

Can QM be formulated in pictures?

B. Coecke (2005) Kindergarten quantum mechanics. quant-ph/0510032

YES!

B. Coecke \& A. Kissinger (2017) Picturing Quantum Processes. CUP.

YES!

B. Coecke \& A. Kissinger (2017) Picturing Quantum Processes. \cup.

- Ch. 1 - Processes as diagrams -

The art of progress is to preserve order amid change, and to preserve change amid order.

- Alfred North Whitehead, Process and Reality, 1929.
- processes as boxes and systems as wires -

- processes as boxes and systems as wires -

- processes as boxes and systems as wires -

- processes as boxes and systems as wires -

- composing processes -

- composing processes -

- composing processes -

- tautologies -

- special processes/diagrams -

State :=

Effect/Test :=

Number :=

- special processes/diagrams -

$\stackrel{\substack{0 \\ \hdashline}}{\stackrel{y y y y}{\circ}}$
| >

$$
\stackrel{\substack{0}}{\stackrel{y y y}{4}}
$$

<1

$\substack{\text { Ob } \\ \longmapsto}$
$\langle\mid\rangle$

- special processes/diagrams -

Born rule :=

$$
-" f \otimes g ":=" f \text { while } g "-
$$

\ddot{i}

$$
-" f \circ g ":=" f \text { after } g "-
$$

$\bullet \bullet$

Defn. ... := can be build with \otimes and \circ.

- circuits -

Defn. ... := can be build with \otimes and o.

Fact. ...are boring.

—Ch. 2 - String diagrams -

When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.
— Erwin Schrödinger, 1935.

1. 'Circuits' with cup-state and cup-effect:

which satisfy:

2. diagrams allowing in-in, out-out and out-in wiring:

From 1. to 2.:

so that:

- tautology -

- implicit diagrammatic notion -

定瞅

- quantum teleportation -

- quantum teleportation -

- quantum teleportation -

Bob's problem now!

- adjoint \& conjugate -

- isometry (\& unitarity) -

- quantum teleportation -

Bob's problem now!

- quantum teleportation -

- SMCs as diagrams -

- Ch. 3 - Hilbert space from diagrams -

I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space any more.

- John von Neumann, letter to Garrett Birkhoff, 1935.

THM. (Selinger, 2008)

An equation between string diagrams holds, if and only if it holds for Hilbert spaces and linear maps.
I.e. defining Hilbert spaces and linear maps 'from diagrams' is a conservative extension of string diagrams.

THM. (Selinger, 2008)
An equation between string diagrams holds, if and only if it holds for Hilbert spaces and linear maps.
I.e. defining Hilbert spaces and linear maps 'from diagrams' is a conservative extension of string diagrams.

Since last summer, we have:

UNIVERSAL COMPLETENESS!

THM. (Selinger, 2008)

An equation between string diagrams holds, if and only if it holds for Hilbert spaces and linear maps.
I.e. defining Hilbert spaces and linear maps 'from diagrams' is a conservative extension of string diagrams.

Since last summer, we have:
UNIVERSAL COMPLETENESS!
(see three papers at LiCS this year on ZX-calculus)

— Ch. 4 - Quantum processes -

The art of progress is to preserve order amid change, and to preserve change amid order.

- Alfred North Whitehead, Process and Reality, 1929.
- quantum vs. classical -

classical system single wire
 quantum system \quad double wire

- pure quantum process -

- Born-rule -

- discarding -

- mixed quantum process -

- mixed quantum process -

- causality -

- causality -

- causality -

— Ch. 6 - Picturing classical processes -

Damn it! I knew she was a monster! John! Amy! Listen! Guard your buttholes.
— David Wong, This Book Is Full of Spiders, 2012.

- spiders -

- spiders -

- spiders -

- spiders -
copy :=

delete :=

$$
9:=\sum_{i} \frac{\wedge}{i}
$$

- spiders -

- spiders -

THM 1. spiders \equiv dag. spec. comm. Frob. algs

- spiders -

THM 1. spiders \equiv dag. spec. comm. Frob. algs

THM 2. FHilb: dag. spec. comm. Frob. algs \equiv ONBs

- spiders -

encode :=
measure :=

$$
\left\{:=\frac{1}{4}\right\}
$$

- spiders -

controlled isometry :=

— teleportation with phone call -

— teleportation with phone call -

— teleportation with phone call -

- structural evolution

- structural evolution

- structural evolution

— structural evolution

— structural evolution

something else

- Bottom part: meaning
- Top part: grammar

This is why there aren't dictionaries for sentences:

- Bottom part: meaning
- Top part: grammar

Lambek's Pregroups (2000's):

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

As a diagram:

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

As a diagram:

Logical meanings:

Logical meanings:

M. Sadrzadeh, B. Coecke \& S. Clark (2013-2014) The Frobenius anatomy of word meaning I \& II. Journal of Logic and Computation. arXiv:1404.5278

Interpretation of transitive verb sentence:

- Action which needs two "participants"

Claim: a lion understands grammar, since is aware of:

- action of hunting
- him/her being hunter
- wants to get a prey

Books by famous developmental psychologist:

- P. Gärdenfors (2004) Conceptual Spaces: The Geometry of Thought. MIT.
- P. Gärdenfors (2014) The Geometry of Meaning. MIT.

We made it compositional:

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden \& R. Piedeleu (2017) Interacting Conceptual Spaces I: Grammatical Composition of Concepts. arXiv:1703.08314

Due to senses mediation and cultural conventions:

Interpretation of wires, boxes, and wirings:

A convex algebra is set A and 'mixing' function:

$$
\alpha: D(A) \rightarrow A
$$

with

$$
\left.\alpha(|a\rangle)=a \quad \alpha\left(\sum_{i, j} p_{i} q_{i, j}\left|a_{i, j}\right\rangle\right)=\alpha\left(\sum_{i} p_{i} \mid \alpha\left(\sum_{j} q_{i, j}\left|a_{i, j}\right\rangle\right)\right\rangle\right)
$$

A convex relation is relation that 'commutes with mixtures':

$$
\left(\forall i . R\left(a_{i}, b_{i}\right)\right) \Rightarrow R\left(\sum_{i} p_{i} a_{i}, \sum_{i} p_{i} b_{i}\right)
$$

RELEVANT STRUCTURES:

- tensor := cartesian
- cups := also like in Rel
- spiders := ONB ones in Rel

$N_{\text {food }}=N_{\text {colour }} \otimes N_{\text {taste }} \otimes N_{\text {texture }}$

Phrase example:

Phrase example:

\Rightarrow intersection of yellow \& banana

Relative pronoun example:

Relative pronoun example:

\Rightarrow intersection of fruit \& tastes bitter

Any age restrictions?

EXPERIMENTS THIS SUMMER!

B. Coecke (2010) Quantum Picturalism. Contemporary Physics arXiv:0908.1787

KIDS OUTPERFORM OXFORD STUDENTS AND DISCOVER QUANTUM FEATURES THAT TOOK TOP SCIENTISTS 60y

BREAKING NEWS

