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One of the most fundamental state-based structures considered in computer
science literature is a non-deterministic automaton. The class of finite languages
accepted by this type of machine with a finite state-space is known under the
name of regular languages. On the other hand, these systems have a natural
infinite semantics which is given in terms of infinite input satisfying the so-
called Büchi acceptance condition (or BAC in short). The condition takes into
account the terminal states of the automaton and requires them to be visited
infinitely often. It is a common practise to use the term Büchi automaton in
order to refer to an automaton whenever its infinite semantics is taken into
consideration. The class of infinite languages accepted by finite non-deterministic
Büchi automata can be characterized by Kleene theorem for ω-regular languages.
Roughly speaking, any such language can be represented in terms of regular
languages and the infinite iteration operator (−)ω. Although, the standard type
of input of a Büchi automaton is the set of infinite words over a given alphabet,
other types (e.g. trees) are also commonly studied and suitable variants of the
Kleene theorem hold. This begs the question of a unifying framework these
systems can be put in and reasoned about on a more abstract level so that the
analogues of Kleene theorems for (ω-)regular input are derived.

The aim of the talk is to present a framework as above for coalgebras with
internal moves1. The approach from [2] suggests that systems with silent steps
should be defined as coalgebras whose type is a monad. Although originally,
systems with internal moves were modelled as coalgebras X → T (FX+X) for a
monad T and an endofunctor F , such systems can be embedded into coalgebras
X → TF ∗X, where F ∗ is the free monad over F and TF ∗ itself carries a monadic
structure [2]. Unfortunately, the monad TF ∗ was only tailored to model finite
behaviour and is insufficient to cover infinite behaviour. Hence, in the first part
of the talk we focus on a description of a monad suitable for our purposes.

The construction of a suitable monad is based on an observation that if an
endofunctor F : C → C lifts to the Kleisli category for a monad T then the
monad T lifts to a monad T̂ : Alg(F ) → Alg(F ) on the category of F -algebras.
The same is true if we replace Alg(F ) with the category AlgB(F ) of Bloom
algebras [1]. The free objects in AlgB(F ) often exist and are combinations of the
free F -algebras and the final F -coalgebra [1]. Hence, the monad TF∞ that is
suitable to model (in)finite behaviour of systems is defined by composing the

1
A coalgebraic framework for Büchi automata has been recently developed [3], but it does not take
invisible moves into the account and does not reason about (ω-)regular input
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adjunctions C
//

⊥ AlgB(F )oo
//

⊥ Kl(T̂B)oo
2. For T = P and F = Σ ×Id we obtain

TF∞ = P(Σ∗ × Id+Σω).
In the second part of the talk we present a categorical framework to reason

about infinite behaviour with BAC. Any non-deterministic (Büchi) automaton
without an initial state can be modelled as a pair (α : X → P(Σ ×X),F ⊆ X),
where F is the set of terminal states. We can extend the codomain of α and
consider this map as α : X → P(Σ∗ × X + Σω) (i.e. an endomorphism in
the Kleisli category for our monad). Similarily, F is uniquely determined by
fF : X → P(Σ∗ × X + Σω);x 7→ if x ∈ F then {(ε, x)} else ∅. This means
that any such automaton is determined by the pair (α, fF) of endomorphisms in
the Kleisli category for the above monad. This category is ordered by a complete
order, is left distributive and, hence, the following fixpoint operators are well
defined: α∗ = µx.id ∨ x · α : X → X and βω = νx.x · β : X → 0 for β : X → X.
It can be proven that the map ||(α,F)|| : X → P(Σω) (i.e. ||(α,F)|| : X → 0 in
the Kleisli category) which assigns to any state x ∈ X the infinite language with
BAC it accepts is given by ||(α,F)|| = (fF·α∗)ω. This suggests a general definition
of the infinite behaviour with BAC for an arbitrary pair of endomorphisms (α, f)
in the Kleisli category for TF∞, where (−)∗ and (−)ω are well defined.

Now, for any natural numbers m,n = 0, 1, . . . put [m] = {1, . . . ,m} and
define Reg(m,n) to be the set of morphisms of the form j · fF · α∗ · i, where
i : [m]→ [k] and j : [k]→ [n] are Set-maps, F ⊆ [k] and α : [k]→ T (F [k] + [k]).
Finally, put ωReg to include maps (fF · α∗)ω · i for a Set map i : [1] → [k] and
α : [k] → T (F [k] + [k]) with F ⊆ [k]. It can be shown that for T = P and
F = Σ × Id, the set Reg(1, 1) and ωReg are exactly the sets of regular and
ω-regular languages respectively in the classical sense. Although it was sufficient
for non-deterministic Büchi automata to express behaviours from ωReg in terms
of Reg(1, 1) and (−)ω it is not enough in general. Hence, we have to consider
behaviours from Reg(m,n) in order to state the coalgebraic Kleene theorem for
ω-regular input. We discuss the conditions under which the following holds.

Theorem 1 (Kleene theorem for (ω-)regular behaviour). Reg forms an
ordered Lawvere theory which is closed under finite joins, (−)∗ and it is the
smallest subtheory of the Lawvere theory associated with the monad TF∞ that
contains all α : [k] → T (F [k] + [k]) and is closed under finite joins and (−)∗.
Moreover, ωReg = {[r1, . . . , rn]ω · r | r, ri ∈ Reg(1, n)}.
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Here, T̂B denotes a lifting of T to the category of AlgB(F ) Bloom F -algebras
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