
Recursive Proofs for Coinductive Predicates in
Fibrations

Henning Basold

CMCS 2018
14 April 2018, Thessaloniki



A Motivational Example



Original Motivation

• Syntactic logic for program equivalence in my thesis

• Recursive proof system based on later modality

• Many of the constructions are pedestrian

• Need for an abstract framework



Original Motivation

• Syntactic logic for program equivalence in my thesis

• Recursive proof system based on later modality

• Many of the constructions are pedestrian

• Need for an abstract framework



Stream Differential Equations

Constant Streams

aω : Rω aω0 = a (aω)′ = aω

Point-wise Stream Addition

⊕ : Rω → Rω → Rω

(s⊕ t)0 = s0 + t0

(s⊕ t)′ = s′ ⊕ t′

Stream of Positive Numbers

s : Rω s0 = 1 s′ = 1ω ⊕ s



Point-wise Positive Streams

Predicate Transformer

Φ(P ⊆ Rω) = {s ∈ Rω | s0 > 0 ∧ s′ ∈ P}

• Φ monotone

• Greatest fixed point νΦ exists

• s ∈ νΦ iff s is point-wise greater than 0



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

ϕ := s ∈ νΦ

∆,Iϕ ` ϕ
(Löb)

∆ ` ϕ



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

∆ ` I(s ∈ Φ(νΦ))
(Step)

∆ ` s ∈ νΦ

Φ(P ) = {s ∈ Rω | s0 > 0 ∧ s′ ∈ P}



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

∆ ` Iϕ ∧Iψ
(I preserves ∧)

∆ ` I(ϕ ∧ ψ)



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

∆ ` ϕ
(Next)

∆ ` Iϕ



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

s : Rω s0 = 1 s′ = 1ω ⊕ s



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

C compatible ∆ ` t ∈ C(νΦ)
(C compatible)

∆ ` t ∈ νΦ

C(P ⊆ Rω) = {1ω ⊕ s | s ∈ P}



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

C compatible ∆ ` t ∈ C(νΦ)
(C compatible)

∆ ` t ∈ νΦ

C(P ⊆ Rω) = {1ω ⊕ s | s ∈ P}



Positive Numbers are Greater Than 0

` 1 > 0(Def. of s) ` s0 > 0
(Next)

` I(s0 > 0)

Iϕ ` Iϕ
(Pr)

Iϕ ` I(s ∈ νΦ)
(Def. C)

Iϕ ` I(1ω ⊕ s ∈ C(νΦ))
(C compat.)

Iϕ ` I(1ω ⊕ s ∈ νΦ)
(Def. of s)

Iϕ ` I(s′ ∈ νΦ)
(I preserves ∧)

Iϕ ` I(s0 > 0 ∧ s′ ∈ νΦ)
(Step)

Iϕ ` s ∈ νΦ
(Löb)` s ∈ νΦ

Inference Rule

ϕ ∈ ∆
(Pr)

∆ ` ϕ



Setup



Fibrations

• Fibrations provide abstraction of first-order logic

• B — Category of typed contexts and terms

• E — Category of formulas with variables typed in B

• p : E→ B — functor that assigns to a formula its context

Example

• Set-based predicates: Pred→ Set

• Quantitative predicates: qPred→ Set

• Syntactic logic over syntactic terms: L → C
• Set-indexed families (dependent types): Fam(C)→ Set



Fibrations

• Fibrations provide abstraction of first-order logic

• B — Category of typed contexts and terms

• E — Category of formulas with variables typed in B

• p : E→ B — functor that assigns to a formula its context

Example

• Set-based predicates: Pred→ Set

• Quantitative predicates: qPred→ Set

• Syntactic logic over syntactic terms: L → C
• Set-indexed families (dependent types): Fam(C)→ Set



Coinductive Predicates

Predicate lifting G of behaviour functor F

E E

B B

p

G

p

F

commutes and G preserves Cartesian morphisms.

Predicate transformer for coalgebra c : X → FX

Φ := c∗ ◦G : EX → EX

Coinductive predicate

Final coalgebra ξ : νΦ→ Φ(νΦ) for Φ



ωop-Diagrams in Fibrations
Category of Descending Chains

C = [ωop,C] = “category of functors ωop → C”

Constant-Index Chains

EX := EKX
∼= EX

If σ ∈ EX , then p(σn) = p(σ)n = (KX)n = X.

The final chain
←−
Φ ∈ EX

←−
Φ := 1 Φ(1) Φ2(1) Φ3(1)! Φ(!) Φ2(!) ···

If Φ preserves ωop-limits, then maps A→ νΦ in EX can be given

by maps KA →
←−
Φ in EX .



ωop-Diagrams in Fibrations
Category of Descending Chains

C = [ωop,C] = “category of functors ωop → C”

Constant-Index Chains

EX := EKX
∼= EX

If σ ∈ EX , then p(σn) = p(σ)n = (KX)n = X.

The final chain
←−
Φ ∈ EX

←−
Φ := 1 Φ(1) Φ2(1) Φ3(1)! Φ(!) Φ2(!) ···

If Φ preserves ωop-limits, then maps A→ νΦ in EX can be given

by maps KA →
←−
Φ in EX .



Later Modality

Theorem

For each c ∈ B, there is a fibred functor Ic : Ec → Ec.

• Ic preserves fibred finite products

• Ic preserves all fibred limits if p is a bifibration

• there is a natural transformation nextc : Id⇒ Ic

Associated proof rules

f : τ → (Ic σ)× (Ic σ′)

f̌ : τ → Ic(σ × σ′)
f : τ → σ

nextc ◦ f : τ → Ic σ



Later Modality

Theorem

For each c ∈ B, there is a fibred functor Ic : Ec → Ec.

• Ic preserves fibred finite products

• Ic preserves all fibred limits if p is a bifibration

• there is a natural transformation nextc : Id⇒ Ic

Associated proof rules

f : τ → (Ic σ)× (Ic σ′)

f̌ : τ → Ic(σ × σ′)
f : τ → σ

nextc ◦ f : τ → Ic σ



The Löb Rule

Theorem

If p : E→ B has fibred finite limits and exponents, then also
p : E→ B does.
Notation: σ, τ ∈ Ec =⇒ στ ∈ Ec.

Theorem

For every σ ∈ Ec there is a unique map in Ec, dinatural in σ,

löbcσ : σI
c σ → σ.

Associated proof rule

f : τ ×Ic σ → σ
(Löb)

löbcσ ◦ λf : τ → σ



The Löb Rule

Theorem

If p : E→ B has fibred finite limits and exponents, then also
p : E→ B does.
Notation: σ, τ ∈ Ec =⇒ στ ∈ Ec.

Theorem

For every σ ∈ Ec there is a unique map in Ec, dinatural in σ,

löbcσ : σI
c σ → σ.

Associated proof rule

f : τ ×Ic σ → σ
(Löb)

löbcσ ◦ λf : τ → σ



Steps on the Final Chain

Theorem
←−
Φ = I

(
Φ
←−
Φ
)
, where I := IKX .

Associated proof rule

f : τ → I
(

Φ
←−
Φ
)

(Step)
f : τ →

←−
Φ



Steps on the Final Chain

Theorem
←−
Φ = I

(
Φ
←−
Φ
)
, where I := IKX .

Associated proof rule

f : τ → I
(

Φ
←−
Φ
)

(Step)
f : τ →

←−
Φ



Up-To Techniques

Theorem

For T : EX → EX and ρ : TΦ⇒ ΦT , there is ←−ρ : T
←−
Φ →

←−
Φ.

Associated proof rule

f : τ → T
←−
Φ ρ : TΦ⇒ ΦT (T compatible)

←−ρ ◦ f : τ →
←−
Φ



Up-To Techniques

Theorem

For T : EX → EX and ρ : TΦ⇒ ΦT , there is ←−ρ : T
←−
Φ →

←−
Φ.

Associated proof rule

f : τ → T
←−
Φ ρ : TΦ⇒ ΦT (T compatible)

←−ρ ◦ f : τ →
←−
Φ



Further Details

• Preprint: ArXiv 1802.07143

• More detailed examples

• Treatment of quantifiers

• Discussion of related systems

• Publication with more examples etc. in preparation.



Thank you very much for your attention!



Diagrams are Fibred CCCs
Intuition from Kripke models

W,w � ϕ→ ψ ⇐⇒ ∀w ≤ v.W, v � ϕ implies W, v � ψ

Implication for sequences of formulas

Let {ϕn}n∈ωop and {ψn}n∈ωop be sequences of formulas. Define

(ψ ⇒ ϕ)n :=
∧
m≤n

ψm → ϕn,

General Exponentials

The exponential object of σ, τ ∈ Ec is given by the end

(τσ)(n) =

∫
m≤n

(
c(m ≤ n)∗ τ(m)

)c(m≤n)∗ σ(m)
.



Diagrams are Fibred CCCs
Intuition from Kripke models

W,w � ϕ→ ψ ⇐⇒ ∀w ≤ v.W, v � ϕ implies W, v � ψ

Implication for sequences of formulas

Let {ϕn}n∈ωop and {ψn}n∈ωop be sequences of formulas. Define

(ψ ⇒ ϕ)n :=
∧
m≤n

ψm → ϕn,

General Exponentials

The exponential object of σ, τ ∈ Ec is given by the end

(τσ)(n) =

∫
m≤n

(
c(m ≤ n)∗ τ(m)

)c(m≤n)∗ σ(m)
.



Diagrams are Fibred CCCs
Intuition from Kripke models

W,w � ϕ→ ψ ⇐⇒ ∀w ≤ v.W, v � ϕ implies W, v � ψ

Implication for sequences of formulas

Let {ϕn}n∈ωop and {ψn}n∈ωop be sequences of formulas. Define

(ψ ⇒ ϕ)n :=
∧
m≤n

ψm → ϕn,

General Exponentials

The exponential object of σ, τ ∈ Ec is given by the end

(τσ)(n) =

∫
m≤n

(
c(m ≤ n)∗ τ(m)

)c(m≤n)∗ σ(m)
.



Example: Quantitative Predicates
Category of quantitative predicates

qPred =


objects: (X, δ) with X ∈ Set and δ : X → [0, 1]

morphisms: f : (X, δ)→ (Y, γ) if f : X → Y in Set

and δ ≤ γ ◦ f

Reindexing along u : X → Y gives fibration qPred→ Set

u∗(Y, γ) =
(
X,λx. γ(u(x))

)
Products and Exponents

(δ × γ)(x) = min{δ(x), γ(x)}(
γδ
)

(x) =

{
1, δ(x) ≤ γ(x)

γ(x), otherwise



Example: Quantitative Predicates
Category of quantitative predicates

qPred =


objects: (X, δ) with X ∈ Set and δ : X → [0, 1]

morphisms: f : (X, δ)→ (Y, γ) if f : X → Y in Set

and δ ≤ γ ◦ f

Reindexing along u : X → Y gives fibration qPred→ Set

u∗(Y, γ) =
(
X,λx. γ(u(x))

)
Products and Exponents

(δ × γ)(x) = min{δ(x), γ(x)}(
γδ
)

(x) =

{
1, δ(x) ≤ γ(x)

γ(x), otherwise



Example: Quantitative Predicates
Category of quantitative predicates

qPred =


objects: (X, δ) with X ∈ Set and δ : X → [0, 1]

morphisms: f : (X, δ)→ (Y, γ) if f : X → Y in Set

and δ ≤ γ ◦ f

Reindexing along u : X → Y gives fibration qPred→ Set

u∗(Y, γ) =
(
X,λx. γ(u(x))

)
Products and Exponents

(δ × γ)(x) = min{δ(x), γ(x)}(
γδ
)

(x) =

{
1, δ(x) ≤ γ(x)

γ(x), otherwise



Recursive Logic



Greater-Than-0 Example
Example (Predicate lifting and coinductive predicate)

F : Set→ Set G : Pred→ Pred

F = R× Id G(X,P ) = (FX, {(a, x) | a > 0 ∧ x ∈ P})
Predicate transformer

Φ = 〈hd, tl〉∗ ◦G
Coinductive predicate

νΦ ⊆ Φ(νΦ)

Example (Notation)

Given a descending chain σ ∈ PredX , we define
` σ := 1X v σ (⇐⇒ there exists 1X → σ)

x ∈ σ := σK{x}

` s ∈
←−
Φ ⇐⇒ ∀n ∈ N. s ∈

←−
Φn

Thm⇐⇒ s ∈ νΦ ⇐⇒ s greater t. 0



Greater-Than-0 Example
Example (Predicate lifting and coinductive predicate)

F : Set→ Set G : Pred→ Pred

F = R× Id G(X,P ) = (FX, {(a, x) | a > 0 ∧ x ∈ P})
Predicate transformer

Φ = 〈hd, tl〉∗ ◦G
Coinductive predicate

νΦ ⊆ Φ(νΦ)

Example (Notation)

Given a descending chain σ ∈ PredX , we define
` σ := 1X v σ (⇐⇒ there exists 1X → σ)

x ∈ σ := σK{x}

` s ∈
←−
Φ ⇐⇒ ∀n ∈ N. s ∈

←−
Φn

Thm⇐⇒ s ∈ νΦ ⇐⇒ s greater t. 0



Later Modality
Theorem

For each c ∈ B, there is a fibred functor Ic : Ec → Ec given by

(Ic σ)0 = 1c0

(Ic σ)n+1 = c(n ≤ n+ 1)∗(σn).

• Ic preserves fibred finite products

• Ic preserves all fibred limits if p is a bifibration

• there is a natural transformation nextc : Id⇒ Ic

Associated proof rules

f : τ → (Ic σ)× (Ic σ′)

f̌ : τ → Ic(σ × σ′)
f : τ → σ

nextc ◦ f : τ → Ic σ



Later Modality
Theorem

For each c ∈ B, there is a fibred functor Ic : Ec → Ec given by

(Ic σ)0 = 1c0

(Ic σ)n+1 = c(n ≤ n+ 1)∗(σn).

• Ic preserves fibred finite products

• Ic preserves all fibred limits if p is a bifibration

• there is a natural transformation nextc : Id⇒ Ic

Associated proof rules

f : τ → (Ic σ)× (Ic σ′)

f̌ : τ → Ic(σ × σ′)
f : τ → σ

nextc ◦ f : τ → Ic σ



Quantifiers (Products & Coproducts)

Theorem

If for u : I → J in B the coproduct
∐
u : EI → EJ along u exists,

then the coproduct
∐
u : EI → EJ along u : KI → KJ is given by∐

u. Similarly, the product
∏
u along u is given by

∏
u.

Associated proof rule

Let π : I × J → I, and write W = π∗ for weakening
W : EI → EI×J and ∀J =

∏
π : EI×J → EI . Then

f : Wτ −→ σ

f̌ : τ −→ ∀J σ



Quantifiers (Products & Coproducts)

Theorem

If for u : I → J in B the coproduct
∐
u : EI → EJ along u exists,

then the coproduct
∐
u : EI → EJ along u : KI → KJ is given by∐

u. Similarly, the product
∏
u along u is given by

∏
u.

Associated proof rule

Let π : I × J → I, and write W = π∗ for weakening
W : EI → EI×J and ∀J =

∏
π : EI×J → EI . Then

f : Wτ −→ σ

f̌ : τ −→ ∀J σ



Conclusion



Related Systems

• Parameterised coinduction — only for lattices; works on fixed
points

• CIRC — cyclic proof system for coinductive predicates; hard
to understand and hand-crafted

• Cyclic proof systems — purely syntactic (??), hence have to
be hand-crafted; rely on global correctness conditions

• (Bisimulation) Games — also rely on global parity conditions;
proof steps in presented system can be seen as
challenge-response pairs

• Step-indexed relations – instance of this and the framework by
Birkedal et al.



Extensions and Future Directions

• Extend to larger ordinals; the CCC result is already general,
the results about the final chain need work:

(Iσ)α = lim
β<α

σβ

• Extend quantifiers to indexed predicates (requires a
complicated end construction, similarly to the construction of
exponents)

• Properly apply to motivating, syntactic example; possibly by
automatically extracting a syntactic logic

• What about inductive predicates and mixed
inductive-coinductive predicates?

• Can we construct other recursive proof systems in fibrations?
(Later with clocks, cyclic proof systems, . . . )


	A Motivational Example
	Setup
	Appendix
	Recursive Logic
	Conclusion

