Long-Term Values in Markov Decision Processes, (Co)Algebraically

Frank Feys \& Helle Hvid Hansen \& Larry Moss
TU Delft TU Delft Indiana University

April 14, 2018
CMCS'18, Thessaloniki, Greece

- Markov decision processes (MDPs) are state-based models of sequential decision-making under uncertainty
- Applications:
- Planning
- Reinforcement learning
- Insurance and finance
- ...
- We restrict to finite, discrete time-homogeneous, infinite-horizon MDPs, with the discounting criterion

INTRO - MDPs: probab., state-based systems, with rewards 3/18

Example: A start-up company needs to decide to Advertise or Save money

INTRO - MDPs: probab., state-based systems, with rewards 3/18

Example: A start-up company needs to decide to Advertise or Save money

A Markov Decision Process (MDP) is coalgebra $m=\langle u, t\rangle: S \rightarrow \mathbb{R} \times(\Delta S)^{A}$ where

- S is finite set of states and A is finite set of actions
- $u: S \rightarrow \mathbb{R}$ is reward map
- $t: S \rightarrow(\Delta S)^{A}$ is transition map (where ΔS is set of prob. distr. on S) A policy σ is a map $\sigma: S \rightarrow A$

Intro - Trace Semantics and Long-term Value of a Policy 4/18

Given $m=\langle u, t\rangle: S \rightarrow \mathbb{R} \times(\Delta S)^{A}$ and policy $\sigma: S \rightarrow A$
$\begin{aligned} & t_{\sigma} \stackrel{\text { def }}{=} t(s)(\sigma(s)) \\ \rightsquigarrow & m_{\sigma}^{\sharp} \text { by determinization }\end{aligned}$
[Jacobs, Silva, Sokolova]
$\mathrm{ts}(s)=\left(r_{0}^{\sigma}(s), r_{1}^{\sigma}(s), r_{2}^{\sigma}(s), \cdots\right)$ is trace semantics of m_{σ} $\left(r_{n}^{\sigma}(s)\right.$ is expected reward at time n, starting from s)

Intro - Trace Semantics and Long-term Value of a Policy 4/18

Given $m=\langle u, t\rangle: S \rightarrow \mathbb{R} \times(\Delta S)^{A}$ and policy $\sigma: S \rightarrow A$

$$
\begin{gathered}
t_{\sigma} \stackrel{\text { def }}{=} t(s)(\sigma(s)) \\
\rightsquigarrow m_{\sigma}^{\sharp} \text { by determinization }
\end{gathered}
$$

[Jacobs, Silva, Sokolova]

$$
\operatorname{ts}(s)=\left(r_{0}^{\sigma}(s), r_{1}^{\sigma}(s), r_{2}^{\sigma}(s), \cdots\right) \text { is trace semantics of } m_{\sigma}
$$

$\left(r_{n}^{\sigma}(s)\right.$ is expected reward at time n, starting from s)
Discounting criterion: letting $0 \leq \gamma<1$ be a discount factor, the long-term value of policy σ is $\mathrm{V}^{\sigma}: S \rightarrow \mathbb{R}$:

$$
\mathrm{V}^{\sigma}(s)=r_{0}^{\sigma}(s)+\gamma \cdot r_{1}^{\sigma}(s)+\cdots+\gamma^{n} \cdot r_{n}^{\sigma}(s)+\cdots
$$

Intro - Optimal Value \& Optimal Policy

The optimal value function $\mathrm{V}^{*}: S \rightarrow \mathbb{R}$ of m in state s is given by

$$
\mathrm{V}^{*}(s)=\max _{\sigma} \mathrm{V}^{\sigma}(s)
$$

Intro - Optimal Value \& Optimal Policy

The optimal value function $\mathrm{V}^{*}: S \rightarrow \mathbb{R}$ of m in state s is given by

$$
\mathrm{V}^{*}(s)=\max _{\sigma} \mathrm{V}^{\sigma}(s)
$$

We define:

- $\sigma \geq \sigma^{\prime}$ if for all $s, \mathrm{~V}^{\sigma}(s) \geq \mathrm{V}^{\sigma^{\prime}}(s)$
- σ is optimal iff $\sigma \geq \tau$ for all τ

Intro - Optimal Value \& Optimal Policy

The optimal value function $\mathrm{V}^{*}: S \rightarrow \mathbb{R}$ of m in state s is given by

$$
\mathrm{V}^{*}(s)=\max _{\sigma} \mathrm{V}^{\sigma}(s)
$$

We define:

- $\sigma \geq \sigma^{\prime}$ if for all $s, \mathrm{~V}^{\sigma}(s) \geq \mathrm{V}^{\sigma^{\prime}}(s)$
- σ is optimal iff $\sigma \geq \tau$ for all τ

Classical facts (cf. (Puterman, 2014)):

- Optimal policy always exists
- Optimal policies need not be unique
- If σ is optimal, then $\mathrm{V}^{\sigma}=\mathrm{V}^{*}$
- Stationary (memoryless), deterministic policies suffice

Observations:

- Classic theory uses low-level, analytic methods
- MDPs are coalgebras

Goal: to develop coalgebraic methods for reasoning about LTVs

The main contributions:

Part 1: Value function V^{σ} from b-corecursive algebras

Part 2: Coinductive proof of policy improvement theorem

PART 1:

Value Function Arises from a Universal Property

- Following Bellman, the value function has a natural recursive structure:

$$
\begin{gather*}
\left(\mathrm{V}^{\sigma} \text { from today }\right)=\text { reward today }+\gamma \cdot\left(\mathrm{V}^{\sigma} \text { from tomorrow }\right) \\
\mathrm{V}^{\sigma}=u+\gamma P_{\sigma} \mathrm{V}^{\sigma} \tag{1}
\end{gather*}
$$

- Following Bellman, the value function has a natural recursive structure:

$$
\begin{gather*}
\left(\mathrm{V}^{\sigma} \text { from today }\right)=\text { reward today }+\gamma \cdot\left(\mathrm{V}^{\sigma} \text { from tomorrow }\right) \\
\mathrm{V}^{\sigma}=u+\gamma P_{\sigma} \mathrm{V}^{\sigma} \tag{1}
\end{gather*}
$$

- So, V^{σ} arises as a fixpoint of the operator $\Psi_{\sigma}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ given by

$$
\Psi_{\sigma}(v)=u+\gamma P_{\sigma} v
$$

- Following Bellman, the value function has a natural recursive structure:

$$
\begin{gather*}
\left(\mathrm{V}^{\sigma} \text { from today }\right)=\text { reward today }+\gamma \cdot\left(\mathrm{V}^{\sigma} \text { from tomorrow }\right) \\
\mathrm{V}^{\sigma}=u+\gamma P_{\sigma} \mathrm{V}^{\sigma} \tag{1}
\end{gather*}
$$

- So, V^{σ} arises as a fixpoint of the operator $\Psi_{\sigma}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ given by

$$
\Psi_{\sigma}(v)=u+\gamma P_{\sigma} v
$$

- Our observation: we can re-express (1) as V^{σ} being a coalgebra-to-algebra morphism, as in

where $\alpha_{\gamma}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is $\alpha_{\gamma}(x, y)=x+\gamma \cdot y$ and $\mathrm{E}: \Delta \mathbb{R} \rightarrow \mathbb{R}$ is EV
Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen \& Larry Moss
- Recall that a corecursive algebra (for functor F) is an F-algebra α s.t.

- Recall that a corecursive algebra (for functor F) is an F-algebra α s.t.

- Recall:
- Recall that a corecursive algebra (for functor F) is an F-algebra α s.t.

- Recall:

$$
\begin{aligned}
& S \xrightarrow{m_{\sigma}=\left\langle u, t_{\sigma}\right\rangle} \mathbb{R} \times \Delta S \\
& \mathrm{~V}^{\sigma} \downarrow \mid \mathrm{id}_{\mathbb{R}} \times \Delta\left(\mathrm{V}^{\sigma}\right) \\
& \mathbb{R} \longleftarrow \underset{\alpha_{\gamma} \circ\left(\mathrm{id}_{\mathbb{R}} \times \mathrm{E}\right)}{ } \mathbb{R} \times \Delta \mathbb{R}
\end{aligned}
$$

- Question: is $\alpha_{\gamma} \circ\left(\mathrm{id}_{\mathbb{R}} \times \mathrm{E}\right)$ a corecursive algebra?
- Recall that a corecursive algebra (for functor F) is an F-algebra α s.t.

- Recall:

- Question: is $\alpha_{\gamma} \circ\left(\mathrm{id}_{\mathbb{R}} \times \mathrm{E}\right)$ a corecursive algebra?
- Consider a more basic question: is algebra $\alpha_{\gamma}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ corecursive? By (Capretta et al., 2004), this is equivalent with $\alpha_{\gamma} \circ\left(\operatorname{id}_{\mathbb{R}} \times \mathrm{E}\right)$ corec.
- Letting $H=\mathbb{R} \times \mathrm{id}, \alpha_{\gamma}$ is corecursive if

- Letting $H=\mathbb{R} \times \mathrm{id}, \alpha_{\gamma}$ is corecursive if

- In particular, let X be a set of "variables" $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, and fix γ.

$$
\left\{\begin{aligned}
\left\{\begin{array}{l}
\text { System of lin. eqs. } \\
\begin{array}{l}
x_{n}=a_{n}+\gamma \cdot x_{n+1} \\
(n=0,1,2, \ldots)
\end{array} \\
\\
\\
\text { Solutions to (3) }
\end{array} \quad \leftrightarrow \rightsquigarrow \quad \text { coalgebra } f: X \rightarrow \mathbb{R} \times X\right. \\
f^{\dagger} \text { s.t. } f^{\dagger}=\alpha_{\gamma} \cdot\left(\mathrm{id}_{\mathbb{R}} \times f^{\dagger}\right) \cdot f
\end{aligned}\right.
$$

Part 1 - Systems of Equations

- Letting $H=\mathbb{R} \times \mathrm{id}, \alpha_{\gamma}$ is corecursive if

- In particular, let X be a set of "variables" $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, and fix γ.

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { System of lin. eqs. } \\
\begin{array}{l}
x_{n}=a_{n}+\gamma \cdot x_{n+1} \\
(n=0,1,2, \ldots)
\end{array} \\
\\
\text { Solutions to (3) }
\end{array} \quad \leftrightarrow \rightsquigarrow \quad \text { coalgebra } f: X \rightarrow \mathbb{R} \times X\right. \\
f^{\dagger} \text { s.t. } f^{\dagger}=\alpha_{\gamma} \cdot\left(\mathrm{id}_{\mathbb{R}} \times f^{\dagger}\right) \cdot f
\end{array}\right.
$$

- But, (3) has infinite number of solutions, even if $\left(a_{n}\right)_{n}$ is bounded \Rightarrow answer to earlier question is NO

PART 1 - Systems of Equations

- Letting $H=\mathbb{R} \times \mathrm{id}, \alpha_{\gamma}$ is corecursive if

- In particular, let X be a set of "variables" $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, and fix γ.

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { System of lin. eqs. } \\
\begin{array}{l}
x_{n}=a_{n}+\gamma \cdot x_{n+1} \\
(n=0,1,2, \ldots)
\end{array} \\
\\
\text { Solutions to (3) }
\end{array} \quad \leftrightarrow \rightsquigarrow \quad \text { coalgebra } f: X \rightarrow \mathbb{R} \times X\right. \\
f^{\dagger} \text { s.t. } f^{\dagger}=\alpha_{\gamma} \cdot\left(\mathrm{id}_{\mathbb{R}} \times f^{\dagger}\right) \cdot f
\end{array}\right.
$$

- But, (3) has infinite number of solutions, even if $\left(a_{n}\right)_{n}$ is bounded \Rightarrow answer to earlier question is NO
- However, if $\left(a_{n}\right)_{n}$ is bounded then (3) has a unique bounded solution
- To get uniqueness \Rightarrow incorporate boundedness information
- To get uniqueness \Rightarrow incorporate boundedness information
- Definition A b-category $(\mathrm{C}, \mathcal{B})$ is a category C with a subcollection of "bounded" morphism \mathcal{B} s.t. $(f \in \mathcal{B} \Rightarrow f \circ g \in \mathcal{B})$
- To get uniqueness \Rightarrow incorporate boundedness information
- Definition A b-category $(\mathrm{C}, \mathcal{B})$ is a category C with a subcollection of "bounded" morphism \mathcal{B} s.t. $(f \in \mathcal{B} \Rightarrow f \circ g \in \mathcal{B})$
- Definition Let $(\mathrm{C}, \mathcal{B}) b$-category, F endofunctor on $\mathrm{C}, \alpha: F A \rightarrow A$ an F-algebra. Then α is a b-corecursive algebra (bca) if
- To get uniqueness \Rightarrow incorporate boundedness information
- Definition A b-category $(\mathrm{C}, \mathcal{B})$ is a category C with a subcollection of "bounded" morphism \mathcal{B} s.t. $(f \in \mathcal{B} \Rightarrow f \circ g \in \mathcal{B})$
- Definition Let $(\mathrm{C}, \mathcal{B}) b$-category, F endofunctor on $\mathrm{C}, \alpha: F A \rightarrow A$ an F-algebra. Then α is a b-corecursive algebra (bca) if
- Proposition α_{γ} is a bca in (Met, B) for H
- Then by b-version of (Capretta et al., 2004) result: Proposition $\alpha_{\gamma} \circ(\mathbb{R} \times \mathrm{E})$ is a bca in (Met, $\left.B\right)$ for $H \circ \Delta$

Part 1: Value function V^{σ} from b-corecursive algebras \checkmark

Part 2: Coinductive proof of policy improvement theorem

PART 2:

Correctness of Policy Iteration via Contraction (Co)Induction

- Suppose σ is policy \rightsquigarrow find V^{σ}
- Suppose σ is policy \rightsquigarrow find V^{σ}
- Now we define a new policy σ^{\prime} by putting for each state s

$$
\sigma^{\prime}(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \mathrm{V}^{\sigma}\left(s^{\prime}\right)\right\}
$$

PART 2 - Policy Iteration

- Suppose σ is policy \rightsquigarrow find V^{σ}
- Now we define a new policy σ^{\prime} by putting for each state s

$$
\sigma^{\prime}(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \mathrm{V}^{\sigma}\left(s^{\prime}\right)\right\}
$$

Theorem (Howard, 1960)

- The policy σ^{\prime} is a better policy than σ, i.e., $\sigma^{\prime} \geq \sigma$.
- If $\sigma^{\prime}=\sigma$, then σ is optimal.
- Suppose σ is policy \rightsquigarrow find V^{σ}
- Now we define a new policy σ^{\prime} by putting for each state s

$$
\sigma^{\prime}(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \mathrm{V}^{\sigma}\left(s^{\prime}\right)\right\}
$$

Theorem (Howard, 1960)

- The policy σ^{\prime} is a better policy than σ, i.e., $\sigma^{\prime} \geq \sigma$.
- If $\sigma^{\prime}=\sigma$, then σ is optimal.
- Policy Iteration: start with any σ, iteratively obtain $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}, \ldots$, and continue until there is fixpoint \Rightarrow this outputs an optimal policy

Policy Improvement Theorem (Howard, 1960)

$$
P_{\sigma^{\prime}} \cdot \mathrm{V}^{\sigma} \geq P_{\sigma} \cdot \mathrm{V}^{\sigma} \Rightarrow \mathrm{V}^{\sigma^{\prime}} \geq \mathrm{V}^{\sigma}
$$

Policy Improvement Theorem (Howard, 1960)

$$
P_{\sigma^{\prime}} \cdot \mathrm{V}^{\sigma} \geq P_{\sigma} \cdot \mathrm{V}^{\sigma} \Rightarrow \mathrm{V}^{\sigma^{\prime}} \geq \mathrm{V}^{\sigma}
$$

- Recall

$$
\sigma^{\prime}(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \mathrm{V}^{\sigma}\left(s^{\prime}\right)\right\}
$$

\Rightarrow antecedent holds

Policy Improvement Theorem (Howard, 1960)

$P_{\sigma^{\prime}} \cdot \mathrm{V}^{\sigma} \geq P_{\sigma} \cdot \mathrm{V}^{\sigma} \Rightarrow \mathrm{V}^{\sigma^{\prime}} \geq \mathrm{V}^{\sigma}$

- Recall

$$
\sigma^{\prime}(s)=\operatorname{argmax}_{a \in A}\left\{\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \mathrm{V}^{\sigma}\left(s^{\prime}\right)\right\}
$$

\Rightarrow antecedent holds

- New proof using Contraction (Co)Induction

Contraction (Co)Induction Theorem

Let M be a non-empty, complete, ordered (i.e., there is partial order \leq s.t. $\uparrow x=\{y \mid x \leq y\}$ and $\downarrow x=\{y \mid y \leq x\}$ are closed) metric space. If $f: M \rightarrow M$ is contractive and order-preserving, then the (unique) fixpoint x^{*} is

- least pre-fixpoint (if $f(x) \leq x$, then $x^{*} \leq x$),
- greatest post-fixpoint (if $x \leq f(x)$, then $x \leq x^{*}$).

Cf. Metric Coinduction (Kozen \& Ruozzi, 2009) and (Denardo, 1967).

Contraction (Co)Induction Theorem

Let M be a non-empty, complete, ordered (i.e., there is partial order \leq s.t. $\uparrow x=\{y \mid x \leq y\}$ and $\downarrow x=\{y \mid y \leq x\}$ are closed) metric space. If $f: M \rightarrow M$ is contractive and order-preserving, then the (unique) fixpoint x^{*} is

- least pre-fixpoint (if $f(x) \leq x$, then $x^{*} \leq x$),
- greatest post-fixpoint (if $x \leq f(x)$, then $x \leq x^{*}$).

Cf. Metric Coinduction (Kozen \& Ruozzi, 2009) and (Denardo, 1967).
Proof of Policy Improvement (i.e., $P_{\sigma^{\prime}} \cdot \mathrm{V}^{\sigma} \geq P_{\sigma} \cdot \mathrm{V}^{\sigma} \Rightarrow \mathrm{V}^{\sigma^{\prime}} \geq \mathrm{V}^{\sigma}$).
Apply theorem to $\Psi_{\pi}: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ (contractive and order-preserving \checkmark)

$$
\Psi_{\pi}(v)=u+\gamma P_{\pi} v, \quad \text { and } \mathrm{V}^{\pi} \text { is its fixpoint. }
$$

Thus $P_{\sigma^{\prime}} \cdot \mathrm{V}^{\sigma} \geq P_{\sigma} \cdot \mathrm{V}^{\sigma} \Rightarrow \Psi_{\sigma^{\prime}}\left(\mathrm{V}^{\sigma}\right) \geq \Psi_{\sigma}\left(\mathrm{V}^{\sigma}\right)=\mathrm{V}^{\sigma} \Rightarrow \mathrm{V}^{\sigma^{\prime}} \geq \mathrm{V}^{\sigma}$.

Contributions:

- Value functions V^{σ} and V^{*} from b-corecursive algebras
- Coinductive proof of policy improvement theorem

Future work:

- Generalize the setting (e.g., to stochastic games)
- Make connections with related literature:

Combining semantics of computation and game theory (Pavlovic, 2009) Coalgebraic formulation of infinite games (Abramsky \& Winschel, 2017) Open games (Hedges, Ghani, Winschel, Zahn, 2018)

- Investigate contraction coinduction further and look for other applications (e.g., in social choice)

Contributions:

- Value functions V^{σ} and V^{*} from b-corecursive algebras
- Coinductive proof of policy improvement theorem

Future work:

- Generalize the setting (e.g., to stochastic games)
- Make connections with related literature:

Combining semantics of computation and game theory (Pavlovic, 2009) Coalgebraic formulation of infinite games (Abramsky \& Winschel, 2017) Open games (Hedges, Ghani, Winschel, Zahn, 2018)

- Investigate contraction coinduction further and look for other applications (e.g., in social choice)

> Thank you!

