On Algebras with Effectful Iteration

Stefan Milius, Jiří Adámek, and Henning Urbat

TECHNISCHE FAKULTÄT

Motivation

Functors $F: \mathscr{A} \to \mathscr{A}$ model behaviour types of state-based systems

Final *F*-coalgebra νF = fully abstract behaviour domain for all *F*-coalgebras

Lambek's Lemma. $t: \nu F \to F(\nu F)$ is a fixed point of *F*.

What if we are only interested in "finite" coalgebras? Then final semantics may not be satisfactory:

Sunk: *vF* contains behaviour not realized by any finite *F*-coalgebra.
 Confusion: two states may be identified even though they are not behaviourally equivalent on the level of finite coalgebras

Solution: replace νF by a coalgebra capturing precisely finite behaviours.

Motivation

Theorem. F is a proper functor on algebraic category iff Milius, CALCO 2017.

$$\varphi F \cong \varrho F \cong \vartheta F \rightarrowtail \nu F$$

New Result. A universal property of φF as an *F*-algebra.

Examples of Rational Fixed Points

FX	coalgebras	u F	$\rho F \cong \vartheta F$
$\{0,1\} \times X^{\Sigma}$	deterministic automata	$\mathcal{L} = 2^{\Sigma^*}$	regular languages
$\{0,1\} imes \mathcal{P}_{f}(X)^{\Sigma}$	non-determ. automata	branching behavior (up to bisimilarity)	finite state branch- ing behaviors
$\coprod_{n \in \mathbb{N}} \Sigma_n \times X^n$	Σ -automata	Σ -trees	rational Σ -trees
$k \times X$	stream automata	k^{ω}	eventually periodic streams
$\mathscr{A} = Vec_k$			
$FX = k \times X$		k^{ω}	rational streams
$\mathscr{A} = $ S-Mod for S a Noetherian semiring			
$FX = \mathbb{S} \times X^{\Sigma}$ carrier \mathbb{S}^n	weighted automata	formal power-series \mathbb{S}^{Σ^*}	<mark>rational</mark> formal power series

On Algebras with Effectful Iteration | CMCS | April 14-15, 2018

... of ϑF (which are likely $\ncong \varrho F$)

Milius, Pattinson, Wißmann, FoSSaCS 2016.

Rational formal power-series for every semiring

Context-free Languages

Real-time deterministic context-free languages (= stack machine behaviours)

Context-free formal power series

The monad of Courcelle's algebraic trees

Assumptions.

- \mathscr{A} an algebraic category, i.e. $\mathscr{A} = \operatorname{Set}^T$ for a finitary monad T on Set
- $F: \mathscr{A} \to \mathscr{A}$ finitary and preserves-reflexive ecequalizers

Examples. Precisely the finitary varieties of algebras, e.g. sets, monoids, groups, vector spaces, etc.

Three notions of "finite" objects:

- 1. free finitely generated (ffg) algebras, i.e. TX for X a finite set
- 2. finitely presentable (fp) algebras, i.e. coequalizers $TX \rightrightarrows TY \twoheadrightarrow C$ for X, Y finite sets
- 3. finitely generated (fg) algebras, i.e. quotients $TX \rightarrow A$ for X a finite set

Remark: ffg \implies fp \implies fg but not conversely

Three ,finite state' behaviour domains

$$\vartheta F \xrightarrow{\ell} F(\vartheta F) := \operatorname{colim}(\operatorname{Coalg}_{\mathsf{fg}} F \hookrightarrow \operatorname{Coalg} F)$$

Theorems. 1. All three coalgebras are fixed points of *F*.

- 2. The rational fixed point ρF is the final locally fp coalgebra and the initial iterative algebra.
- 3. The locally finite fixed point ϑF is the final locally fg coalgebra and the initial fg-iterative algebra.

Urbat, CALCO 2017. Adámek, Milius, Velebil, MSCS 2006. Pattinson, Milius, Wißmann, FoSSaCS 2016.

Milius, CALCO 2017.

Theorem. For *F* preserving injections and surjections:

1.
$$\varphi F \twoheadrightarrow \varrho F \twoheadrightarrow \vartheta F \rightarrowtail \nu F$$

2.
$$\varphi F \cong \varrho F \cong \vartheta F \rightarrowtail \nu F$$
 if and only if F is proper.

Example. ... where all four fixed points φF , ϱF , ϑF and νF differ.

An interesting locally ffg fixed point

Example. $\mathscr{A} =$ sets with one unary operation u

 $F = \mathsf{Id}: \mathscr{A} \to \mathscr{A}$ identity functor

 $\rho F = \vartheta F = \nu F = 1$ are trivial

 $\varphi F = \text{colimit of all } F \text{-coalgebras } TX_0 \xrightarrow{\gamma} TX_0 \text{ with } X_0 \text{ finite}$

Free algebra on set of generators X_0 :

 $TX_0 = \mathbb{N} \times X_0$ with u(n, x) = (n+1, x)

 $TX_0 \xrightarrow{\gamma} TX_0$ in $\mathscr{A} \iff X_0 \to \mathbb{N} \times X_0$ in Set

On Algebras with Effectful Iteration | CMCS | April 14-15, 2018

An interesting locally ffg fixed point

Two eventually periodic streams of natural numbers:

Idea. In lieu of unique solutions assume a choice of canonical solutions. Definition. An ffg-Elgot algebra is a triple (A, α, \dagger) where

- $FA \xrightarrow{\alpha} A$ is an *F*-algebra
- † assigns to every equation morphism $X \xrightarrow{e} FX + A$ with X ffg a solution $X \xrightarrow{e^{\dagger}} A$:

subject to two natural axioms:

weak functoriality and compositionality:

Two natural axioms of dagger

Notation. 1. Given $X \xrightarrow{e} FX + Y$ and $Y \xrightarrow{h} A$ form

$$h \bullet e = (X \xrightarrow{e} FX + Y \xrightarrow{FX+h} FX + A)$$

Weak Functoriality.

Given equation morphisms $X \xrightarrow{e} FX + Z$, $Y \xrightarrow{f} FY + Z$ with X, Y, Z ffg:

Two natural axioms of dagger

Notation. 1. Given $X \xrightarrow{e} FX + Y$ and $Y \xrightarrow{h} A$ form

$$h \bullet e = (X \xrightarrow{e} FX + Y \xrightarrow{FX+h} FX + A)$$

2. Given $X \xrightarrow{e} FX + Y$ and $Y \xrightarrow{f} FY + A$ form

 $f \bullet e = (X + Y \xrightarrow{[e, \mathsf{inr}]} FX + Y \xrightarrow{FX+f} FX + FY + A \xrightarrow{\mathsf{can}+A} F(X+Y) + A)$

Compositionality.

For every $X \xrightarrow{e} FX + Y$ and $Y \xrightarrow{f} FY + A$ with X, Y ffg:

$$(f \bullet e)^{\dagger} = [(f^{\dagger} \bullet e)^{\dagger}, f^{\dagger}] : X + Y \to A$$
 where $f^{\dagger} : Y \to A$

Why "Effectful Iteration"?

Suppose that $F : \operatorname{Set}^T \to \operatorname{Set}^T$ is a lifted set functor: $\operatorname{Set}^T \xrightarrow{F'} \operatorname{Set}^T$ Equivalently we have a distributive law $TF_0 \xrightarrow{\lambda} F_0 T \qquad \downarrow \qquad \downarrow \qquad \downarrow$ of the monad *T* over the functor F_0 $\operatorname{Set} \xrightarrow{F_0} \operatorname{Set} \xrightarrow{F_0} \operatorname{Set}$ An *F*-algebra is given by two maps $F_0A \xrightarrow{a} A \xleftarrow{\alpha} TA$ where α is an Eilenberg-Moore algebra and $\alpha \cdot Ta = a \cdot F_0 \alpha \cdot \lambda_A$. finite set An effectful recursive equation is a map $X_0 \rightarrow T(F_0X_0 + A)$. This gives an equation morphism $TX_0 \to FTX_0 \oplus A$ in Set^T disjoint union coproduct whose solution $TX_0 \to A$ corresponds to a map $X_0 \xrightarrow{e_0} A$ with X_0 -TA e_0 $\downarrow \qquad \uparrow_{T[a,A]} \\
T(F_0X_0 + A) \xrightarrow{T(F_0e_0^{\dagger} + A)} T(F_0A + A)$

On Algebras with Effectful Iteration | CMCS | April 14-15, 2018

Theorem. The algebra $F(\varphi F) \rightarrow \varphi F$ is an ffg-Elgot algebra.

Definition. The category ffg-Elgot(F) has

objects = ffg-Elgot algebras (A, α, \dagger) for Fmorphisms = solution-preserving morphisms $(A, \alpha, \dagger) \xrightarrow{h} (B, \beta, \ddagger)$:

Theorems.

- 1. The algebra $F(\varphi F) \rightarrow \varphi F$ is the initial ffg-Elgot algebra for F.
- 2. The forgetful functor $\operatorname{ffg-Elgot}(F) \to \mathscr{A}, \quad (A, \alpha, \dagger) \mapsto A$ is monadic (in particular, it has a left-adjoint).

free ffg-Elgot algebra exist

Construction of free ffg-Elgot algebras:

Given a free object Y of \mathscr{A} form the locally ffg fixed point of F(-) + Y:

$$\Phi Y := \varphi(F(-) + Y) \quad \text{with} \quad \Phi Y \underset{[\alpha_Y, \eta_Y]}{\longrightarrow} F(\Phi Y) + Y \quad \text{and} \quad \dagger$$

Define a solution operator w.r.t. F: given $X \xrightarrow{e} FX + A$ let

$$e^{\ddagger} := (X \xrightarrow{e} FX + A \xrightarrow{[\mathsf{inl},\mathsf{inr}]} FX + Y + A)^{\dagger}$$

Theorem. Then $(\Phi Y, \alpha_Y, \ddagger)$ is a free ffg-Elgot algebra on Y with the universal morphism $Y \xrightarrow{\eta_Y} \Phi Y$.

Remark. For arbitrary objects Y in \mathscr{A} this may not hold.

Conclusions

 In algebraic categories three fixed points capture the behaviour of "finite" coalgebras:

locally ffg fixed point

rational fixed point

locally finite fixed point

- In general they are different, but for proper functors they coincide and are fully abstract for standard behavioural equivalence.
- The locally ffg fixed point φF is characterized as the initial ffg-Elgot algebra for F, but fails to have a universal property as an F-coalgebra.
- Free ffg-algebras exist and are obtained as expected for free objects
- ffg-Elgot algebras are monadic over the base category.

Future Work

- Find a coalgebraic construction for arbitrary free ffg-Elgot algebras.
- Investigate the properties of the free ffg-Elgot algebra monad.
- Show that the composite of the following functors is monadic:

 $\mathsf{ffg-Elgot}(F) \hookrightarrow \mathsf{Alg}(F) \to \mathscr{A} \to \mathsf{Set}$