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INTRO — MDPs: Planning under Uncertainty 2/18

e Markov decision processes (MDPs) are state-based models of sequential
decision-making under uncertainty

@ Applications:

e Planning
o Reinforcement learning

o Insurance and finance

o We restrict to finite, discrete time-homogeneous, infinite-horizon MDPs,
with the discounting criterion
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INTRO — MDPs: probab., state-based systems, with rewards 3/18

Example: A start-up company needs to decide to Advertise or Save money

Famous
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Example: A start-up company needs to decide to Advertise or Save money

Famous
+10

A Markov Decision Process (MDP) is coalgebra m = (u,t): S — R x(AS)4
where
@ S is finite set of states and A is finite set of actions

e u: S — Ris reward map
o t: S — (AS)4 is transition map (where AS is set of prob. distr. on S)
A policycisamapo: S — A
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INTRO — Trace Semantics and Long-term Value of a Policy 4/18

Mo=(u,ts)

S R x AS  Given m = (u,t): S — R x (AS)4
5J{ and policy o: S — A
TrLjj e
ts AS 0 idz x ! ty Zt(s)(o(s))
!J( ~ m} by determinization
RY R x R¥ [Jacobs, Silva, Sokoloval
ts(s) = (rg(s),r{(s),r9(s), ) is trace semantics of m,

(r(s) is expected reward at time n, starting from s)
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Mo=(u,ts)

S R x AS  Given m = (u,t): S — R x (AS)4
5J{ and policy o: S — A
TrLjj e
ts AS 0 idz x ! ty Zt(s)(o(s))
!J( ~ m} by determinization
RY R x R¥ [Jacobs, Silva, Sokoloval
ts(s) = (rg(s),r{(s),r9(s), ) is trace semantics of m,

(r(s) is expected reward at time n, starting from s)

Discounting criterion: letting 0 < v < 1 be a discount factor,
the long-term value of policy o is V7: S — R:

Vo(s) =rg(s) +7-r7(s) + - +" - ra(s) + -+
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INTRO — Optimal Value & Optimal Policy 5/18

The optimal value function V*: S — R of m in state s is given by
V*(s) = max V7(s)
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INTRO — Optimal Value & Optimal Policy 5/18

The optimal value function V*: S — R of m in state s is given by
V*(s) = max V7(s)
We define:
e o> ifforalls, VO(s) > V7 (s)

@ o is optimal iff 0 > 7 for all 7
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INTRO — Optimal Value & Optimal Policy 5/18

The optimal value function V*: S — R of m in state s is given by
V*(s) = max V7(s)

We define:

e o> ifforalls, VO(s) > V7 (s)

@ o is optimal iff 0 > 7 for all 7

Classical facts (cf. (Puterman, 2014)):

Optimal policy always exists

Optimal policies need not be unique

If o is optimal, then V7 = V*

Stationary (memoryless), deterministic policies suffice
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Observations:
@ Classic theory uses low-level, analytic methods

@ MDPs are coalgebras

Goal: to develop coalgebraic methods for reasoning about LTVs
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The main contributions:

Part 1: Value function V7 from b-corecursive algebras

Part 2: Coinductive proof of policy improvement theorem
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PART 1:

Value Function Arises from a Universal Property
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PART 1 — V? as Coalgebra-to-Algebra Morphism 9/18

o Following Bellman, the value function has a natural recursive structure:
(V7 from today) = reward today + v - (V? from tomorrow)
|V =u+7P, V| (1)
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PART 1 — V? as Coalgebra-to-Algebra Morphism 9/18

o Following Bellman, the value function has a natural recursive structure:
(V7 from today) = reward today + v - (V? from tomorrow)
|V =u+7P, V| (1)

@ So, V7 arises as a fixpoint of the operator ¥, : RS — RS given by

U, (v) =u+vyP,v
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PART 1 — V? as Coalgebra-to-Algebra Morphism 9/18

o Following Bellman, the value function has a natural recursive structure:
(V7 from today) = reward today + v - (V? from tomorrow)
|V =u+7P, V| (1)

@ So, V7 arises as a fixpoint of the operator ¥, : RS — RS given by
U, (v) =u+vPv

@ Our observation: we can re-express (1) as V7 being a
coalgebra-to-algebra morphism, as in

ma:<u7t0>

S R x AS
V”J( J{idRXA(V”)
R RxR~< R x AR
Qry idg xE

where oo, R xR — Ris o (z,y) =2+ -y and E: AR = R is EV
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PART 1 — Universality from Corecursive Algebra? 10/18

@ Recall that a corecursive algebra (for functor F') is an F-algebra « s.t.

c—" .o
] f’fl iFfT
A FA
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@ Recall that a corecursive algebra (for functor F') is an F-algebra « s.t.

@ Recall:

c—7 . Fc
H!le iFfT
A FA
R GG R Y
vvl iideA(Vf’)
R x AR

o~ o(idr XE)
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PART 1 — Universality from Corecursive Algebra? 10/18

@ Recall that a corecursive algebra (for functor F') is an F-algebra « s.t.
vf

C FC
H!le iFfT
A FA
@ Recall: Me= (U,to)
S R x AS
Wl l’idRXA(VU)
R x AR

o~ o(idr XE)

@ Question: is cv, o (idg x E) a corecursive algebra?
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PART 1 — Universality from Corecursive Algebra? 10/18

@ Recall that a corecursive algebra (for functor F') is an F-algebra « s.t.
vf

C FC
H!le iFfT
A FA
@ Recall: Me= (U,to)
S R x AS
Wl l’idRXA(VU)
R x AR

o~ o(idr XE)
@ Question: is cv, o (idg x E) a corecursive algebra?
e Consider a more basic question: is algebra o, : R x R — R corecursive?

By (Capretta et al., 2004), this is equivalent with ., o (idg x E) corec.
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PART 1 — Systems of Equations 11/18

o Letting H =R x id, «, is corecursive if
vf

X R x X
H!ﬂi le’fidef’f
R R xR

Ql~y
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PART 1 — Systems of Equations 11/18

o Letting H =R x id, «, is corecursive if

x—Y rxx
H!ﬂi le’fidefT
R R xR

O~y

o In particular, let X be a set of “variables” {xz¢, z1,x2,...}, and fix .

System of lin. egs.

(3)‘xn:an+’y-xn+1‘ «~ coalgebra f: X - Rx X
(n=0,1,2,...)
Solutions to (3) o flst fl=a, - (idp x f1) - f
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o Letting H =R x id, «, is corecursive if

x—Y rxx
H!ﬂi le’fidefT
R R xR

O~y

o In particular, let X be a set of “variables” {xz¢, z1,x2,...}, and fix .

System of lin. egs.

(3)‘xn:an+’y-xn+1‘ «~ coalgebra f: X - Rx X
(n=0,1,2,...)
Solutions to (3) o flst fl=a, - (idp x f1) - f

e But, (3) has infinite number of solutions, even if (a,), is bounded
= answer to earlier question is NO
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PART 1 — Systems of Equations 11/18

o Letting H =R x id, «, is corecursive if

x—Y rxx
H!ﬂi le’fidefT
R R xR

O~y

o In particular, let X be a set of “variables” {xz¢, z1,x2,...}, and fix .

System of lin. egs.

(3)‘xn:an+’y-xn+1‘ «~ coalgebra f: X - Rx X
(n=0,1,2,...)
Solutions to (3) o flst fl=a, - (idp x f1) - f

e But, (3) has infinite number of solutions, even if (a,), is bounded
= answer to earlier question is NO

e However, if (ay), is bounded then (3) has a unique bounded solution

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



PART 1 — Need for Boundedness 12/18

@ To get uniqueness = incorporate boundedness information
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@ To get uniqueness = incorporate boundedness information

e Definition A b-category (C,B) is a category C with a subcollection of
“bounded” morphism Bs.t. (f € B= foge€ B)
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@ To get uniqueness = incorporate boundedness information

e Definition A b-category (C,B) is a category C with a subcollection of
“bounded” morphism Bs.t. (f € B= foge€ B)

e Definition Let (C, B) b-category, F' endofunctor on C, a: FA — A an
F-algebra. Then « is a b-corecursive algebra (bca) if

x5 px
H!fTeBl \LFfT
A FA
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PART 1 — Need for Boundedness 12/18

@ To get uniqueness = incorporate boundedness information

e Definition A b-category (C,B) is a category C with a subcollection of
“bounded” morphism Bs.t. (f € B= foge€ B)

e Definition Let (C, B) b-category, F' endofunctor on C, a: FA — A an
F-algebra. Then « is a b-corecursive algebra (bca) if

x5 px
H!fTeBl \LFfT
A FA

e Proposition o, is a bca in (Met, B) for H

@ Then by b-version of (Capretta et al., 2004) result:
Proposition o, o (R x E) is a bca in (Met, B) for H o A
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PART 1 — Qutline 13/18

Part 1: Value function V7 from b-corecursive algebras v

Part 2: Coinductive proof of policy improvement theorem
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PART 2:

Correctness of Policy lteration via Contraction
(Coglnduction
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@ Suppose o is policy ~ find V?
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PART 2 — Policy Iteration 15/18

@ Suppose o is policy ~ find V?

@ Now we define a new policy ¢’ by putting for each state s

o'(s) = argmaxge {Z P(s,a,s) VU(s’)}

s'esS

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



PART 2 — Policy Iteration 15/18

@ Suppose o is policy ~ find V?

@ Now we define a new policy ¢’ by putting for each state s

o'(s) = argmaxge {Z P(s,a,s) VU(s’)}

s'esS

Theorem (Howard, 1960)
e The policy ¢’ is a better policy than o, i.e., 0/ > 0.

e If 0/ = o, then o is optimal.
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PART 2 — Policy Iteration 15/18

@ Suppose o is policy ~ find V?

@ Now we define a new policy ¢’ by putting for each state s

o'(s) = argmaxge {Z P(s,a,s) VU(s’)}

s'esS

Theorem (Howard, 1960)
e The policy ¢’ is a better policy than o, i.e., 0/ > 0.

e If 0/ = o, then o is optimal.

@ Policy lteration: start with any o, iteratively obtain o’,0”,0", ..., and
continue until there is fixpoint = this outputs an optimal policy
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Policy Improvement Theorem (Howard, 1960)

[)ﬁ/ VO > f)ﬂ .V = \’,,vo—/ > Ve
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PART 2 — Policy Improvement Theorem 16/18

Policy Improvement Theorem (Howard, 1960)

P, -V°>P,.V° = Vo >V°

@ Recall
o'(s) = argmaxge { Z P(s,a,s") V”(s')}
s'eS

= antecedent holds
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PART 2 — Policy Improvement Theorem 16/18

Policy Improvement Theorem (Howard, 1960)

[)ﬁ/ VO > f)ﬂ .V = \’,,vo—/ > Ve

o Recall

o'(s) = argmaxge { Z P(s,a,s") V”(s')}

s'esS

= antecedent holds

@ New proof using Contraction (Co)Induction
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PART 2 — Contraction (Co)Induction 17/18

Contraction (Co)Induction Theorem

Let M be a non-empty, complete, ordered (i.e., there is partial order <
st.tz={y|x <y} and |z ={y |y <z} are closed) metric space.
If f: M — M is contractive and order-preserving, then the (unique)
fixpoint 2 is

@ least pre-fixpoint (if f(z) < z, then z* < z),

@ greatest post-fixpoint (if x < f(z), then =z < z*).

Cf. Metric Coinduction (Kozen & Ruozzi, 2009) and (Denardo, 1967).
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r

Contraction (Co)Induction Theorem

Let M be a non-empty, complete, ordered (i.e., there is partial order <
st.tz={y|x <y} and |z ={y |y <z} are closed) metric space.
If f: M — M is contractive and order-preserving, then the (unique)
fixpoint 2 is

@ least pre-fixpoint (if f(z) < z, then z* < z),

@ greatest post-fixpoint (if x < f(z), then =z < z*).

\

Cf. Metric Coinduction (Kozen & Ruozzi, 2009) and (Denardo, 1967).

Proof of Policy Improvement (i.e., P, - V7 > P, - V7 = Vo' > V).
Apply theorem to ¥ : R¥ — RS (contractive and order-preserving v')
U, (v) =u+vyPro, and V7 is its fixpoint.

Thus P -V° > P,-V0 = U, (V7)) > T, (V) =V7 = V' >V°. W
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CONCLUSION — Contributions and Future Work 18/18

Contributions:

@ Value functions V7 and V* from b-corecursive algebras

@ Coinductive proof of policy improvement theorem

Future work:

@ Generalize the setting (e.g., to stochastic games)

@ Make connections with related literature:

Combining semantics of computation and game theory (Pavlovic, 2009)
Coalgebraic formulation of infinite games (Abramsky & Winschel, 2017)
Open games (Hedges, Ghani, Winschel, Zahn, 2018)

@ Investigate contraction coinduction further and look for other
applications (e.g., in social choice)
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Contributions:

@ Value functions V7 and V* from b-corecursive algebras

@ Coinductive proof of policy improvement theorem

Future work:

@ Generalize the setting (e.g., to stochastic games)

@ Make connections with related literature:

Combining semantics of computation and game theory (Pavlovic, 2009)
Coalgebraic formulation of infinite games (Abramsky & Winschel, 2017)
Open games (Hedges, Ghani, Winschel, Zahn, 2018)

@ Investigate contraction coinduction further and look for other
applications (e.g., in social choice)

Thank you!
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