A coalgebraic take on regular and ω -regular behaviour for systems with internal moves

Tomasz Brengos

Warsaw University of Technology, Poland

CMCS 2018, April 2018

 $\begin{array}{c} \mbox{Coalgebraic modelling}\\ \mbox{General monad construction}\\ \mbox{Regular and } \omega\mbox{-regular behaviour} \end{array}$

Fransition systems with silent moves

Goal of the talk

Our goal

Put infinite behaviour with Büchi acceptance condition into a coalgebraic framework...

 $\begin{array}{c} \mbox{Coalgebraic modelling}\\ \mbox{General monad construction}\\ \mbox{Regular and } \omega\mbox{-regular behaviour} \end{array}$

Fransition systems with silent moves

Goal of the talk

Put infinite behaviour with Büchi acceptance condition into a coalgebraic framework...

Wait...

Our goal

So... we are doing the same as Urabe, Shimizu, Hasuo (CONCUR'16).

Yes, but in a different manner!

 $\begin{array}{c} \textbf{Coalgebraic modelling}\\ \textbf{General monad construction}\\ \textbf{Regular and } \omega\text{-regular behaviour} \end{array}$

Transition systems with silent moves

Our primary interest

Kleene th. for regular langauges

The set of regular languages for *NA* is closed under \cup , \cdot , \emptyset , $\{\varepsilon\}$ and $(-)^*$. Moreover, it is the smallest set of languages which contains $\{a\}$ and is closed under these operations.

Kleene th. for ω -regular languages

The ω -regular languages for Büchi automata (=*NA*) are of the form

$$\bigcup_{i=1}^{\omega} R_i^{\omega} \cdot L_i \text{ for regular languages } R_i, L_i$$

Contents

Transition systems with silent moves

Büchi automata and their behaviour Transition systems with silent moves

2 General monad construction

3) Regular and ω -regular behaviour

- Classical non-deterministic (Büchi) automat
- Tree automata
- Kleene theorems for (T, F)-automata

Non-deterministic automata with ε -transitions

Definition

An ε -NA is a tuple $(X, \Sigma_{\varepsilon}, \rightarrow, \mathfrak{F})$, where X is a set of *states*, Σ is a finite set *alphabet letters* and $\rightarrow \subseteq X \times \Sigma_{\varepsilon} \times X$ and $\mathfrak{F} \subseteq X$ is the set of *terminal states*.

Any $\varepsilon - NA$ can be viewed as a *coalgebra*, i.e. a map:

$$\alpha': X \to \mathcal{P}(\Sigma_{\varepsilon} \times X + 1);$$

where $1 = \{\checkmark\}$. However

Note

We can also view it as a pair (α, \mathfrak{F}) , where

$$\alpha: X \to \mathcal{P}(\Sigma_{\varepsilon} \times X).$$

From our previous work...

Any $\alpha: X \to \mathcal{P}(\Sigma_{\varepsilon} \times X)$ is a labelled transition system with ε -moves. Other known systems with internal moves:

- Segala systems,
- fully probabilistic systems,
- ...

Systems with internal moves

Coalgebras over a monad $X \rightarrow TX$

Endomorphisms in the Kleisli category for T

 $\begin{array}{c} \mbox{Coalgebraic modelling}\\ \mbox{General monad construction}\\ \mbox{Regular and } \omega\mbox{-regular behaviour} \end{array}$

Transition systems with silent moves

What to do with LTS?

Strategy 1

Introduce a monad structure on $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$

Strategy 2

Embed the functor $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$ into $\mathcal{P}(\Sigma^* \times \mathcal{I}d)$ which is a monad.

What to do with LTS?

Strategy 1

Introduce a monad structure on $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$

Strategy 2

Embed the functor $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$ into $\mathcal{P}(\Sigma^* \times \mathcal{I}d)$ which is a monad.

Strategy 3

Embed the functor $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$ into $\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega})$ which is a monad: For $f: X \to \mathcal{P}(\Sigma^* \times Y + \Sigma^{\omega})$ and $g: Y \to \mathcal{P}(\Sigma^* \times Z + \Sigma^{\omega})$ the map $g \cdot f: X \to \mathcal{P}(\Sigma^* \times Z + \Sigma^{\omega})$ is: $x \xrightarrow{\sigma}_{g \cdot f} z \iff \exists y \text{ s.t. } x \xrightarrow{\sigma_1} y \text{ and } y \xrightarrow{\sigma_2} z, \text{ where } \sigma = \sigma_1 \sigma_2 \in \Sigma^*, x \downarrow_{g \cdot f} v \iff x \downarrow_f v \text{ or } x \xrightarrow{\sigma}_f y, y \downarrow_g v' \text{ and } v = \sigma v' \in \Sigma^{\omega}.$

Transition systems with silent moves

Let's use the last strategy

$$\frac{\frac{\alpha: X \to \mathcal{P}(\Sigma_{\varepsilon} \times X)}{\alpha: X \to \mathcal{P}(\Sigma^* \times X + \Sigma^{\omega})}}{\alpha: X \to X \text{ is an endo in } \mathcal{K}I(\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega}))}$$

Interesting observation

Any subset $\mathfrak{F} \subseteq X$ may be encoded as an endomorphism in $\mathcal{K}l(\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega}))$:

$$\mathfrak{f}_{\mathfrak{F}}: X \to \mathcal{P}(\Sigma_{\varepsilon} \times X); x \mapsto \begin{cases} \{(\varepsilon, x)\} & \text{ if } x \in \mathfrak{F}, \\ \varnothing & \text{ otherwise.} \end{cases}$$

Non-deterministic automata as a pair of endomorphisms

Observation 2

Any non-deterministic automaton can be viewed as a pair of endomorphisms in the Kleisli of $\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega})$:

 $(\alpha, \mathfrak{f}_{\mathfrak{F}}).$

How do we derive (in)finite behaviour of $(\alpha, \mathfrak{f}_{\mathfrak{F}})$?

Basic properties of the Kleisli category

The Kleisli of $\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega})$ is:

- order enriched by $f \leq g \iff f(x) \subseteq g(x)$ for any $x \in X$,
- the ordering is complete,
- it is left distributive, i.e. $f \cdot (g \vee h) = f \cdot g \vee f \cdot h$.

This allows us to consider for any endo $\alpha : X \to X$ the maps $\alpha^* : X \to X$ and $\alpha^{\omega} : X \to 0$:

$$\alpha^* = \mu x.(\mathsf{id} \lor x \cdot \alpha) \text{ and } \alpha^\omega = \nu x.x \cdot \alpha.$$

Finite behaviour

Finite behaviour of $(\alpha, \mathfrak{f}_{\mathfrak{F}})$

$$! \cdot \mathfrak{f}_{\mathfrak{F}} \cdot \alpha^* = X \xrightarrow{\alpha^*} X \xrightarrow{\mathfrak{f}_{\mathfrak{F}}} X \xrightarrow{!} 1$$
 in Klesli

Explanation

$$x \stackrel{\alpha^*}{\mapsto} \{ (a_1 a_2 \dots a_n, y) \mid x \stackrel{a_1}{\to} x_1 \dots x_{n-1} \stackrel{a_n}{\to} x_n = y \} \cup \{ (\varepsilon, x) \}$$

$$\begin{array}{l} x \stackrel{\mathfrak{f} \cdot \alpha^*}{\mapsto} \{ (a_1 a_2 \dots a_n, y) \mid x \stackrel{a_1}{\to} x_1 \dots x_{n-1} \stackrel{a_n}{\to} x_n = y \text{ and } y \in \mathfrak{F} \} \cup \\ \{ (\varepsilon, x) \mid x \in \mathfrak{F} \}. \end{array}$$

 $x \stackrel{! \cdot \mathfrak{f} \cdot \alpha^*}{\mapsto} \{ (w, 1) \mid w \text{ is accepted by the automaton } (\alpha, \mathfrak{F}) \}.$

Side note

The same finite behaviour would be obtained in the Kleisli of $\mathcal{P}(\Sigma^* \times X)$.

Why should we bother with $\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega})$?

 $\begin{array}{c} \mbox{Coalgebraic modelling}\\ \mbox{General monad construction}\\ \mbox{Regular and } \omega\mbox{-regular behaviour} \end{array}$

Transition systems with silent moves

Infinite behaviour with BAC

Let (α,\mathfrak{F}) be an automaton without arepsilon-transitions. Then

Infinite behaviour of (α, \mathfrak{F}) with BAC

 $(\mathfrak{f}_\mathfrak{F}\cdot lpha^+)^\omega$ in Klesli

In the above

$$\alpha^* = \mu x. (\mathsf{id} \lor x \cdot \alpha), \quad \alpha^+ = \alpha^* \cdot \alpha \text{ and } \beta^\omega = \nu x. x \cdot \beta.$$

Explanation

For
$$\beta: X \to \mathcal{P}(\Sigma \times X)$$
 we have $\beta^{\omega}: X \to \mathcal{P}(\Sigma^{\omega})$:

$$\beta^{\omega}(x) = \{(a_1, a_2, \ldots) \mid x \stackrel{a_1}{\rightarrow} x_1 \stackrel{a_2}{\rightarrow} x_2 \ldots\}$$

Question 1.

We embedded $\mathcal{P}(\Sigma_{\varepsilon} \times \mathcal{I}d)$ into $\mathcal{P}(\Sigma^* \times \mathcal{I}d + \Sigma^{\omega})$.

Problem

Can we do the same with TF_{ε} for a monad T and $F_{\varepsilon} = F + Id$?

Goal

We want to embed TF_{ε} into TF^{∞} , where

 $F^{\infty} =$ the combination of free *F*-algebra and final coalgebra

and TF^{∞} carries a monadic structure.

Answer to Q1

Take $Alg_B(F)$ the category of Bloom algebras of type F.

Fact (Adámek, Haddadi, Milius, et al. 2014)

The free Bloom F-algebra is the combination of the free F-algebra and the final coalgebra.

We get a monad F^{∞} as the consequence of: $C \xleftarrow{\perp} Alg_B(F)$ What about TF^{∞} ?

Fact

If F lifts to $\mathcal{K}I(T)$ then the monad T lifts to a monad \overline{T}_B on $Alg_B(F)$.

$$\mathsf{C} \xrightarrow{\smile} \mathsf{Alg}_B(F) \xrightarrow{\supset} \mathcal{K}I(\overline{T}_B)$$

Examples...

$\mathsf{Ex}\ 1$

If
$$F = \Sigma \times Id$$
 and $T = P$ then the monad
 $TF^{\infty} = P(\Sigma^* \times Id + \Sigma^{\omega})$

Ex 2

If $F = \Sigma \times I d^2$ then $F^{\infty}X = T_{\Sigma}X$ is the monad of complete binary finite and infinite trees with nodes in Σ and finitely many leaves, all in X. Then $\mathcal{P}T_{\Sigma}(-)$ is the monad of subsets of such trees.

In general, for a pair (T = monad, F = functor) on Set we consider the monad TF^{∞} and define finite and infinite behaviour of (α, \mathfrak{F}) according to:

$$! \cdot \mathfrak{f}_{\mathfrak{F}} \cdot \alpha^* \text{ and } (\mathfrak{f}_{\mathfrak{F}} \cdot \alpha^+)^{\omega}.$$

Classical non-deterministic (Büchi) automat Tree automata Kleene theorems for (T, F)-automata

Contents

- Büchi automata and their behaviour
 Transition systems with silent moves
- 2 General monad construction
- 3 Regular and ω -regular behaviour
 - Classical non-deterministic (Büchi) automat
 - Tree automata
 - Kleene theorems for (T, F)-automata

Classical non-deterministic (Büchi) automat Tree automata Kleene theorems for (T, F)-automata

Question 2.

 $(-)^*$ and $(-)^{\omega}$ are operators on endomorphisms in Kleisli. How are they related to the classical operators on languages for finite automata?

Kleene th. for regular langauges

The set of regular languages for *NA* is closed under \cup , \cdot , \emptyset , $\{\varepsilon\}$ and $(-)^*$. Moreover, it is the smallest set of languages which contains $\{a\}$ and is closed under these operations.

Kleene th. for ω -regular languages

The ω -regular languages for Büchi automata (=*NA*) are of the form

$$\bigcup_{i=1} R_i^{\omega} \cdot L_i \text{ for regular languages } R_i, L_i$$

Classical non-deterministic (Büchi) automat **Tree automata** Kleene theorems for (T, F)-automata

Contents

- Büchi automata and their behaviour
 Transition systems with silent moves
- 2 General monad construction
- Regular and ω-regular behaviour
 Classical non-deterministic (Büchi) automat
 - Tree automata
 - Kleene theorems for (T, F)-automata

Classical non-deterministic (Büchi) automat **Tree automata** Kleene theorems for (T, F)-automata

What about tree automata?

Finite tree automata are: $(\alpha : [n] \to \mathcal{P}(\Sigma \times [n] \times [n]), \mathfrak{F} \subseteq [n])$, where $[n] = \{1, 2, ..., n\}$ is the state-space. Let (ω) \mathfrak{Reg} = the set of (in)finite tree languages accepted by finite tree automata. We have to introduce \mathfrak{Rat}_n .

Definition

 \mathfrak{Rat}_n is defined to be the smallest set of tree languages with variables in [n] such that it contains $\{\varepsilon\}$, $\{i\}$ for $i \in [n]$, is closed under \cup , and $T_1, \ldots, T_n \in \mathfrak{Rat}_m, T \in \mathfrak{Rat}_n$ we have:

$$[T_1,\ldots,T_n]\cdot T\in\mathfrak{Rat}_m$$
 and $T^{*,i}\in\mathfrak{Rat}_n.$

Classical Kleene th. for tree languages

$$\mathfrak{Reg} = \mathfrak{Rat}_1$$

$$\omega \mathfrak{Reg} = \{ [T_1, \ldots, T_n]^{\omega} \cdot T \mid T, T_i \in \mathfrak{Rat}_n \}.$$

 $\begin{array}{c} \mbox{Coalgebraic modelling}\\ \mbox{General monad construction}\\ \mbox{Regular and ω-regular behaviour \\ \mbox{Kleene theorems for (T, F)-automata} \\ \end{array}$

Contents

- Büchi automata and their behaviour
 Transition systems with silent moves
- 2 General monad construction

3 Regular and ω -regular behaviour

- Classical non-deterministic (Büchi) automat
- Tree automata
- Kleene theorems for (T, F)-automata

Classical non-deterministic (Büchi) automat Tree automata Kleene theorems for (T, F)-automata

The general picture

- **1** Start with a finite (T, F)-automaton $(\alpha : X \to TFX, \mathfrak{F} \subseteq X)$,
- Consider the monad *TF*[∞] and look at (α, 𝔅) as a pair of endomorphisms (α, 𝔅) in the Kleisli for *TF*[∞],
- **o** define finite and infinite behaviour with BAC:

$$! \cdot \mathfrak{f} \cdot \alpha^* \qquad (\mathfrak{f} \cdot \alpha^+)^{\omega}.$$

define ℜat_n to be the smallest set of elements from *TF^ω[n]* containing 0, *i* and being closed under ∨ and

 $[r_1, \ldots r_n] \cdot r \in \mathfrak{Rat}_m$ and $r^{*_i} \in \mathfrak{Reg}_n$ if $r \in \mathfrak{Rat}_n, r_i \in \mathfrak{Rat}_m$.

Kleene theorem

$$\mathfrak{Reg} = \mathfrak{Rat}_1$$

 $\omega \mathfrak{Reg} = \{ [r_1, \ldots r_n]^{\omega} \cdot r \mid r, r_i \in \mathfrak{Rat}_n \}.$

Coalgebraic modelling	Classical non-deterministic (Büchi) automat
General monad construction	
Regular and ω -regular behaviour	Kleene theorems for (T, F)-automata

Thank you!