(In)finite Trace Equivalence of Probabilistic Transition Systems

Alexandre GOY (speaker), Jurriaan ROT

CMCS 2018

14 April 2018

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 Section 1 : Definition of the trace semantics of probabilistic transition systems
 From the work of Kerstan (2013).

 Section 2 : Coalgebraic construction of the trace semantics Original work with inspiration from Jacobs/Silva/Sokolova (2015).

Section 3 : Algorithm for trace equivalence
 Original work with inspiration from Bonchi/Pous (2013).

Section 4 : Continuous trace semantics

・ 同 ト ・ ヨ ト ・ ヨ ト

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

Section 1

Definition of the trace semantics

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Distribution functor)

The distribution functor $\mathcal{D}: \textbf{Set} \rightarrow \textbf{Set}$ is defined by

$$\mathcal{D}(X) = \{ p: X
ightarrow [0,1] \mid \sum_{x \in X} p(x) = 1 \}$$

$$\mathcal{D}(f)(u) = y \mapsto \sum_{x \in f^{-1}(\{y\})} u(x)$$

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Distribution functor)

The distribution functor $\mathcal{D}: \textbf{Set} \rightarrow \textbf{Set}$ is defined by

$$\mathcal{D}(X)=\{p:X
ightarrow [0,1]\mid \sum_{x\in X}p(x)=1\}$$

$$\mathcal{D}(f)(u) = y \mapsto \sum_{x \in f^{-1}(\{y\})} u(x)$$

Definition (Subdistribution functor)

$$\mathcal{S}(X) = \{ p: X
ightarrow [0,1] \mid \sum_{x \in X} p(x) \leq 1 \}$$

Probabilistic transition systems Measurable sets of words The trace measure

Finite alphabet A Notation : $1 = \{*\}$ (termination singleton).

Definition

A probabilistic transition system (PTS) α is a coalgebra for the functor $\mathcal{D}(A \times -+1)$, i.e.,

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

- $\triangleright \ \alpha(x)$ is a probability on $A \times X + 1$.
- ▷ Termination probability is $\alpha(x)(*)$.
- ▷ Transition $x \xrightarrow{a} y$ probability is $\alpha(x)(a, y)$.

くロ と く 同 と く ヨ と 一

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

$$A = \{a, b\}, X = \{x, y\}$$

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

æ

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

$$A = \{a, b\}, X = \{x, y\}$$

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

э

 $\llbracket x \rrbracket (\varepsilon) = \frac{1}{2}$

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

$$A = \{a, b\}, X = \{x, y\}$$

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

æ

$$\llbracket x \rrbracket(\varepsilon) = \frac{1}{2} \qquad \qquad \llbracket y \rrbracket(b) = \frac{1}{2} \cdot \llbracket x \rrbracket(\varepsilon) = \frac{1}{4}$$

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

$$A = \{a, b\}, X = \{x, y\}$$

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

æ

$$\llbracket x \rrbracket(\varepsilon) = \frac{1}{2} \qquad \llbracket y \rrbracket(b) = \frac{1}{2} \cdot \llbracket x \rrbracket(\varepsilon) = \frac{1}{4} \qquad \llbracket y \rrbracket(abab) = \frac{1}{32}$$

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(\varepsilon) = \alpha(x)(*) \qquad \llbracket x \rrbracket(aw) = \sum_{y \in X} \alpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$$

イロト イヨト イヨト

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(\varepsilon) = lpha(x)(*)$$
 $\llbracket x \rrbracket(aw) = \sum_{y \in X} lpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$

(日)

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(arepsilon) = lpha(x)(*) \qquad \llbracket x \rrbracket(\mathit{aw}) = \sum_{y \in X} lpha(x)(\mathit{a},y) \cdot \llbracket y \rrbracket(w)$$

< ロ > < 同 > < 三 > < 三 >

Probabilistic transition systems Measurable sets of words The trace measure

$$A^{\infty} = A^* \cup A^{\omega}$$
 with concatenation $A^* imes A^{\infty} o A^{\infty}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Probabilistic transition systems Measurable sets of words The trace measure

$$A^\infty = A^* \cup A^\omega$$
 with concatenation $A^* imes A^\infty o A^\infty$

Definition (Measurable sets of words)

Let $S_{\infty} = \{\emptyset\} \cup \{\{w\} \mid w \in A^*\} \cup \{wA^{\infty} \mid w \in A^*\}$. The σ -algebra of measurable sets of words is defined by $\Sigma_{A^{\infty}} = \sigma_{A^{\infty}}(S_{\infty})$.

イロト イヨト イヨト

Probabilistic transition systems Measurable sets of words The trace measure

 $A^\infty = A^* \cup A^\omega$ with concatenation $A^* imes A^\infty o A^\infty$

Definition (Measurable sets of words)

Let $S_{\infty} = \{\emptyset\} \cup \{\{w\} \mid w \in A^*\} \cup \{wA^{\infty} \mid w \in A^*\}$. The σ -algebra of measurable sets of words is defined by $\Sigma_{A^{\infty}} = \sigma_{A^{\infty}}(S_{\infty})$.

- ▷ $\{w\}$ for any $w \in A^\infty$
- Any countable language
- Any language of finite words
- $\triangleright \ \emptyset, A^*, A^{\omega}, A^{\infty}$
- ▷ Concatenation LS ($L \subseteq A^*$, $M \in \Sigma_{A^{\infty}}$)

イロト イポト イヨト イヨト 三日

Coalgebraic construction of the trace semantics Algorithm for trace equivalence Continuous trace semantics Probabilistic transition systems Measurable sets of words The trace measure

Theorem (Extension)

Let $m : S_{\infty} \to \mathbb{R}_+$ be a map such that $m(\emptyset) = 0$. Are equivalent : (i) There exists a unique measure \tilde{m} on $\Sigma_{A^{\infty}}$ s.t. $\tilde{m}_{|S_{\infty}} = m$. (ii) For all $w \in A^*, m(wA^{\infty}) = m(w) + \sum_{a \in A} m(waA^{\infty})$

イロト 不得 トイヨト イヨト 三日

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(\varepsilon) = lpha(x)(*)$$
 $\llbracket x \rrbracket(aw) = \sum_{y \in X} lpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$

イロト イヨト イヨト

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(\varepsilon) = \alpha(x)(*) \qquad \llbracket x \rrbracket(aw) = \sum_{y \in X} \alpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$$

$$\llbracket x \rrbracket (\varepsilon A^{\infty}) = 1 \qquad \llbracket x \rrbracket (awA^{\infty}) = \sum_{y \in X} \alpha(x) (a, y) \cdot \llbracket y \rrbracket (wA^{\infty})$$

Probabilistic transition systems Measurable sets of words The trace measure

Definition (Trace semantics of α)

By induction on words $w \in A^*$.

$$\llbracket x \rrbracket(\varepsilon) = \alpha(x)(*) \qquad \llbracket x \rrbracket(aw) = \sum_{y \in X} \alpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$$

$$\llbracket x
rbracket (arepsilon A^\infty) = 1$$
 $\llbracket x
rbracket (awA^\infty) = \sum_{y \in X} lpha(x)(a,y) \cdot \llbracket y
rbracket (wA^\infty)$

・ロト ・回 ト ・ ヨト ・ ヨト …

Our construction

Section 2

Coalgebraic construction of the trace semantics

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Our construction

 $\begin{array}{c} X \\ \alpha \downarrow \\ \mathcal{D}(A \times X + 1) \end{array}$

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Ξ.

Our construction

 $id \times \varphi^A$

イロト イボト イヨト イヨト

 $id \times \varphi^A$

イロト イボト イヨト イヨト

 $id \times \varphi^A$

イロト イポト イヨト イヨト

Our construction

 $\mathcal{M}(A^{\infty})$ is the space of sub-probability measures on $(A^{\infty}, \Sigma_{A^{\infty}})$.

Definition

The measure coalgebra is defined for all $m \in \mathcal{M}(A^\infty)$ by

$$\Pi(m) = \langle m(A^{\infty}), m(\varepsilon), a \mapsto m_a \rangle$$

- \triangleright $m(A^{\infty})$ is the total mass
- \triangleright $m(\varepsilon)$ is the termination mass
- ▷ The measure derivative $m_a \in \mathcal{M}(A^\infty)$ is defined by $m_a(S) = m(aS)$ for all measurable *S*.

・ 何 ト ・ ヨ ト ・ ヨ ト

 $id \times \varphi^A$

イロト イポト イヨト イヨト

 $id \times \varphi^A$

イロト イボト イヨト イヨト

Our construction

Theorem (Coincidence with the former trace semantics)

Let $\alpha : X \to \mathcal{D}(A \times X + 1)$. The morphism [-] obtained via this construction satisfies

$$\llbracket x \rrbracket(\varepsilon) = \alpha(x)(*) \qquad \llbracket x \rrbracket(aw) = \sum_{y \in X} \alpha(x)(a, y) \cdot \llbracket y \rrbracket(w)$$

$$\llbracket x \rrbracket (\varepsilon A^{\infty}) = 1 \qquad \llbracket x \rrbracket (awA^{\infty}) = \sum_{y \in X} \alpha(x)(a, y) \cdot \llbracket y \rrbracket (wA^{\infty})$$

イロト イポト イヨト イヨト

Bisimulation up-to congruence Dur algorithm Example

Section 3

Algorithm for trace equivalence

$\llbracket x \rrbracket = \llbracket y \rrbracket ?$

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

イロト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

Take a PTS

 $\alpha: X \to \mathcal{D}(A \times X + 1)$

イロト イボト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

Take a PTS

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

Determinize it into the Moore automaton

$$\overline{\alpha} = \langle \overline{\alpha}_{\oplus}, \overline{\alpha}_*, \boldsymbol{a} \mapsto \overline{\alpha}_{\boldsymbol{a}} \rangle : \mathbb{R}^{\boldsymbol{X}}_{\omega} \to \mathbb{R} \times \mathbb{R} \times \left(\mathbb{R}^{\boldsymbol{X}}_{\omega} \right)^{\boldsymbol{A}}$$

イロト イボト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

Take a PTS

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

Determinize it into the Moore automaton

$$\overline{\alpha} = \langle \overline{\alpha}_{\oplus}, \overline{\alpha}_*, \boldsymbol{a} \mapsto \overline{\alpha}_{\boldsymbol{a}} \rangle : \mathbb{R}^X_{\omega} \to \mathbb{R} \times \mathbb{R} \times \left(\mathbb{R}^X_{\omega} \right)^A$$

- $\triangleright \text{ Output } \overline{\alpha}_{\oplus} : \mathbb{R}^{X} \to [0,1] \text{ (total mass)}$
- \triangleright Output $\overline{\alpha}_* : \mathbb{R}^X \to [0,1]$ (termination mass)
- $\triangleright \text{ (Deterministic) Transitions } \overline{\alpha}_{a} : \mathbb{R}^{X} \to \mathbb{R}^{X}$

< 同 ト < 三 ト < 三 ト

Bisimulation up-to congruence Our algorithm Example

Take a PTS

$$\alpha: X \to \mathcal{D}(A \times X + 1)$$

Determinize it into the Moore automaton

$$\overline{\alpha} = \langle \overline{\alpha}_{\oplus}, \overline{\alpha}_*, \boldsymbol{a} \mapsto \overline{\alpha}_{\boldsymbol{a}} \rangle : \mathbb{R}^{\boldsymbol{X}}_{\omega} \to \mathbb{R} \times \mathbb{R} \times \left(\mathbb{R}^{\boldsymbol{X}}_{\omega} \right)^{\boldsymbol{A}}$$

$$\overline{\alpha}_{\oplus}(u) = \sum_{x \in X} u(x)$$
$$\overline{\alpha}_{*}(u) = \sum_{x \in X} u(x) \cdot \alpha(x)(*)$$
$$\overline{\alpha}_{a}(u) = y \mapsto \sum_{x \in X} u(x) \cdot \alpha(x)(a, y)$$

イロト イボト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

Definition (Congruence closure)

The congruence closure of $R \subseteq \mathbb{R}^X_{\omega} \times \mathbb{R}^X_{\omega}$ is the least relation such that

- $\triangleright R \subseteq c(R)$
- \triangleright c(R) is an equivalence relation
- \triangleright c(R) is closed under linear combinations

・ 同 ト ・ ヨ ト ・ ヨ ト

Bisimulation up-to congruence Our algorithm Example

Definition (Congruence closure)

The congruence closure of $R \subseteq \mathbb{R}^X_{\omega} \times \mathbb{R}^X_{\omega}$ is the least relation such that

- $\triangleright R \subseteq c(R)$
- \triangleright c(R) is an equivalence relation
- \triangleright c(R) is closed under linear combinations

A bisimulation up-to congruence is a relation $R \subseteq \mathbb{R}^X_{\omega} \times \mathbb{R}^X_{\omega}$ such that for all $(u, v) \in R$,

$$\overline{lpha}_{\oplus}(u) = \overline{lpha}_{\oplus}(v)$$

 $\overline{lpha}_{*}(u) = \overline{lpha}_{*}(v)$
 $(\overline{lpha}_{a}(u), \overline{lpha}_{a}(v)) \in c(R)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bisimulation up-to congruence Our algorithm Example

Theorem

For any $x, y \in X$, $[\![x]\!] = [\![y]\!]$ iff there exists a bisimulation up-to congruence $R \subseteq \mathbb{R}^X_{\omega} \times \mathbb{R}^X_{\omega}$ such that $(\delta_x, \delta_y) \in R$.

イロト イポト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

Theorem

For any $x, y \in X$, $[\![x]\!] = [\![y]\!]$ iff there exists a bisimulation up-to congruence $R \subseteq \mathbb{R}^X_{\omega} \times \mathbb{R}^X_{\omega}$ such that $(\delta_x, \delta_y) \in R$.

 $\delta_x : y \mapsto \delta_{x,y}$

イロト イヨト イヨト

Bisimulation up-to congruence Our algorithm Example

$\mathrm{HKC}^{\infty}(x,y)$

(1) $R := \emptyset$; $todo := \emptyset$ (2) insert (δ_x, δ_y) into todo(3) while todo is not empty do (3.1) extract (u, v) from todo(3.2) if $(u, v) \in c(R)$ then continue (3.3) if $\overline{\alpha}_{\oplus}(u) \neq \overline{\alpha}_{\oplus}(v)$ then return false (3.3') if $\overline{\alpha}_*(u) \neq \overline{\alpha}_*(v)$ then return false (3.4) for all $a \in A$, insert $(\overline{\alpha}_a(u), \overline{\alpha}_a(v))$ into todo(3.5) insert (u, v) into R(4) return true

Bisimulation up-to congruence Our algorithm Example

Theorem (Correctness, termination)

Whenever $HKC^{\infty}(x, y)$ terminates, it returns true iff $[\![x]\!] = [\![y]\!]$. Moreover, if X is finite then $HKC^{\infty}(x, y)$ always terminates.

Bisimulation up-to congruence Our algorithm Example

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Bisimulation up-to congruence Our algorithm Example

$$X = \{x, y, z, i\}$$

< ロ > < 同 > < 三 > < 三 > <

Bisimulation up-to congruence Our algorithm Example

イロト イポト イヨト イヨト 三日

Bisimulation up-to congruence Our algorithm Example

Step	(3.1)	(3.2)	(3.3)	(3.4)	(3.5)
Loop	(u, v) extracted	Check	Check $Lu = Lv$	$(M_a u, M_a v)$ added	Cardinality
	from todo	$(u,v) \in c(R)$		to todo	of R
1	$\begin{pmatrix}1\\0\\0\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\\0\end{pmatrix}$	Fail	$\begin{pmatrix} 1\\1/3 \end{pmatrix} = \begin{pmatrix} 1\\1/3 \end{pmatrix}$	$\begin{pmatrix} 0\\1/6\\0\\1/2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1/3\\1/3 \end{pmatrix}$	1
2	$\begin{pmatrix} 0\\1/6\\0\\1/2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1/3\\1/3 \end{pmatrix}$	Fail	$\begin{pmatrix} 2/3\\ 1/9 \end{pmatrix} = \begin{pmatrix} 2/3\\ 1/9 \end{pmatrix}$	$ \left(\begin{array}{c} 0\\ 1/18\\ 0\\ 1/2 \end{array}\right), \begin{pmatrix} 0\\ 0\\ 1/9\\ 4/9 \end{array}\right) $	2
3	$ \begin{pmatrix} 0 \\ 1/18 \\ 0 \\ 1/2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1/9 \\ 4/9 \end{pmatrix} $	Success	/	/	2
4	Empty	/	/	/	/

æ.,

Just a small amount of measure theory From discrete to continuous

Section 4

Continuous trace semantics

$\sum \longrightarrow \int$

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

Just a small amount of measure theory From discrete to continuous

・ロト ・回ト ・ヨト ・ヨト

Just a small amount of measure theory From discrete to continuous

Replace

▷ Set with Meas (measurable spaces and measurable functions)

イロト イヨト イヨト

Just a small amount of measure theory From discrete to continuous

Replace

- ▷ Set with Meas (measurable spaces and measurable functions)
- $\triangleright \ \mathcal{D}: \textbf{Set} \rightarrow \textbf{Set}$ with the Giry monad $\mathbb{D}: \textbf{Meas} \rightarrow \textbf{Meas}$

< ロ > < 同 > < 三 > < 三 >

Just a small amount of measure theory From discrete to continuous

Replace

- ▷ Set with Meas (measurable spaces and measurable functions)
- $\triangleright \ \mathcal{D}: \textbf{Set} \rightarrow \textbf{Set}$ with the Giry monad $\mathbb{D}: \textbf{Meas} \rightarrow \textbf{Meas}$
- A PTS is a coalgebra $\alpha: X \to \mathbb{D}(A \times X + 1)$ in **Meas**.

Replace

- ▷ Set with Meas (measurable spaces and measurable functions)
- $\triangleright \ \mathcal{D}: \textbf{Set} \rightarrow \textbf{Set}$ with the Giry monad $\mathbb{D}: \textbf{Meas} \rightarrow \textbf{Meas}$
- A PTS is a coalgebra $\alpha: X \to \mathbb{D}(A \times X + 1)$ in **Meas**.

Definition (Trace semantics of α , Kerstan 2013)

By induction on words $w \in A^*$. Here $t_a(x)(S) = \alpha(x)(\{a\} \times S)$.

$$\begin{split} & [x](\varepsilon) = \alpha(x)(1) \\ & [x](\varepsilon A^{\infty}) = \alpha(x)(A \times X + 1) \\ & [x](aw) = \int_{X} [-](w) dt_a(x) \\ & [x](awA^{\infty}) = \int_{X} [-](wA^{\infty}) dt_a(x) \end{split}$$

- 4 同 6 4 日 6 4 日 6

Just a small amount of measure theory From discrete to continuous

・ロト ・回 ト ・ ヨト ・ ヨト …

Just a small amount of measure theory From discrete to continuous

・ロト ・回 ト ・ ヨト ・ ヨト …

Just a small amount of measure theory From discrete to continuous

Conclusion

- This trace semantics coincides with the known trace semantics, for both discrete and continuous systems.
- ▷ This approach is adapted for the discrete case (small amount of measure theory).
- This approach yields an algorithm which computes trace equivalence.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Just a small amount of measure theory From discrete to continuous

Issues and prospects

- Is it possible to fit into the framework of Jacobs/Silva/Sokolova (2015)?
- Determinization of a PTS amounts to the passage from a kernel to a stochastic operator

・ 同 ト ・ ヨ ト ・ ヨ ト

Just a small amount of measure theory From discrete to continuous

THANK YOU!

Alexandre GOY (speaker), Jurriaan ROT (In)finite Trace Equivalence of Probabilistic Transition Systems

イロト イヨト イヨト

Just a small amount of measure theory From discrete to continuous

Filippo Bonchi and Damien Pous.

Checking NFA equivalence with bisimulations up to congruence.

In *Principle of Programming Languages (POPL)*, pages 457–468, Roma, Italy, January 2013. ACM. 16p.

Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization.

Journal of Computer and System Sciences, 81(5) :859 – 879, 2015.

11th International Workshop on Coalgebraic Methods in Computer Science, CMCS 2012 (Selected Papers).

< ロ > < 同 > < 回 > < 回 > .

Just a small amount of measure theory From discrete to continuous

Henning Kerstan and Barbara König.

Coalgebraic trace semantics for continuous probabilistic transition systems.

Logical Methods in Computer Science, 9(4), 2013.

・ 同 ト ・ ヨ ト ・ ヨ ト