On Retracts of Algebras with Iteration

Sergey Goncharov^a Lutz Schröder^a Christoph Rauch^a Maciej Piróg^b

CMCS 2018, 14-15 April 2018, Thessaloniki, Greece

^aFriedrich-Alexander-Universität Erlangen-Nürnberg ^bUniwersytet Wrocławski (complete) Elgot monads ⊆ guarded Elgot monads ⊆ guarded (co-Cartesian) iteration categories ⊆ guarded traced categories¹

¹This FoSSaCS: Goncharov and Schröder 2018, Guarded Traced Categories

- (complete) Elgot monads ⊆ guarded Elgot monads ⊆ guarded (co-Cartesian) iteration categories ⊆ guarded traced categories¹
- What about algebras?

¹This FoSSaCS: Goncharov and Schröder 2018, Guarded Traced Categories

Elgot Monads for Computations

- Monads formalize generalized functions $f: X \to TY$
 - e.g. nondeterministic ($T = \mathcal{P}X$)
 - e.g. partial (with TX = X + 1)

- Monads formalize generalized functions $f: X \rightarrow TY$
 - e.g. nondeterministic ($T = \mathcal{P}X$)
 - e.g. partial (with TX = X + 1)
- T is a type constructor, together with
 - unit $\eta: X \to TX$
 - Kleisli lifting $(f : X \to TY) \mapsto (f^* : TX \to TY)$

inducing a category under

 $\mathsf{id} = \eta : X \to TX \qquad f \diamond g = (f : Y \to TZ)^* \circ (g : X \to TY)$

In Haskell's point-full notation: do $x \leftarrow p$; $f(x) = f^{\star}(p)$

Iteration for Monads

• An iteration operator assigns $f^{\dagger}: X \to TY$ to $f: X \to T(Y + X)$

Iteration for Monads

- An iteration operator assigns $f^{\dagger}: X \to TY$ to $f: X \to T(Y + X)$
- This yields a semantics for while loops:

$$\begin{split} & \text{while}(b: X \to \text{Bool}, p: X \to TX) \\ &= \left(\lambda x. \text{ if } b(x) \text{ then } (T \inf)(p(x)) \text{ else } (\eta \operatorname{inl})(x)\right)^{\dagger} \end{split}$$

(e.g. T is the partial store monad $(-\times S + 1)^S$)

Iteration for Monads

- An iteration operator assigns $f^{\dagger}: X \to TY$ to $f: X \to T(Y + X)$
- This yields a semantics for while loops:

while($b: X \to \text{Bool}, p: X \to TX$) = $(\lambda x. \text{ if } b(x) \text{ then } (T \text{ inr})(p(x)) \text{ else } (\eta \text{ inl})(x))^{\dagger}$

(e.g. T is the partial store monad $(-\times S + 1)^S$)

• Now, the theory of while-programs, featuring laws like

while
$$(b, p)(x) = \text{if } b(x) \text{ then do } x \leftarrow p(x);$$

while $(b, p)(x) \text{ else } \eta(x)$

can be couched in terms of $(-)^{\dagger}$

Elgot Monads (1/2)

A monad T is a (complete) Elgot monad² if it is equipped with an operator $(f : X \to T(Y + X)) \mapsto (f^{\dagger} : X \to TY)$ satisfying

Fixpoint:

Naturality:

²Adámek, Milius, and Velebil, 2010, Equational properties of iterative monads

Elgot Monads (2/2)

Codiagonal:

=

↓

=

Uniformity:

Our resent work³ implies that Elgot monads are precisely characterized as iteration-congruent retracts:

$$\rho:\nu\gamma.-+T\gamma \iff T:\upsilon$$

(ρ is a split epi monad morphism and $\rho f = \rho g \implies \rho f^{\dagger} = \rho g^{\dagger}$) where the left monad is completely iterative, i.e. iteration is partial, but unique

 $^{^{3}\}mbox{Goncharov},$ Schröder, Rauch, and Piróg 2017, Unifying Guarded and Unguarded Iteration

Capretta's delay monad:

• In Set

 $\nu\gamma.\,X+\gamma \iff X+1$

⁴Veltri 2017, A Type-Theoretical Study of Nontermination

Capretta's delay monad:

• In Set

$$\nu\gamma.X + \gamma \iff X + 1$$

• In general, building

$$DX = \nu \gamma. X + \gamma \iff \widetilde{D}X$$

equalizing id : $DX \rightarrow DX$ and later : $DX \rightarrow DX$ requires choice principles like countable choice⁴

⁴Veltri 2017, A Type-Theoretical Study of Nontermination

Elgot Algebras for Data

- \bullet Powerset monad ${\mathcal P}$ is Elgot, and
 - The free algebra $(\mathcal{P}1 \cong 2, \Diamond : \mathcal{P}2 \to 2)$ supports iteration $(f: X \to 2 + \mathcal{P}X) \mapsto (f^{\ddagger}: X \to 2)$ inherited from \mathcal{P}
 - But also the dual $(\mathcal{P}1 \cong 2, \Box: \mathcal{P}2 \to 2)$ supports iteration, albeit not inherited from \mathcal{P}

This is relevant for weakest precondition semantics⁵

An Elgot algebra is an *H*-algebra (*A*, α : *HA* → *A*) with an axiomatic iteration operator (*f* : *X* → *A* + *HX*) → (*f*[‡] : *X* → *A*) for *H* being an arbitrary endofunctor

 $^{^{5}\}mbox{Hasuo, 2015},$ Generic weakest precondition semantics from monads enriched with order

Axiomatizing of Elgot Algebras: Fixpoint

Let us depict $X \rightarrow Y + HZ$ as

and thus adapt Fixpoint as

(merging feedforward wires amounts to calling α)

... Uniformity as

Naturality and **Codiagonal** cannot be adapted (no Bekić lemma for algebras!) and are replaced with

Compositionality:

⁶Adámek, Milius, and Velebil, 2006, Elgot Algebras

Naturality and **Codiagonal** cannot be adapted (no Bekić lemma for algebras!) and are replaced with

Compositionality:

Definition: an *H*-algebra (A, α) is a (complete) Elgot algebra if it is equipped with $(-)^{\ddagger}$ satisfies **Fixpoint**, **Uniformity** and **Compositionality**⁶

⁶Adámek, Milius, and Velebil, 2006, Elgot Algebras

Results

Theorem:

- 1. Given an Elgot *H*-algebra $(A, \alpha, (-)^{\ddagger})$ and an *H*-algebra (B, β) , any iteration-congruent retraction $\rho : A \to B$ induces a canonical Elgot *H*-algebra structure on B
- 2. Specifically, every Elgot *H*-algebra $(A, \alpha, (-)^{\ddagger})$ is obtained as an iteration-congruent retract of $(\nu\gamma. A + H\gamma = H^{\infty}A, \mu, ...)$ under $(\text{out} : H^{\infty}A \rightarrow A + HH^{\infty}A)^{\ddagger}$

(assuming that all the involved final coalgebras exist)

Results

Theorem:

- 1. Given an Elgot *H*-algebra $(A, \alpha, (-)^{\ddagger})$ and an *H*-algebra (B, β) , any iteration-congruent retraction $\rho : A \to B$ induces a canonical Elgot *H*-algebra structure on B
- 2. Specifically, every Elgot *H*-algebra $(A, \alpha, (-)^{\ddagger})$ is obtained as an iteration-congruent retract of $(\nu\gamma. A + H\gamma = H^{\infty}A, \mu, ...)$ under $(\text{out} : H^{\infty}A \rightarrow A + HH^{\infty}A)^{\ddagger}$

(assuming that all the involved final coalgebras exist)

Conjecture: A monad \mathbb{T} is an Elgot monad iff the free \mathbb{T} -algebras TX are Elgot T-algebras and the emerging retractions $T^{\infty}X \to TX$ jointly form a monad morphism

(assuming all the involved final coalgebras exist)

References

Jiří Adámek, Stefan Milius, and Jiří Velebil. Elgot algebras. *Log. Methods Comput. Sci.*, 2(5:4):1–31, 2006.

- Jiří Adámek, Stefan Milius, and Ji Velebil. Equational properties of iterative monads. *Inf. Comput.*, 208(12):1306–1348, 2010.
- Sergey Goncharov and Lutz Schröder. Guarded traced categories. In Christel Baier and Ugo Dal Lago, editors, *Proc. 21th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2018).* Springer, 2018.

- Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded and unguarded iteration. In Javier Esparza and Andrzej Murawski, editors, *Foundations of Software Science and Computation Structures, FoSSaCS 2017*, volume 10203, pages 517–533. Springer, 2017.
- Ichiro Hasuo. Generic weakest precondition semantics from monads enriched with order. *Theoretical Computer Science*, 604:2 – 29, 2015. Coalgebraic Methods in Computer Science.
- Niccoló Veltri. *A Type-Theoretical Study of Nontermination*. PhD thesis, Tallinn University of Technology, 2017.

Axioms for Iteration: Conway Operators

Let T be a monad with a (total!) iteration operator $-^{\dagger}$. It is called a Conway operator if it additionally satisfies

Dinaturality:

Codiagonal:

