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The usual way to prove that some objects are contained in a coinductive
predicate or are related by a coinductive relation, is to establish an invariant.
Suppose Φ : L→ L is a monotone function on a lattice and Φ that has a greatest
�xed point νΦ. One proves that the coinductive predicate νΦ holds for x ∈ L
by establishing a y ∈ L with x ≤ y ≤ Φ(y). This approach does, however,
not �t common practice, as one usually incrementally constructs the invariant
y, rather than guessing it, while following the necessary proof steps. Such an
incremental construction leads to a recursive proof methodology. We will focus
on here on recursive proofs, in which recursion is controlled by using the so-
called later modality [4]. This allows checking of recursive proofs on a per-rule
basis and gives a per-rule soundness proof. Birkedal et al. [3] have studied the
later modality for ωop-chains in the category Set of sets. Since Set provides a
very rich setting for higher-order logic, one can encode most propositions and
proofs in that category. However, syntactic presentations get lost this way and
quantitative reasoning is not available there. Thus, we aim to extend an arbitrary
(syntactic) logic with a later modality, independently of the presentation of the
logic. In fact, the syntactic �rst-order logic given by the author in [2] to reason
about program equivalences is an instance of such an extension.

In this talk, we will develop recursive proofs for a general �rst-order logic,
given in form of a �bration. This way, we obtain recursive proofs for coinductive
predicates in as diverse settings as set-based predicates, quantitative predicates,
syntactic �rst-order logic, and dependent type theory. Fibrations provide a good
basis, since they allow us to deal abstractly with formulas that contain typed
variables. More precisely, let p : E→ B be functor. For I ∈ B, we let EI be the
�bre (category) above I that has objects X ∈ E with p(X) = I and morphisms
f : X → Y that ful�l p(f) = idI . A (cloven) �bration is a functor p : E → B,
such that for every morphism u : I → J in B there is a reindexing functor
u∗ : EJ → EI with isomorphisms id∗I

∼= IdEI
and u ◦ v∗ ∼= v∗ ◦u∗ that ful�l

certain coherence conditions. To implement recursion, we will require that p is a
�bred Cartesian closed category (�bred CCCs), which means that every �bre EI
has �nite products and exponential objects that are preserved by reindexing.

In our study of the later modality, we proceed as follows. Given a category
B, an ωop-chain in B is a functor c : ωop → B, and we denote by B the func-
tor category [ωop,B] that has chains as objects and natural transformations
as morphisms. We show how to obtain from a �bration p : E → B a �bra-
tion p : E → B of ωop-chains. In this �bration, we can de�ne for each chain
c : ωop → B the later modality as a �bred functor I : Ec → Ec and its unit
next : Id ⇒ I. That this functor is �bred intuitively means that substitutions



distribute over the later modality via substσ : u
∗(Iσ) ∼= I(u∗ σ). The functor

I also preserves �bred (�nite) products. To be able to express and solve �xed
point equations we need exponential objects, because for an ωop-chain σ in E,
the solutions of contractive �xed point equations on σ are given by a morphism
löbσ : σ

Iσ → σ, cf. [3]. Thus, in the next step we show that the �bration p is a
�bred CCC and that the morphism löbσ exists for each σ, that löb is dinatural
in σ and that it can be used to solve contractive equations. These constructions
are summed up in the rules below, where we leave standard category theoretical
constructions and all equations out.

f : τ → σ

I f : I τ → Iσ

f : τ → Iσ ×I δ

ι−1 ◦ f : τ → I(σ × δ)
f : τ → I(u∗ σ)

subst−1
σ ◦ f : τ → u∗(Iσ)

f : τ → σ

nextσ ◦ f : τ → Iσ

f : τ ×Iσ → σ

löbσ ◦ λf : τ → σ

Above, we described the later modality and solutions to �xed point equations
in general. The reason for introducing all this machinery is to be able to construct
morphisms into coinductive predicates. Let X ∈ B, we denote by EX the �bre
above the constant chain KX . A coinductive predicate is a �nal coalgebra νΦ for

a functor Φ : EX → EX . If νΦ can be constructed as limit of the ωop-chain
←−
Φ ,

then morphisms ψ → νΦ in EX are equivalently given by morphisms Kψ →
←−
Φ

in EX . Moreover, if we write Φ for the point-wise application of Φ, then we

have
←−
Φ = I

(
Φ
←−
Φ
)
. Finally, given a functor T : EX → EX , we say that T is Φ-

compatible if there is a natural transformation ρ : TΦ⇒ ΦT . For a compatible T ,

it is easy to construct a morphism ←−ρ : T
(←−
Φ
)
→
←−
Φ. Putting all of this together,

we obtain the following rules.

Kψ→
←−
Φ

ψ→ νΦ

f : τ → I
(
Φ
←−
Φ
)

f : τ →
←−
Φ

f : τ → T
←−
Φ ρ : TΦ⇒ ΦT (T compatible)

←−ρ ◦ f : τ →
←−
Φ

In the talk, I will explain all the above, the lifting of quanti�ers to p : E→ B,
and give some illustrative examples. Further details can be found in [1].
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