (T), where T ranges over tree decompositions of G.

Tree width

A tree (T, \leq) is a forest with a least element (the root).
The unique path from x to x^{\prime} is the set path $\left(x, x^{\prime}\right):=\left[x \wedge x^{\prime}, x\right] \cup\left[x \wedge x^{\prime}, x^{\prime}\right]$, where we use interval notation: $\left[y, y^{\prime}\right]:=\left\{z \in T \mid y \leq z \leq y^{\prime}\right\}$.

A tree-decomposition of a graph $G=(V, \frown)$ is a tree (T, \leq) together with a labelling function $\lambda: T \rightarrow \mathcal{P}(V)$ satisfying the following conditions:

- (TD1) for all $v \in V$, for some $x \in T, v \in \lambda(x)$;
- (TD2) if $v \frown v^{\prime}$, then for some $x \in T,\left\{v, v^{\prime}\right\} \subseteq \lambda(x)$;
- (TD3) if $v \in \lambda(x) \cap \lambda\left(x^{\prime}\right)$, then for all $y \in \operatorname{path}\left(x, x^{\prime}\right), v \in \lambda(y)$.

The width of a tree decomposition is given by $\max _{x \in T}|\lambda(x)|-1$.
We define the tree-width $\operatorname{tw}(G)$ of a graph G as $\min _{T}$ width (T), where T ranges over tree decompositions of G.

This parameter plays a fundamental role in combinatorics, algorithms and parameterized complexity.

Tree-width and pebbling

Tree-width and pebbling

We shall now give an alternative formulation of tree-width which will provide a useful bridge to the coalgebraic characterization.

Tree-width and pebbling

We shall now give an alternative formulation of tree-width which will provide a useful bridge to the coalgebraic characterization.

It is also interesting in its own right: it clarifies the relationship between tree-width and tree-depth, and shows how pebbling arises naturally in connection with tree-width.

Tree-width and pebbling

We shall now give an alternative formulation of tree-width which will provide a useful bridge to the coalgebraic characterization.

It is also interesting in its own right: it clarifies the relationship between tree-width and tree-depth, and shows how pebbling arises naturally in connection with tree-width.

A k-pebble forest cover for a graph $G=(V, \frown)$ is a forest cover (V, \leq) together with a pebbling function $p: V \rightarrow \mathbf{k}$ such that, if $v \frown v^{\prime}$ with $v \leq v^{\prime}$, then for all $w \in\left(v, v^{\prime}\right], p(v) \neq p(w)$.

Tree-width and pebbling

We shall now give an alternative formulation of tree-width which will provide a useful bridge to the coalgebraic characterization.

It is also interesting in its own right: it clarifies the relationship between tree-width and tree-depth, and shows how pebbling arises naturally in connection with tree-width.

A k-pebble forest cover for a graph $G=(V, \frown)$ is a forest cover (V, \leq) together with a pebbling function $p: V \rightarrow \mathbf{k}$ such that, if $v \frown v^{\prime}$ with $v \leq v^{\prime}$, then for all $w \in\left(v, v^{\prime}\right], p(v) \neq p(w)$.

Theorem

Let G be a finite graph. The following are equivalent:
(1) G has a tree decomposition of width $<k$.
(2) G has a k-pebble forest cover.

Treewidth as coalgebra number

Treewidth as coalgebra number

Theorem

Let \mathcal{A} be a finite σ-structure. There is a bijective correspondence between:
(1) \mathbb{P}_{k}-coalgebras $\alpha: \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}$
(2) k-pebble forest covers of $\mathcal{G}(\mathcal{A})$.

Treewidth as coalgebra number

Theorem

Let \mathcal{A} be a finite σ-structure. There is a bijective correspondence between:
(1) \mathbb{P}_{k}-coalgebras $\alpha: \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}$
(2) k-pebble forest covers of $\mathcal{G}(\mathcal{A})$.

We write $\kappa^{\mathbb{P}}(\mathcal{A})$ for the coalgebra number of \mathcal{A} with respect to the the pebbling comonad.

Treewidth as coalgebra number

Theorem

Let \mathcal{A} be a finite σ-structure. There is a bijective correspondence between:
(1) \mathbb{P}_{k}-coalgebras $\alpha: \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}$
(2) k-pebble forest covers of $\mathcal{G}(\mathcal{A})$.

We write $\kappa^{\mathbb{P}}(\mathcal{A})$ for the coalgebra number of \mathcal{A} with respect to the the pebbling comonad.

Theorem

For all finite structures $\mathcal{A}: \operatorname{tw}(\mathcal{A})=\kappa^{\mathbb{P}}(\mathcal{A})-1$.

Indexed and graded structure

Indexed and graded structure

Our comonads $\mathbb{E}_{k}, \mathbb{P}_{k}, \mathbb{M}_{k}$ are not merely discretely indexed by the resource parameter. In each case, there is a functor $\left(\mathbb{Z}^{+}, \leq\right) \rightarrow \operatorname{Comon}(\mathcal{R}(\sigma))$.

Indexed and graded structure

Our comonads $\mathbb{E}_{k}, \mathbb{P}_{k}, \mathbb{M}_{k}$ are not merely discretely indexed by the resource parameter. In each case, there is a functor $\left(\mathbb{Z}^{+}, \leq\right) \rightarrow \operatorname{Comon}(\mathcal{R}(\sigma))$.

Thus if $k \leq I$ there is a natural transformation with components

$$
i_{A}^{k, l}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathbb{E}_{l} \mathcal{A}
$$

which preserves the counit and comultiplication; and similarly for the other comonads.

Indexed and graded structure

Our comonads $\mathbb{E}_{k}, \mathbb{P}_{k}, \mathbb{M}_{k}$ are not merely discretely indexed by the resource parameter. In each case, there is a functor $\left(\mathbb{Z}^{+}, \leq\right) \rightarrow \operatorname{Comon}(\mathcal{R}(\sigma))$.

Thus if $k \leq I$ there is a natural transformation with components

$$
i_{A}^{k, l}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathbb{E}_{l} \mathcal{A}
$$

which preserves the counit and comultiplication; and similarly for the other comonads.

Concretely, this is just including the plays of up to k rounds in the plays of up to I rounds, $k \leq I$.

Indexed and graded structure

Our comonads $\mathbb{E}_{k}, \mathbb{P}_{k}, \mathbb{M}_{k}$ are not merely discretely indexed by the resource parameter. In each case, there is a functor $\left(\mathbb{Z}^{+}, \leq\right) \rightarrow \operatorname{Comon}(\mathcal{R}(\sigma))$.

Thus if $k \leq I$ there is a natural transformation with components

$$
i_{A}^{k, l}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathbb{E}_{l} \mathcal{A}
$$

which preserves the counit and comultiplication; and similarly for the other comonads.

Concretely, this is just including the plays of up to k rounds in the plays of up to I rounds, $k \leq I$.

We can also see our comonads as (trivially) graded, by viewing them as oplax monoidal functors

$$
\left(\mathbb{Z}^{+}, \leq, \min , 1\right) \rightarrow([\mathcal{C}, \mathcal{C}], \circ, I) .
$$

Given $k \leq l$, we have e.g. $\mathbb{E}_{k} \Rightarrow \mathbb{E}_{k} \mathbb{E}_{k} \Rightarrow \mathbb{E}_{k} \mathbb{E}_{l}$.

Indexed and graded structure

Our comonads $\mathbb{E}_{k}, \mathbb{P}_{k}, \mathbb{M}_{k}$ are not merely discretely indexed by the resource parameter. In each case, there is a functor $\left(\mathbb{Z}^{+}, \leq\right) \rightarrow \operatorname{Comon}(\mathcal{R}(\sigma))$.

Thus if $k \leq I$ there is a natural transformation with components

$$
i_{A}^{k, l}: \mathbb{E}_{k} \mathcal{A} \rightarrow \mathbb{E}_{l} \mathcal{A}
$$

which preserves the counit and comultiplication; and similarly for the other comonads.

Concretely, this is just including the plays of up to k rounds in the plays of up to I rounds, $k \leq I$.

We can also see our comonads as (trivially) graded, by viewing them as oplax monoidal functors

$$
\left(\mathbb{Z}^{+}, \leq, \min , 1\right) \rightarrow([\mathcal{C}, \mathcal{C}], \circ, I) .
$$

Given $k \leq l$, we have e.g. $\mathbb{E}_{k} \Rightarrow \mathbb{E}_{k} \mathbb{E}_{k} \Rightarrow \mathbb{E}_{k} \mathbb{E}_{l}$.
The question is whether there are more interesting graded structures which arise naturally in considering richer logical and computational settings.

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.
However, there is an elegant means of passing to infinite levels. We shall illustrate this with the modal comonad.

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.
However, there is an elegant means of passing to infinite levels. We shall illustrate this with the modal comonad.

Using the inclusion morphisms described in the previous discussion of indexed structure, for each structure \mathcal{A} we have a diagram

$$
\mathbb{M}_{1} \mathcal{A} \rightarrow \mathbb{M}_{2} \mathcal{A} \rightarrow \cdots \rightarrow \mathbb{M}_{k} \mathcal{A} \rightarrow \cdots
$$

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.
However, there is an elegant means of passing to infinite levels. We shall illustrate this with the modal comonad.

Using the inclusion morphisms described in the previous discussion of indexed structure, for each structure \mathcal{A} we have a diagram

$$
\mathbb{M}_{1} \mathcal{A} \rightarrow \mathbb{M}_{2} \mathcal{A} \rightarrow \cdots \rightarrow \mathbb{M}_{k} \mathcal{A} \rightarrow \cdots
$$

By taking the colimits of these diagrams, we obtain a comonad \mathbb{M}_{ω}, which corresponds to the usual unfolding of a Kripke structure to all finite levels.

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.
However, there is an elegant means of passing to infinite levels. We shall illustrate this with the modal comonad.

Using the inclusion morphisms described in the previous discussion of indexed structure, for each structure \mathcal{A} we have a diagram

$$
\mathbb{M}_{1} \mathcal{A} \rightarrow \mathbb{M}_{2} \mathcal{A} \rightarrow \cdots \rightarrow \mathbb{M}_{k} \mathcal{A} \rightarrow \cdots
$$

By taking the colimits of these diagrams, we obtain a comonad \mathbb{M}_{ω}, which corresponds to the usual unfolding of a Kripke structure to all finite levels.

This will correspond to the bisimulation approximant \sim_{ω}, which coincides with bisimulation itself on image-finite structures.

Colimits and infinite behaviour

We have dealt exclusively with finite resource levels.
However, there is an elegant means of passing to infinite levels. We shall illustrate this with the modal comonad.

Using the inclusion morphisms described in the previous discussion of indexed structure, for each structure \mathcal{A} we have a diagram

$$
\mathbb{M}_{1} \mathcal{A} \rightarrow \mathbb{M}_{2} \mathcal{A} \rightarrow \cdots \rightarrow \mathbb{M}_{k} \mathcal{A} \rightarrow \cdots
$$

By taking the colimits of these diagrams, we obtain a comonad \mathbb{M}_{ω}, which corresponds to the usual unfolding of a Kripke structure to all finite levels.

This will correspond to the bisimulation approximant \sim_{ω}, which coincides with bisimulation itself on image-finite structures.

Transfinite extensions are also possible. Similar constructions can be applied to the other comonads. This provides a basis for lifting the comonadic analysis to the level of infinite models.

Final Remarks

Final Remarks

- Our three comonadic constructions show a striking unity, but also some very interesting differences.

Final Remarks

- Our three comonadic constructions show a striking unity, but also some very interesting differences.
- Need to understand better what makes these constructions work, and what the scope of these ideas are.

Final Remarks

- Our three comonadic constructions show a striking unity, but also some very interesting differences.
- Need to understand better what makes these constructions work, and what the scope of these ideas are.
- Currently investigating the guarded fragment. Other natural candidates include existential second-order logic, and branching quantifiers and dependence logic.

Final Remarks

- Our three comonadic constructions show a striking unity, but also some very interesting differences.
- Need to understand better what makes these constructions work, and what the scope of these ideas are.
- Currently investigating the guarded fragment. Other natural candidates include existential second-order logic, and branching quantifiers and dependence logic.
- Wider horizons: can we connect with significant meta-algorithms, such as decision procedures for guarded logics based on the tree model property, or algorithmic metatheorems such as Courcelle's theorem?

Final Remarks

- Our three comonadic constructions show a striking unity, but also some very interesting differences.
- Need to understand better what makes these constructions work, and what the scope of these ideas are.
- Currently investigating the guarded fragment. Other natural candidates include existential second-order logic, and branching quantifiers and dependence logic.
- Wider horizons: can we connect with significant meta-algorithms, such as decision procedures for guarded logics based on the tree model property, or algorithmic metatheorems such as Courcelle's theorem?
- The wider issue: can we get Structure and Power to work with each other to address genuinely deep questions?

Envoi

Envoi

Let's not forget to dream!

