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Intro – MDPs: Planning under Uncertainty 2/18

Markov decision processes (MDPs) are state-based models of sequential
decision-making under uncertainty

Applications:

Planning
Reinforcement learning
Insurance and finance

. . .

We restrict to finite, discrete time-homogeneous, infinite-horizon MDPs,
with the discounting criterion

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Intro – MDPs:probab., state-based systems, with rewards 3/18

Example: A start-up company needs to decide to Advertise or Save money
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A Markov Decision Process (MDP) is coalgebra m = 〈u, t〉 : S → R×(∆S)A

where
S is finite set of states and A is finite set of actions
u : S → R is reward map
t : S → (∆S)A is transition map (where ∆S is set of prob. distr. on S)

A policy σ is a map σ : S → A
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Intro – Trace Semantics and Long-term Value of a Policy 4/18

S

ts

  

mσ=〈u,tσ〉 //

δ

��

R×∆S

idR× !

��

∆S
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m]σ

44

Rω // R× Rω

Given m = 〈u, t〉 : S → R× (∆S)A

and policy σ : S → A

tσ
def
= t(s)(σ(s))

 m]
σ by determinization

[Jacobs, Silva, Sokolova]

ts(s) = (rσ0 (s) , rσ1 (s) , rσ2 (s) , · · · ) is trace semantics of mσ

(rσn(s) is expected reward at time n, starting from s)

Discounting criterion: letting 0 ≤ γ < 1 be a discount factor,
the long-term value of policy σ is Vσ : S → R:

Vσ(s) = rσ0 (s) + γ · rσ1 (s) + · · ·+ γn · rσn(s) + · · ·
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Intro – Optimal Value & Optimal Policy 5/18

The optimal value function V∗ : S → R of m in state s is given by

V∗(s) = max
σ

Vσ(s)

We define:

σ ≥ σ′ if for all s, Vσ(s) ≥ Vσ′
(s)

σ is optimal iff σ ≥ τ for all τ

Classical facts (cf. (Puterman, 2014)):

Optimal policy always exists

Optimal policies need not be unique

If σ is optimal, then Vσ = V∗

Stationary (memoryless), deterministic policies suffice

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Intro – Optimal Value & Optimal Policy 5/18

The optimal value function V∗ : S → R of m in state s is given by

V∗(s) = max
σ

Vσ(s)

We define:

σ ≥ σ′ if for all s, Vσ(s) ≥ Vσ′
(s)

σ is optimal iff σ ≥ τ for all τ

Classical facts (cf. (Puterman, 2014)):

Optimal policy always exists

Optimal policies need not be unique

If σ is optimal, then Vσ = V∗

Stationary (memoryless), deterministic policies suffice

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Intro – Optimal Value & Optimal Policy 5/18

The optimal value function V∗ : S → R of m in state s is given by

V∗(s) = max
σ

Vσ(s)

We define:

σ ≥ σ′ if for all s, Vσ(s) ≥ Vσ′
(s)

σ is optimal iff σ ≥ τ for all τ

Classical facts (cf. (Puterman, 2014)):

Optimal policy always exists

Optimal policies need not be unique

If σ is optimal, then Vσ = V∗

Stationary (memoryless), deterministic policies suffice

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Intro – Motivation 6/18

Observations:

Classic theory uses low-level, analytic methods

MDPs are coalgebras

Goal: to develop coalgebraic methods for reasoning about LTVs

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Intro – Contributions and Outline 7/18

The main contributions:

Part 1: Value function Vσ from b-corecursive algebras

Part 2: Coinductive proof of policy improvement theorem
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PART 1:

Value Function Arises from a Universal Property
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Part 1 – Vσ as Coalgebra-to-Algebra Morphism 9/18

Following Bellman, the value function has a natural recursive structure:

(Vσ from today) = reward today + γ · (Vσ from tomorrow)

Vσ = u+ γPσ Vσ (1)

So, Vσ arises as a fixpoint of the operator Ψσ : RS → RS given by

Ψσ(v) = u+ γPσv

Our observation: we can re-express (1) as Vσ being a
coalgebra-to-algebra morphism, as in

S
mσ=〈u,tσ〉 //

Vσ

��

R×∆S

idR×∆(Vσ)
��

R R× Rαγ
oo R×∆R

idR×E
oo

where αγ : R× R→ R is αγ(x, y) = x+ γ · y and E: ∆R→ R is EV
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Part 1 – Universality from Corecursive Algebra? 10/18

Recall that a corecursive algebra (for functor F ) is an F -algebra α s.t.

C
∀f //

∃! f†
��

FC

Ff†

��
A FAα
oo

Recall:
S

mσ= 〈u,tσ〉 //

Vσ

��

R×∆S

idR×∆(Vσ)
��

R R×∆R
αγ◦(idR×E)

oo

Question: is αγ ◦ (idR × E) a corecursive algebra?

Consider a more basic question: is algebra αγ : R× R→ R corecursive?

By (Capretta et al., 2004), this is equivalent with αγ ◦ (idR × E) corec.
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Part 1 – Systems of Equations 11/18

Letting H = R× id, αγ is corecursive if

X
∀f //

∃! f†
��

R×X
Hf†= idR×f†
��

R R× Rαγ
oo

In particular, let X be a set of “variables” {x0, x1, x2, . . .}, and fix γ.
System of lin. eqs.

(3) xn = an + γ · xn+1

(n = 0, 1, 2, . . .)

 ! coalgebra f : X → R×X

Solutions to (3) ! f † s.t. f † = αγ · (idR × f †) · f

But, (3) has infinite number of solutions, even if (an)n is bounded
⇒ answer to earlier question is NO

However, if (an)n is bounded then (3) has a unique bounded solution
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Part 1 – Need for Boundedness 12/18

To get uniqueness ⇒ incorporate boundedness information

Definition A b-category (C,B) is a category C with a subcollection of
“bounded” morphism B s.t. (f ∈ B ⇒ f ◦ g ∈ B)

Definition Let (C,B) b-category, F endofunctor on C, α : FA→ A an
F -algebra. Then α is a b-corecursive algebra (bca) if

X
∀f ∈B //

∃!f†∈B
��

FX

Ff†

��
A FAα
oo

Proposition αγ is a bca in (Met, B) for H

Then by b-version of (Capretta et al., 2004) result:
Proposition αγ ◦ (R× E) is a bca in (Met, B) for H ◦∆
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Part 1 – Outline 13/18

Part 1: Value function Vσ from b-corecursive algebras X

Part 2: Coinductive proof of policy improvement theorem
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PART 2:

Correctness of Policy Iteration via Contraction
(Co)Induction

Long-Term Values in MDPs, (Co)Algebraically—Frank Feys, Helle Hansen & Larry Moss



Part 2 – Policy Iteration 15/18

Suppose σ is policy  find Vσ

Now we define a new policy σ′ by putting for each state s

σ′(s) = argmaxa∈A

{∑
s′∈S

P (s, a, s′) Vσ(s′)

}

Theorem (Howard, 1960)
The policy σ′ is a better policy than σ, i.e., σ′ ≥ σ.

If σ′ = σ, then σ is optimal.

Policy Iteration: start with any σ, iteratively obtain σ′, σ′′, σ′′′, . . ., and
continue until there is fixpoint ⇒ this outputs an optimal policy
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Part 2 – Policy Improvement Theorem 16/18

Policy Improvement Theorem (Howard, 1960)

Pσ′ ·Vσ ≥ Pσ ·Vσ ⇒ Vσ′ ≥ Vσ

Recall

σ′(s) = argmaxa∈A

{∑
s′∈S

P (s, a, s′) Vσ(s′)

}
⇒ antecedent holds

New proof using Contraction (Co)Induction
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Part 2 – Contraction (Co)Induction 17/18

Contraction (Co)Induction Theorem

Let M be a non-empty, complete, ordered (i.e., there is partial order ≤
s.t. ↑x = {y | x ≤ y} and ↓x = {y | y ≤ x} are closed) metric space.
If f : M → M is contractive and order-preserving, then the (unique)
fixpoint x∗ is

least pre-fixpoint (if f(x) ≤ x, then x∗ ≤ x),
greatest post-fixpoint (if x ≤ f(x), then x ≤ x∗).

Cf. Metric Coinduction (Kozen & Ruozzi, 2009) and (Denardo, 1967).

Proof of Policy Improvement (i.e., Pσ′ ·Vσ ≥ Pσ ·Vσ ⇒ Vσ′ ≥ Vσ).
Apply theorem to Ψπ : RS → RS (contractive and order-preserving X)

Ψπ(v) = u+ γPπv, and Vπ is its fixpoint.

Thus Pσ′ ·Vσ ≥ Pσ ·Vσ ⇒ Ψσ′(Vσ) ≥ Ψσ(Vσ) = Vσ ⇒ Vσ′ ≥ Vσ . �
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Conclusion – Contributions and Future Work 18/18

Contributions:
Value functions Vσ and V∗ from b-corecursive algebras

Coinductive proof of policy improvement theorem

Future work:

Generalize the setting (e.g., to stochastic games)

Make connections with related literature:
Combining semantics of computation and game theory (Pavlovic, 2009)
Coalgebraic formulation of infinite games (Abramsky & Winschel, 2017)
Open games (Hedges, Ghani, Winschel, Zahn, 2018)

Investigate contraction coinduction further and look for other
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