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Abstract

We highlight a new and surprising connection between two very distinct notions of ‘causality’ that
appear in the literature: the notion of causality coming from special relativity, which forbids the flow of
information faster than the speed of light (a property also known as ‘non-signalling’), and a coalgebraic
notion of causality, which studies functions on streams (or generalisations thereof) whose output at a given
time step can only depend on inputs from the past. Both of these notions deserve to be referred to as
‘causality’, as they explicitly require that information flows from past to future, and not vice-versa. We
show that both the relativistic and coalgebraic notions of causality arise as instances of a single concept
called ‘one-way signalling’, which can be defined in any symmetric monoidal category equipped with
chosen “discarding” maps.

In particularly well-behaved categories, it is furthermore the case that one-way signalling processes
factorise in such a way that the flow of information from past to future becomes explicit. We show that this
factorisation instantiates to two well-known constructions in totally different fields: the semi-localisation
of a bipartite quantum channel and the construction of a Mealy machine from a causal function using
stream derivatives.

In [3], Kissinger and Uijlen introduced the notion of a precausal category, which is intended to be a
category with just enough structure to make meaningful, logical statements about the causal relationships
between systems interacting in space and time. Precausal categories are symmetric monoidal categories
with some additional structure, including chosen discarding morphisms d4 : A — I for each system A
(where [ is the monoidal unit). These enable one to single out the so-called causal processes, which are
morphisms f : A — B satisfying dg o f = d 4. As is common in monoidal categories, we switch to string
diagram notatation [5], where this equation becomes:

= P ()

Note we draw inputs on the bottom and outputs on the top, and use the ‘ground’ symbol from electical
circuits to represent discarding. This equation captures the intuition that, if we disregard the output of a
process, then it doesn’t matter which process occurred. Or, put another way, the only influence f has is on
its output. This can be seen as f having no ‘back action” or being ‘side-effect free’.

We can also make finer-grained statements about the causal relationships between inputs and outputs
of a process. For instance, consider a black box which takes an input A and produces an output A’, then
later takes an input B and produces an output B’. Then it should be case that the input B can only affect
the output B’. Hence, if we discard B/, the output of the overall black-box process f : A® B — A’ ® B’ no
longer depends on B. That is:

3 f' causal.
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This is stronger than equation (1), since we no longer have to discard all of the outputs of f to discard
some of the inputs. Since it only allows data (i.e. a ‘signal’) to pass from the (A, A’) pair to the (B, B’),
and not vice-versa, such processes are called one-way signalling [3]. If (2) and its symmetric equation—
interchanging the roles of (A, A’) and (B, B')—are satisfied, such a process is called non-signalling. The
latter have been studied extensively in the foundations of physics, as they model precisly the situation of
two distant observers, Alice (A, A’) and Bob (B, B') who are so far apart, they cannot communication due
to the ‘speed limit" imposed by special relativity (i.e. no information can be transmitted faster than the
speed of light).
Another way in which we can say the pair (A, A’) is in the past of (B, B) is via a factorisation of f:

3 g, h causal. 3)

That is, rather than making an external constraint on f, we can require that f has some internal structure.
Namely, first a process g happens, which produces a the first output, and possibly some ‘hidden” memory
X, which feeds into & to produce the second output.

In any symmetric monoidal category with discarding, (3) = (2), simply by discarding the output of 1
and applying equation (1). However, the converse is the interesting direction. Given a process that satisfies
(2), there is no way a priori to construct processes ¢ and i which explicitly witness the flow of information
from (A, A’) to (B, B'). In [3], the authors showed that any precausal category satisifies (2) = (3).

As an example coming from physics, we can fix our category to be CPM, the category whose objects are
complex vector spaces of the form £(H) := homvect(H, H) and whose morphisms are completely positive
maps @ : L(H) — L(K). Then morphisms satisfying (1) are the trace-preserving completely-positive maps,
also known as quantum channels, which are the central object of study in quantum information theory. In [2],
Eggeling et al showed that, for any quantum channel satisfying (2), one can construct a decomposition (3)
using a technique which relies on the essential uniqueness of purification for quantum channels. They call
a channel with decomposition (3) semi-localisable. The fact that any one-way signalling quantum channel is
semi-localisable plays an important role e.g. in the study of quantum causal networks [1].

Now, if we fix our category to Set, we can consider maps on streams f : A“ — B“. For any n, we can
employ the canonical isomorphisms AY = A" x A“ and B¥ = B" x B“ to consider f as a function with
two inputs and two outputs, i.e. f : A" x AY — B" x BY.

Since Set is cartesian, the only choice for discarding is the terminal map. Hence ids» X d g« is just the
projection onto the first # elements of a stream s — s|,. From this, equation (2) to f yields:

3f + A" — B"Vs € AY.f(s)|n = f'(s]n)

Since this holds for all n, this exactly recovers the definition of a causal function on streams.

We could similarly consider functions f which factor as in (3) for all n, but we can say this more com-
pactly with an equivalent, co-inductive definition. Say f : A x AY — B x B% is w-semi-localisable if it
factorises as in (3) and for all x € X, h(x, —) : A — B“ is furthermore w-semi-localisable.

Again, it is immediately clear that (3) = (2), but the converse (using the coinductive version of (3)
given above) is saying something non-trivial about causal functions. Namely: it says that the set of all
causal functions C[A%, B“] is the final coalgebra for the Mealy machine functor M(—) = (B x —)%.

The coalgebra structure map ¢ : C[A“, B¥] — (B x C[A¥,B¥])A = BA x C[A¥, B¥] gives us all of the
data we need to construct decomposition (3) from a causal function f. For ¢(f) = (¢, '), we let X := A,
g(a) := (¢'(a),a) and h(a,b) := K (a)(b). Intuitively, this decomposes f into its action g’ at a single time
step and a family of causal functions {/’(a)|a € A} which continue acting like f starting at time step 2,
given an a was input before. Furthermore, as long as A is a non-empty set, this map can be built explicitly
using restriction, concatenation, and derivatives of streams. This is precisely the canonical construction of
a Mealy machine from stream derivatives done e.g. in [4].
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