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Definition (Distribution functor)
The distribution functor D : Set→ Set is defined by

D(X ) = {p : X → [0, 1] |
∑
x∈X

p(x) = 1}

D(f )(u) = y 7→
∑

x∈f −1({y})
u(x)

Definition (Subdistribution functor)

S(X ) = {p : X → [0, 1] |
∑
x∈X

p(x) ≤ 1}
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Finite alphabet A
Notation : 1 = {∗} (termination singleton).

Definition
A probabilistic transition system (PTS) α is a coalgebra for the
functor D(A×−+ 1), i.e.,

α : X → D(A× X + 1)

. α(x) is a probability on A× X + 1.

. Termination probability is α(x)(∗).

. Transition x a→ y probability is α(x)(a, y).
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A = {a, b}, X = {x , y} α : X → D(A× X + 1)

x

y

∗

a,1/2

1/2

a,1/2

b,1/2

JxK(ε) = 1
2 JyK(b) = 1

2 ·JxK(ε) = 1
4 JyK(abab) = 1

32
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Definition (Trace semantics of α)
By induction on words w ∈ A∗.

JxK(ε) = α(x)(∗) JxK(aw) =
∑
y∈X

α(x)(a, y) · JyK(w)

ya,1/2 b,1/2

za,3/4 b,1/4
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A∞ = A∗ ∪ Aω with concatenation A∗ × A∞ → A∞

Definition (Measurable sets of words)
Let S∞ = {∅}∪{{w} | w ∈ A∗}∪{wA∞ | w ∈ A∗}. The σ-algebra
of measurable sets of words is defined by ΣA∞ = σA∞(S∞).

. {w} for any w ∈ A∞

. Any countable language

. Any language of finite words

. ∅,A∗,Aω,A∞

. Concatenation LS (L ⊆ A∗, M ∈ ΣA∞)
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Theorem (Extension)
Let m : S∞ → R+ be a map such that m(∅) = 0. Are equivalent :
(i) There exists a unique measure m̃ on ΣA∞ s.t. m̃|S∞ = m.
(ii) For all w ∈ A∗,m(wA∞) = m(w) +

∑
a∈A m(waA∞)
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JyK(bA∞) = 1
2 6=

1
4 = JzK(bA∞)
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Coalgebraic construction of the trace semantics
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Our construction

X SX M(A∞) ([0, 1]× [0, 1])A∗

D(A× X + 1)

S(A× X + 1) [0, 1]× [0, 1]× (SX )A [0, 1]× [0, 1]× (M(A∞))A [0, 1]× [0, 1]× (([0, 1]× [0, 1])A∗)A

J−K

α

ιA×X+1

ηX [−]

α# Π ω

eX

ϕ

id × ϕA

α̃
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M(A∞) is the space of sub-probability measures on (A∞,ΣA∞).

Definition
The measure coalgebra is defined for all m ∈M(A∞) by

Π(m) = 〈m(A∞),m(ε), a 7→ ma〉

. m(A∞) is the total mass

. m(ε) is the termination mass

. The measure derivative ma ∈M(A∞) is defined by
ma(S) = m(aS) for all measurable S.
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Theorem (Coincidence with the former trace semantics)
Let α : X → D(A× X + 1). The morphism J−K obtained via this
construction satisfies

JxK(ε) = α(x)(∗) JxK(aw) =
∑
y∈X

α(x)(a, y) · JyK(w)

JxK(εA∞) = 1 JxK(awA∞) =
∑
y∈X

α(x)(a, y) · JyK(wA∞)
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Section 3

Algorithm for trace equivalence

JxK = JyK ?
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Bisimulation up-to congruence
Our algorithm
Example

Take a PTS
α : X → D(A× X + 1)

Determinize it into the Moore automaton

α = 〈α⊕, α∗, a 7→ αa〉 : RX
ω → R× R×

(
RX

ω

)A

. Output α⊕ : RX → [0, 1] (total mass)

. Output α∗ : RX → [0, 1] (termination mass)

. (Deterministic) Transitions αa : RX → RX

α⊕(u) =
∑
x∈X

u(x)

α∗(u) =
∑
x∈X

u(x) · α(x)(∗)

αa(u) = y 7→
∑
x∈X

u(x) · α(x)(a, y)
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Definition (Congruence closure)
The congruence closure of R ⊆ RX

ω × RX
ω is the least relation such

that
. R ⊆ c(R)
. c(R) is an equivalence relation
. c(R) is closed under linear combinations

A bisimulation up-to congruence is a relation R ⊆ RX
ω × RX

ω such
that for all (u, v) ∈ R,

α⊕(u) = α⊕(v)

α∗(u) = α∗(v)

(αa(u), αa(v)) ∈ c(R)
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Algorithm for trace equivalence
Continuous trace semantics

Bisimulation up-to congruence
Our algorithm
Example

Theorem
For any x , y ∈ X, JxK = JyK iff there exists a bisimulation up-to
congruence R ⊆ RX

ω × RX
ω such that (δx , δy ) ∈ R.

δx : y 7→ δx ,y
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HKC∞(x , y)

(1) R := ∅; todo := ∅
(2) insert (δx , δy ) into todo
(3) while todo is not empty do
(3.1) extract (u, v) from todo
(3.2) if (u, v) ∈ c(R) then continue
(3.3) if α⊕(u) 6= α⊕(v) then return false
(3.3’) if α∗(u) 6= α∗(v) then return false
(3.4) for all a ∈ A, insert (αa(u), αa(v)) into todo
(3.5) insert (u, v) into R
(4) return true
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Theorem (Correctness, termination)
Whenever HKC∞(x , y) terminates, it returns true iff JxK = JyK.
Moreover, if X is finite then HKC∞(x , y) always terminates.
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Bisimulation up-to congruence
Our algorithm
Example

x y z

∗

i

a,1/6

1/3

a,1/2

a,1/3

2/3

a,1/3

1/3

a,1/3

a,1
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Bisimulation up-to congruence
Our algorithm
Example

X = {x , y , z , i}


·
·
·
·



x
y
z
i


(
α⊕
α∗

)
' L =

(
1 1 1 1
1/3 2/3 1/3 0

)

αa ' Ma =


0 0 0 0
1/6 1/3 0 0
0 0 1/3 0
1/2 0 1/3 1


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Coalgebraic construction of the trace semantics
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Continuous trace semantics

Bisimulation up-to congruence
Our algorithm
Example


1
0
0
0




0
0
1
0




0

1/6
0

1/2




0
0

1/3
1/3




0

1/18
0
1/2




0
0
1/9
4/9



...

...


0

1/(2× 3n)
0

1/2




0
0

1/3n

(1− 3−n)/2



...

...

a

a

a

a

a

a

a

a

a

a
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Bisimulation up-to congruence
Our algorithm
Example

Step (3.1) (3.2) (3.3) (3.4) (3.5)
Loop (u, v) extracted

from todo
Check

(u, v) ∈ c(R)
Check Lu = Lv (Mau,Mav) added

to todo
Cardinality

of R

1


1
0
0
0

 ,

0
0
1
0

 Fail
(

1
1/3

)
=
(

1
1/3

) 
0
1/6
0
1/2

 ,


0
0
1/3
1/3

 1

2


0
1/6
0
1/2

 ,


0
0
1/3
1/3

 Fail
(
2/3
1/9

)
=
(
2/3
1/9

) 
0

1/18
0
1/2

 ,


0
0

1/9
4/9

 2

3


0

1/18
0

1/2

 ,


0
0
1/9
4/9

 Success / / 2

4 Empty / / / /
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

Section 4

Continuous trace semantics

∑
−→

∫
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

X SX M(A∞) ([0, 1]× [0, 1])A∗

D(A× X + 1)

S(A× X + 1) [0, 1]× [0, 1]× (SX )A [0, 1]× [0, 1]× (M(A∞))A [0, 1]× [0, 1]× (([0, 1]× [0, 1])A∗)A

J−K

α

ιA×X+1

ηX [−]

α# Π ω

eX

ϕ

id × ϕA

α̃
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

Replace
. Set with Meas (measurable spaces and measurable functions)

. D : Set→ Set with the Giry monad D : Meas→Meas
A PTS is a coalgebra α : X → D(A× X + 1) in Meas.

Definition (Trace semantics of α, Kerstan 2013)
By induction on words w ∈ A∗. Here ta(x)(S) = α(x)({a} × S).

JxK(ε) = α(x)(1)
JxK(εA∞) = α(x)(A× X + 1)

JxK(aw) =
∫

X
J−K(w)dta(x)

JxK(awA∞) =
∫

X
J−K(wA∞)dta(x)
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

Conclusion
. This trace semantics coincides with the known trace
semantics, for both discrete and continuous systems.

. This approach is adapted for the discrete case (small amount
of measure theory).

. This approach yields an algorithm which computes trace
equivalence.
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Definition of the trace semantics
Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

Issues and prospects
. Is it possible to fit into the framework of
Jacobs/Silva/Sokolova (2015) ?

. Determinization of a PTS amounts to the passage from a
kernel to a stochastic operator
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THANK YOU !
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Coalgebraic construction of the trace semantics

Algorithm for trace equivalence
Continuous trace semantics

Just a small amount of measure theory
From discrete to continuous

Filippo Bonchi and Damien Pous.
Checking NFA equivalence with bisimulations up to
congruence.
In Principle of Programming Languages (POPL), pages
457–468, Roma, Italy, January 2013. ACM.
16p.

Bart Jacobs, Alexandra Silva, and Ana Sokolova.
Trace semantics via determinization.
Journal of Computer and System Sciences, 81(5) :859 – 879,
2015.
11th International Workshop on Coalgebraic Methods in
Computer Science, CMCS 2012 (Selected Papers).
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Henning Kerstan and Barbara König.
Coalgebraic trace semantics for continuous probabilistic
transition systems.
Logical Methods in Computer Science, 9(4), 2013.
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