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Our goal

Goal of the talk

Put infinite behaviour with Büchi acceptance condition into a
coalgebraic framework...

Wait...

So... we are doing the same as Urabe, Shimizu, Hasuo
(CONCUR’16).

Yes, but in a different manner!
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Our primary interest

Kleene th. for regular langauges

The set of regular languages for NA is closed under ∪, ·, ∅, {ε}
and (−)∗. Moreover, it is the smallest set of languages which
contains {a} and is closed under these operations.

Kleene th. for ω-regular languages

The ω-regular languages for Büchi automata (=NA) are of the
form

n⋃
i=1

Rωi · Li for regular languages Ri , Li
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Non-deterministic automata with ε-transitions

Definition

An ε-NA is a tuple (X ,Σε,→,F), where X is a set of states, Σ is a
finite set alphabet letters and →⊆ X × Σε × X and F ⊆ X is the
set of terminal states.

Any ε− NA can be viewed as a coalgebra, i.e. a map:

α′ : X → P(Σε × X + 1);

where 1 = {�}. However

Note

We can also view it as a pair (α,F), where

α : X → P(Σε × X ).
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From our previous work...

Any α : X → P(Σε × X ) is a labelled transition system with
ε-moves. Other known systems with internal moves:

Segala systems,

fully probabilistic systems,

...
Systems with internal moves

Coalgebras over a monad X → TX

Endomorphisms in the Kleisli category for T
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What to do with LTS?

Strategy 1

Introduce a monad structure on P(Σε × Id)

Strategy 2

Embed the functor P(Σε×Id) into P(Σ∗×Id) which is a monad.

Strategy 3

Embed the functor P(Σε × Id) into P(Σ∗ × Id + Σω) which is a
monad: For f : X → P(Σ∗ × Y + Σω) and
g : Y → P(Σ∗×Z + Σω) the map g · f : X → P(Σ∗×Z + Σω) is:

x
σ→g ·f z ⇐⇒ ∃y s.t. x

σ1→f y and y
σ2→g z , where σ = σ1σ2 ∈ Σ∗,

x ↓g ·f v ⇐⇒ x ↓f v or x
σ→f y , y ↓g v ′ and v = σv ′ ∈ Σω.
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Let’s use the last strategy

α : X → P(Σε × X )

α : X → P(Σ∗ × X + Σω)

α : X → X is an endo in Kl(P(Σ∗ × Id + Σω))

Interesting observation

Any subset F ⊆ X may be encoded as an endomorphism in
Kl(P(Σ∗ × Id + Σω)):

fF : X → P(Σε × X ); x 7→
{
{(ε, x)} if x ∈ F,

∅ otherwise.
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Non-deterministic automata as a pair of endomorphisms

Observation 2

Any non-deterministic automaton can be viewed as a pair of
endomorphisms in the Kleisli of P(Σ∗ × Id + Σω):

(α, fF).

How do we derive (in)finite behaviour of (α, fF)?
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Basic properties of the Kleisli category

The Kleisli of P(Σ∗ × Id + Σω) is:

order enriched by f ≤ g ⇐⇒ f (x) ⊆ g(x) for any x ∈ X ,

the ordering is complete,

it is left distributive, i.e. f · (g ∨ h) = f · g ∨ f · h.

This allows us to consider for any endo α : X → X the maps
α∗ : X → X and αω : X → 0:

α∗ = µx .(id ∨ x · α) and αω = νx .x · α.
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Finite behaviour

Finite behaviour of (α, fF)

! · fF · α∗ = X
α∗
→ X

fF→ X
!→ 1 in Klesli

Explanation

x
α∗
7→ {(a1a2 . . . an, y) | x a1→ x1 . . . xn−1

an→ xn = y} ∪ {(ε, x)}

x
f·α∗
7→ {(a1a2 . . . an, y) | x a1→ x1 . . . xn−1

an→ xn = y and y ∈ F}∪
{(ε, x) | x ∈ F}.

x
!·f·α∗
7→ {(w , 1) | w is accepted by the automaton (α,F)}.

T.Brengos A coalgebraic take on regular and ω-regular behaviour for systems with internal moves



Coalgebraic modelling
General monad construction

Regular and ω-regular behaviour
Transition systems with silent moves

Side note

The same finite behaviour would be obtained in the Kleisli of
P(Σ∗ × X ).

Why should we bother with P(Σ∗ × Id + Σω)?

T.Brengos A coalgebraic take on regular and ω-regular behaviour for systems with internal moves



Coalgebraic modelling
General monad construction

Regular and ω-regular behaviour
Transition systems with silent moves

Infinite behaviour with BAC

Let (α,F) be an automaton without ε-transitions. Then

Infinite behaviour of (α,F) with BAC

(fF · α+)ω in Klesli

In the above

α∗ = µx .(id ∨ x · α), α+ = α∗ · α and βω = νx .x · β.

Explanation

For β : X → P(Σ× X ) we have βω : X → P(Σω):

βω(x) = {(a1, a2, . . .) | x
a1→ x1

a2→ x2 . . .}
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Question 1.

We embedded P(Σε × Id) into P(Σ∗ × Id + Σω).

Problem

Can we do the same with TFε for a monad T and Fε = F + Id?

Goal

We want to embed TFε into TF∞, where

F∞ = the combination of free F -algebra and final coalgebra

and TF∞ carries a monadic structure.
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Answer to Q1

Take AlgB(F ) the category of Bloom algebras of type F .

Fact (Adámek, Haddadi, Milius, et al. 2014)

The free Bloom F -algebra is the combination of of the free
F -algebra and the final coalgebra.

We get a monad F∞ as the consequence of: C AlgB(F )⊥ .
What about TF∞?

Fact

If F lifts to Kl(T ) then the monad T lifts to a monad T̄B on
AlgB(F ).

C AlgB(F ) Kl(T̄B)⊥ ⊥
.
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Examples...

Ex 1

If F = Σ× Id and T = P then the monad
TF∞ = P(Σ∗ × Id + Σω)

Ex 2

If F = Σ× Id2 then F∞X = TΣX is the monad of complete
binary finite and infinite trees with nodes in Σ and finitely many
leaves, all in X . Then PTΣ(−) is the monad of subsets of such
trees.

In general, for a pair (T = monad,F = functor) on Set we
consider the monad TF∞ and define finite and infinite behaviour
of (α,F) according to:

! · fF · α∗ and (fF · α+)ω.
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Question 2.

(−)∗ and (−)ω are operators on endomorphisms in Kleisli. How are
they related to the classical operators on languages for finite
automata?

Kleene th. for regular langauges

The set of regular languages for NA is closed under ∪, ·, ∅, {ε}
and (−)∗. Moreover, it is the smallest set of languages which
contains {a} and is closed under these operations.

Kleene th. for ω-regular languages

The ω-regular languages for Büchi automata (=NA) are of the
form

n⋃
i=1

Rωi · Li for regular languages Ri , Li
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What about tree automata?

Finite tree automata are: (α : [n]→ P(Σ× [n]× [n]),F ⊆ [n]) , where
[n] = {1, 2, . . . , n} is the state-space. Let (ω) Reg = the set of (in)finite
tree languages accepted by finite tree automata. We have to introduce
Ratn.

Definition

Ratn is defined to be the smallest set of tree languages with variables in
[n] such that it contains {ε}, {i} for i ∈ [n], is closed under ∪, and
T1, . . .Tn ∈ Ratm, T ∈ Ratn we have:

[T1, . . . ,Tn] · T ∈ Ratm and T ∗,i ∈ Ratn.

Classical Kleene th. for tree languages

Reg = Rat1

ωReg = {[T1, . . .Tn]ω · T | T ,Ti ∈ Ratn}.
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The general picture

1 Start with a finite (T ,F )-automaton (α : X → TFX ,F ⊆ X ),

2 Consider the monad TF∞ and look at (α,F) as a pair of
endomorphisms (α, f) in the Kleisli for TF∞,

3 define finite and infinite behaviour with BAC:

! · f · α∗ (f · α+)ω.

4 define Ratn to be the smallest set of elements from TFω[n]
containing 0, i and being closed under ∨ and

[r1, . . . rn] · r ∈ Ratm and r∗i ∈ Regn if r ∈ Ratn, ri ∈ Ratm.

Kleene theorem

Reg = Rat1

ωReg = {[r1, . . . rn]ω · r | r , ri ∈ Ratn}.
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Thank you!
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