
Monoidal computer III:

A coalgebraic view of
computability and complexity⋆

(Extended abstract)

Dusko Pavlovic and Muzamil Yahia

University of Hawaii, Honolulu, USA
{dusko,muzamil}@hawaii.edu

Abstract Monoidal computer is a categorical model of intensional com-
putation, where many different programs correspond to the same input-
output behavior. The upshot of yet another model of computation is
that a categorical formalism should provide a high-level language for the-
ory of computation, flexible enough to allow abstracting away the low
level implementation details when they are irrelevant, or taking them
into account when they are genuinely needed. A salient feature of the
approach through monoidal categories is the formal graphical language
of string diagrams, which supports geometric reasoning about programs
and computations. In the present paper, we provide a coalgebraic char-
acterization of monoidal computer. It turns out that the availability of
interpreters and specializers, that make a monoidal category into a mo-
noidal computer, is equivalent with the existence of a universal state
space, that carries a weakly final state machine for all types of input and
output. Being able to program state machines in monoidal computers
allows us to represent Turing machines, and capture the time and space
needed for their executions. The coalgebraic view of monoidal computer
thus provides a convenient diagrammatic language for studying not only
computability, but also complexity.

1 Introduction

In theory of computation, an extensional model reduces computations to their
set theoretic extensions, computable functions, whereas an intensional model
also takes into account the multiple programs that describe each computable
function [4,29, II.3].

In computer science, this semantical gamut got refined on the extensional side
by denotational models, that take into account not just computable functions
but also some computational effects, and on the intensional side by operational
models, where the meaning of a program is specified up to an operational equiva-
lence [9,48]. Categorical semantics of computation arose from the realization that

⋆ Partially supported by AFOSR and NSF.

2

cartesian closed categories provide a simple and effective framework for study-
ing the extensional models [24]. Both denotational and operational semantics
naturally developed as extensions of this categorical framework [26,45].

The goal of the monoidal computer project is to provide categorical semantics
of intensional computation. This turns out to be surprisingly simple technically,
but subtle conceptually. In this section, we describe the structure of monoidal
computer informally, and try to explain it in the context of categorical semantics.
In the rest of the paper, we spell out some of its features formally, in particular
the coalgebraic part.

1.1 Categorical computability: context and concept

The step from a cartesian closed category C, as an extensional model of compu-
tation, to a monoidal computer C, as an intensional model, can be summarized
as follows:

C (X, [A,B]) C(X × A,B)

εAB
X
∼=

λAB
X

C•(X,P) C(X ⊗ A,B)
γAB
X

(1)

The first line says that a category C is cartesian closed when it has the (car-
tesian) products X × A and a family of bijections, natural in X and indexed
over the types A and B, between the morphisms X × A −→ B and X −→ [A,B].

If a morphism X × A
f
−→ B is thought of as an X-indexed family of compu-

tations with the inputs from A and the outputs in B, then the corresponding

morphism X
λAB
X (f)
−−−−−→ [A,B] can be thought of as the X-indexed family of pro-

grams for these computations. This structure is the categorical version of the
simply typed extensional lambda calculus: λAB

X corresponds to the operation of
abstraction, whereas εAB

X corresponds to the application [24, Part I]. The equa-
tion εAB

X ◦λAB
X = id says that if we abstract a computation into a program, and

then apply that program to some data, then we will get the same result as if we
executed the original computation on the data. This is the β-rule of the lambda
calculus, the crux of Alonzo Church’s representation of program evaluations as
function applications of λ-abstractions [10]. The equation λAB

X ◦ εAB
X = id says

that if we apply a program, and then abstract out of the resulting computation
a program, then we will get the same program that we started from. This is
the η-rule of the lambda calculus: the extensionality. Dropping the second equa-
tion thus corresponds to modeling the non-extensional typed lambda calculus,
with weak exponent types. While this structure was sometimes interpreted as
a model of intensional computation, and interesting results were obtained [18],
the main result was that every such non-extensional model is essentially exten-
sional, in the sense that it contains an extensional model as a retract [15]. In
genuinely intensional models, identifying extensionally equivalent programs is
not computable.

The structure of a monoidal computer C is displayed in the second line of
(1). There are three changes with respect to the cartesian closed structure:

3

a) the bijections εAB
X are relaxed to surjections γAB

X ;
b) the exponents [A,B] are replaced with the type P of programs, the same for

all types A and B; and
c) the product × is replaced with a tensor ⊗, and C is not a cartesian category,

but C• on the left is its largest cartesian subcategory with ⊗ as the product.

We try to clarify these changes in the next three paragraphs.

Change (a) means that we have not only dropped the extensionality equa-
tion λAB

X ◦ εAB
X = id, but eliminated the abstraction operation λAB

X altogether.
All that is left of the bijection between the abstractions and the applications,
displayed in the first line of (1), is a surjection from programs to computations,
displayed in the second line of (1): for every X-indexed family of computations

X ⊗ A
f
−→ B there is an X-indexed family of programs X

F
−→ P such that

f = γAB
X (F). Could we get away with less? No, because the program evaluation

γAB
X has a left inverse λAB

X if and only if the model is essentially extensional
(i.e., it contains an extensional retract). We will see in Sec. 3.1 that the program
evaluation γAB

X is in fact executed by a universal evaluator {}AB ∈ C(P⊗A,B),

and thus takes the form γAB
X (F) = {F}

AB
= f .

Change (b) means that all programs are of the same type P. The central
feature of intensional computation is that any program can be applied to any
data, and in particular to itself. The main constructions of computability theory
depend on this, as we shall see in Sec. 3.4. If computations of type A −→ B were
encoded by programs of a type depending on A and B, let us write it in the form
⌈A,B⌉, then such programs could not be applied to themselves, but they could
only be processed by programs typed in the form ⌈⌈A,B⌉, C⌉. That is why all
programs must be of the same type P. We will see in Sec. 3.3 that this implies
that all types must be retracts of P. This does not imply that the type structure
of a monoidal computer can be completely derived from an applicative structure
on P, as an essentially untyped model of computation [24, I.15-I.17]. The type
structure of monoidal computer, can be derived from internal structure of P if
and only if the model is essentially extensional (i.e., it contains an extensional
retract, like before). But where does the monoidal structure come from?

Change (c) makes monoidal computers into monoidal categories, not carte-
sian. Just like cartesian categories, monoidal computers have the diagonals and
the projections for all types, which are necessary for data copying and deleting,
as explained in Sec. 2. Unlike in cartesian categories, though, the diagonals and
the projections in monoidal computers are not natural. The projections are not
natural because intensional computations may not terminate: they are not to-
tal morphisms. The diagonals are not natural when the computations are not
deterministic: they are then not single-valued as morphisms. While intensional
computations can be deterministic, and the diagonals in a monoidal computer
can all be natural, if all projections are natural, i.e. if all computations are total,
then the model contains an extensional retract. A monoidal computer is thus
a cartesian category if and only if it is essentially extensional. That is why a
genuinely intensional monoidal computer must be genuinely monoidal. On the
other hand, even a computation that is nowhere defined has a program, and pro-

4

grams are always well-defined values. So while the indexed families of intensional
computations cannot all be total functions, the corresponding indexed families
of programs must all be total functions. That is why the category C• on the left
in (1) is different from C: it is the largest subcategory of C for which ⊗ is the
cartesian product.

In summary, dropping or weakening any of the changes described in (a-
c) leads to the same outcome: an essentially extensional model. For a genuinely
intensional model it is thus necessary to have (c) a genuinely monoidal structure,
(b) untyped programs, and (a) no computable program abstraction operators. It
was shown in [36,41] that this is also sufficient for a categorical reconstruction
of the basic concepts of computability. Sections 2 and 3 provide a brief overview
of this. But our main concern in this paper is complexity.

1.2 Categorical complexity: A coalgebraic view

To capture complexity, we must capture dynamics, i.e. access the actual process
of computation. This, of course, varies from model to model, and different mod-
els of computation induce different notions of complexity. Abstract complexity
[7] provides, in a sense, a model-independent common denominator, which can
be viewed as an abstract notion of complexity; but the categorical view of com-
putations as morphisms at the first sight does not even provide a foothold for
abstract complexity. We attempted to mitigate the problem by extending the
structure of monoidal computer by grading [38], but the approach turned out to
be impractical for our goals (indicated in the next section). Now it turns out to
also be unnecessary, since dynamics of computation can be captured using the
coalgebraic tools available in any monoidal computer.

Coalgebra is the categorical toolkit for studying dynamics in general [42,44],
and dynamics of computation in particular [23,40,45]. Coalgebras, as morphisms
in the form X −→ EX for an endofuctor E, provide a categorical view of au-
tomata, state machines, and processes with state update [20,39]; the other way
around, all coalgebras can be thought of as processes with state update. In the
framework on this paper, only a very special class of coalgebras will be consid-
ered, as the morphisms in the formX×A −→ X×B, corresponding to what is usu-
ally called Mealy machines [8,14,17, . . .]. In the presence of the exponents, such
morphisms can be transposed to proper coalgebras in the form X −→ [A,X ×B].
But coalgebra provides a categorical reconstruction of state machines even with-
out the exponents, since the homomorphisms remain the same, and the category
of machines is isomorphic to a category of coalgebras even if the objects are not
presented as coalgebras in the strict sense. Our ”coalgebras” will thus be in the
form X ×A −→ X ×B, or more generally X ⊗A −→ X ⊗B.

The crucial step in moving the monoidal computer story into the realm of

coalgebra is to replace the X-indexed functions X × A
f
−→ B with X-state ma-

chines X×A
m
−→ X×B. While a function f mapped for each index x an input a

to an output b, a machine m now maps at each state x an input a to an output
b, and updates the state to x′. This state update provides an abstract view of
dynamics. Continuous dynamics can be captured in varying the same approach

5

[39,42]. This step from X-indexed functions to X-state machines is displayed in
the first row of the following table.

models static dynamic

extensional
models:

cartesian
closed

[A,B]× A B

X × A

ε

∀f∃!λf×A

abstractions
ε
←→

λ
applications

[A+, B]× B

[A+, B]× A X × B

X × A

ξ ∃!JmK×B

∀m∃!JmK×A

behaviors
J−K
←−−− machines

intensional
models:

monoidal
computers

P ⊗ A B

X ⊗ A

{}

∀f∃F×A

programs −→−→ computations

P⊗ B

P⊗ A X ⊗ B

X ⊗ A

{| |} ∃M⊗B

∀m∃M⊗A

adaptive programs ⇀⇀ processes

The representation of functions from A to B by the elements of [A,B] lifts to the
representation of machines with inputs in A and outputs in B by the induced
behaviors in [A+, B], where A+ is the inductive type of the nonempty sequences
from A. Behaviors are thus construed as functions extended in time [20,41,44].
In the presence of list constructors, the representation of functions using the
exponents [A,B] induces the representation of machines using the final machines
[A+, B]. The other way around, the final machines induce the exponents as soon
as the idempotents split.

The rows of the table depict the step from static models to dynamic models.
The columns depict the step from the extensional to the intensional. The left-
hand column is just a different depiction of (1): the upper triangle unpacks the
bijection in the first line of (1), whereas the lower triangle unpacks the surjection
in the second line. The right-hand column is the step from the extensional coin-
duction of final state machines to the intensional coinduction as implemented
in the structure of monoidal computer. The bottom row of the table is the step
from the monoidal computer structure presented in terms of universal evalu-
ators, the content of Sec. 3, to the monoidal computer structure presented in
terms of universal processes, the content of Sec. 4. The fact that the two presen-
tations are equivalent is stated in Thm. 9. This coalgebraic view of intensional
computation opens an alley towards capturing dynamics of Turing machines in
Sec. 5, and a direct internalization of time and space complexity measures in
Sec. 6. A general approach through abstract complexity is provided in the full
version of the paper. A comment about the role of coalgebra in this effort is in
Sec. 7. Some proofs are in the Appendix.

1.3 Background and related work

While computability and complexity theorists seldom felt a need to learn about
categories, there is a rich tradition of categorical research in computability the-

6

ory, starting from one of the founders of category theory and his students [13,31],
through extensive categorical investigations of realizability [16,19,30], to the re-
cent work on Turing categories [12], and on a monoidal structure of Turing
machines [5]. A categorical account of time complexity was proposed in [11],
using a special structure called timed sets, introduced for the purpose. While
our approach in [38] used grading in a similar way, our current approach seems
closer in spirit to [2], even if that work is neither coalgebraic nor explicitly cat-
egorical. Our effort originated from a need for a framework for reasoning about
logical depth of cryptographic protocols and algorithms [34]. The scope of the
project vastly exceeded the original cost estimates [37], but also the original ben-
efit expectations. The unexpectedly simple diagrammatic formalism of monoidal
computer turned out to be a very convenient teaching tool in several courses.1

This extended abstract is shortened to fit the conference proceedings format.
The full text is available on arxiv:1704.04882.

2 Preliminaries

A monoidal computer is a symmetric monoidal category with some additional
structure. As a matter of convenience, and with no loss of generality, we assume
that it is a strict monoidal category. Monoidal categories are presented in many
textbooks, e.g. [25, Sec. VII.1 and Ch. XI].

We call data service the structure that allows passing the data around in
a monoidal category. In computer programs and in mathematical formulas, the
data are usually passed around using variables. They allow copying and propa-
gating the data values where they are needed, or deleting them when they are
not needed. The basic features of a variable are thus that it can be freely copied
or deleted. The basic data services over a type A in a monoidal category C are

the copying operation A
∆
−→ A ⊗ A, and the deleting operation A

⊤
−→ I, which

together form a commutative comonoid, i.e. satisfy the equations

== =

∆ ; (∆ ⊗ A) = ∆ ; (A⊗∆) ∆ ; (⊤⊗ A) = ∆ ; (A⊗⊤) = idA

=

∆ ; σ = ∆

The correspondence between variables and comonoids was formalized and ex-
plained in [32]. The algebraic properties of the binary copying induce unique

n-ary copying A
∆
−→ A⊗n, for all n ≥ 0. The tensor products ⊗ in C are the

cartesian products × if and only if every A in C carries a canonical comonoid

A ×A
∆
←− A

⊤
−→ 1, where 1 is the final object of C, and all morphisms of C are

comonoid homomorphisms, or equivalently, the families A
∆
−→ A×A and A

⊤
−→ 1

are natural. Cartesian categories are thus just monoidal categories with natural
families of copying and deleting operations.

1 The course materials are available from http://www.asecolab.org/courses/222/,
and the textbook [41] is in preparation.

7

Definition 1. A data service of type A in a monoidal category C is a comonoid

structure A ⊗ A
∆
←− A

⊤
−→ I, where ∆ provides the copying service, and ⊤

provides the deleting service.

Definition 2. A morphism f ∈ C(A,B) is a map if it is a comonoid homomor-
phism with respect to the data services on A and B, which means that it satisfies
the following equations

=
f

f f

=
f

f ;∆B = ∆A ; (f ⊗ f) f ;⊤B = ⊤A

Given a symmetric monoidal category C with data services, we denote by C• the
subcategory spanned by the maps with respect to its data services, i.e. by those
C-morphisms that preserve copying and deleting.

Remark. If C is the category of relations, then the first equation says that f is
a single-valued relation, whereas the second equation says that it is total. Hence
the name. Note that the morphisms ∆ and ⊤ from the data services are maps
with respect to the data service that they induce. They are thus contained in
C•, and each of them forms a natural transformation with respect to the maps.
This just means that the tensor ⊗, restricted to C•, is the cartesian product.

3 Monoidal computer

3.1 Evaluation and evaluators

Notation. When no confusion seems likely, we write AB instead of A⊗B, and
C(X) instead of C(I,X). We omit the typing superscripts whenever the types
are clear from the context.

Definition 3. A monoidal computer is a (strict) symmetric monoidal category

C, with a data service A ⊗ A
∆
←− A

⊤
−→ I on every A, and a distinguished type

of programs P, given with, for every pair of types A,B, an X-natural family of

surjections C•(X,P) C(X ⊗A,B)
γAB
X , representing program evaluations.

The following proposition says that program evaluations can be construed as
a categorical view of Turing’s universal computer [46], or of Kleene’s acceptable
enumerations [43,29, II.5], or of interpreters and specializers from programming
language theory [21].

Proposition 4. Let C be a symmetric monoidal category with data services.
Then specifying the program evaluations γAB

X : C•(X,P) ։ C(X ⊗ A,B) that
make C into a monoidal computer, as defined in Def. 3, is equivalent to specifying
for any three types A,B,C ∈ |C| the following two morphisms:

8

(a) a universal evaluator {}AB ∈ C(PA,B) such that for every computation

f ∈ C(A,B) there is a program F ∈ C•(P) such that f(a) = {F}
AB

a

(b) a partial evaluator []AB ∈ C•(PA,P) with {G}
(AB)C

(a, b) =
{
[G]

AB
a
}BC

b

B

f

A

=

B

{}
F

A P A

{}

B

C

=

A

{}
[]

BP

C

Remark. Note that the partial evaluators [] are maps, i.e. total and single
valued morphisms in C•, whereas the universal evaluators {} are ordinary mor-
phisms in C. A recursion theorist will recognize the universal evaluators as Tur-
ing’s universal machines [46], and the partial evaluators as Gödel’s primitive
recursive substitution function S, enshrined in Kleene’s Sm

n -theorem [22]. A pro-
grammer can think of the universal evaluators as interpreters, and of the partial
evaluators as specializers [21]. In any case, (a) can be understood as saying that
every computation can be programmed; and then (b) says that any program with
several inputs can be evaluated on any of its inputs, and reduced to a program
that waits for the remaining inputs:

=
[]

{}

X A

B B

AX

{}

HH
X A

B

=h

h(x, a) {H} (x, a) {[H] x} a= =

(2)

Together, the two conditions thus equivalently say that for every computation
h ∈ C(X⊗A,B) there is anX-indexed programΞ ∈ C•(X,P) such that h(x, a) =

{Ξx}a, namely Ξ = [H].

Branching. By extending the λ-calculus constructions as in [36], we can extract
from P the convenient types of natural numbers, truth values, etc. E.g., if the
truth values t and f are defined to be some programs for the two projections, then
the role of the if-branching command can be played by the universal evaluator:

if(b, x, y) = {b} (x, y) =

x if b = t

y if b = f =

=
t

f

if={}

if={}

3.2 Examples of monoidal computer

Let S be a cartesian category and T : S −→ S a commutative monad. Then the
Kleisli category ST of free algebras is monoidal, with the data services induced
by the cartesian structure of S. The standard model of monoidal computer C

is obtained by taking S to be the category of finite and countable sets, and
TX = ⊥ + X to be the maybe monad, adjoining a fresh element to every set.
The category S⊥ is the category of partial functions, and the monoidal computer
C ⊆ S⊥ is the subcategory of computable partial functions:

9

|C| =
{

A ⊆ N | ∃e ∈ N. {e}a↓ ⇐⇒ a ∈ A
}

C(A,B) =
{

f : A ⇀ B | ∃e. {e} = f
}

The category C• is then the category of computable total functions. Assuming
that the programs are encoded as natural numbers, the type of programs is
P = N; but any language containing a Turing complete set of expressions would
do, mutatis mutandis. The sequence {0}, {1}, {2}, . . . denotes an acceptable enu-
meration of computable partial functions [29, II.5]. The universal evaluators can
be implemented as partial recursive functions; the partial evaluators are the total
recursive functions, constructed in Kleene’s Sm

n -theorem [22]. Other commuta-
tive monads T : S −→ S induce monoidal computers in a similar way, capturing
intensional computations together with the corresponding computational effects:
exceptions, nondeterminism, randomness [26]. Some of the familiar computa-
tional monads need to be restricted to finite support. The distribution monad
must be factored modulo computational indistinguishability. A simple quantum
monoidal computer can be constructed using a relative monad for finite dimen-
sional vector spaces [1]. However, in the model where the universal evaluators are
quantum Turing machines, the program evaluations cannot be surjective in the
usual sense, but only in the topologically enriched sense, i.e., they are dense [6].
We do not know how to derive this model from a computational monad, albeit
relative. Another interesting feature is that most computational effects induce
nonstandard data services, corresponding to complementary bases, which are, of
course, used in randomized, quantum, but also in nondeterministic algorithms
[33,35]. More examples are in [36], but most work is still ahead.

3.3 Encoding all types

Proposition 5. Every type B in a monoidal computer is a retract of the type
of programs P. More precisely, for every type B ∈ |C| there are computations

eB : B P : dB such that eB is a map, and eB ; dB = idB. We often call

eB the encoding of B and dB ∈ C(P, B) is the corresponding decoding.

Remark. In [36] we only considered the basic monoidal computer, where all
types are powers of P. In the standard model, programs are encoded as natural
numbers, and all data are tuples of natural numbers, which can be recursively
encoded as natural numbers. Prop. 5 says that this must be the case in every
computer. Note that there is no claim that either eB or dB is unique. Indeed,
in nondegenerate monoidal computers, each type B has many different encoding
pairs eB, dB. However, once such a pair is chosen, the fact that eB is total and
single-valued means that it assigns a unique program code to each element of
B. The fact that dB is not total means that some programs in P may not corre-
spond to elements of B. Since Prop. 5 says that the program evaluations make
every type into a retract of P, and Prop. 4 reduced the structure of monoidal
computer to the evaluators for all types, it is natural to ask if the evaluators
of all types can be reduced to the evaluators over the type P of programs. Can
all of the structure of a monoidal computer be derived from the structure of

10

the type P of programs? E.g., can the program evaluations be ”uniformized”
by always encoding the input data of all types in P, performing the evaluations
to get the outputs in P, and then decoding the outputs back to the originally
given types? Can the type structure and the evaluation structure of a monoidal
computer be reconstructed by unfolding the structure of P, as it is the case in
models of λ-calculus. Is monoidal computer yet another categorical view of a
partial applicative structure? The answer to all these question is positive just
in the degenerate case of an essentially extensional monoidal computer. If the
type structure of monoidal computer can be faithfully encoded in P, then there
is a retract of P which supports an extensional model of computation, i.e. al-
lows assigning a unique program to each computation. If all evaluators can be
derived by decoding the evaluators with the output type P, and if the decod-
ing preserves the original evaluators on P, then all computation representable
in monoidal computer must be provably total and single valued: it degenerates
into a cartesian closed category derived from a C-monoid. For details see [24,
I.15-I.17], and the references therein.

3.4 The Fundamental Theorem of Computability

In this section we show that every monoidal computer validates the claim of
Kleene’s ”Second Recursion Theorem” [22,27].

Theorem 6. In every monoidal computer C, every computation g ∈ C(P⊗A,B)
has a Kleene fixed point, i.e. a program Γ ∈ C(P) such that g(Γ, a) = {Γ} a.

B

A

{}

Γ

=

B

A
Γ

g

P P

Proof. Let G be a program such that

B

A

{}

G

=

B

A

g

PP

[]

P P

=g
(
[p] p, a

)
{G}(p, a)

A Kleene fixed program Γ can now be constructed by partially evaluating G

on itself, i.e. as Γ = [G]G, because

B

A

{}

G

=

B

A

g

G G

B

A

{}=

G

B

A

G

{}=

[] []

Γ Γ

= = = =g(Γ, a) g
(
[G]G,a

)
{G}(G, a)

{
[G]G

}
a {Γ} a

11

This theorem induces convenient representations of integers, arithmetic, prim-
itive recursion, unbounded search and thus shows that monoidal computer is
Turing complete [41]. In [36], this was done by using the λ-calculus construc-
tions. Next section provides yet another proof, through Turing machines.

4 Coalgebraic view

So far, we formalized the programs −→−→ computations correspondence from the
left hand column of the table in the Introduction. But presenting computations in

the form XA
{F}
−−→ B only displays their interfaces, and hides the actual process

of computation. To capture that, we switch to the right hand column of the
table, and study the correspondence adaptive programs −→−→ processes. A process
is presented as a morphism in the form X ⊗ A −→ X ⊗ B. We interpreted the
morphisms in the form X ⊗A −→ B as X-indexed families of computations with
the inputs from A and the outputs in B. The indices of type X can be thought
of as the states of the world, determining which of the family of computations

should be run. Interpreted along the same lines, a process X⊗A
p
−→ X ⊗B does

not only provide the output of type B, but it also updates the state in X . This
is what state machines also do, and that is why the morphisms X×A

m
−→ X×B

in cartesian categories are interpreted as machines. In a sufficiently complete
cartesian category, every such machine m induces a machine homomorphism

X
JmK
−−→ [A+, B], which assigns to each state x ∈ X a behavior JmKx ∈ [A+, B],

unfolded by the final AB-machine [A+, B]× A
ξ
−→ [A+, B]×B. The table in the

Introduction displayed this. A monoidal computer, though, turns out to provide a

much stronger form of representation for its morphisms in the formX⊗A
p
−→ X⊗

B: each of them induces a machine homomorphism X
P
−→ P. This P is a program

for the process p. Note that there may be many programs for each process; but on
the other hand, all programs, for all processes of all possible input types A and
output types B, are represented in the same type of programs P. This makes a
fundamental difference, distinguishing machinesm from computational processes
p, which include life [28,47]2. Every family of machines is designed in a suitable
engineering language; but all computational processes can be programmed in any
Turing complete language, just like all processes of life are programmed in the

language of genes. That is why the morphismsX⊗A
p
−→ X⊗B are processes, and

not merely machines. Their representations X
P
−→ P are not merely X-indexed

programs, but they are adaptive programs, since they adapt to the state changes,
in the sense that we now describe.

Definition 7. A morphism XA
p
−→ XB in a monoidal category C is an AB-

process. If Y A
r
−→ Y B is another AB-process, then an AB-process homomor-

2 Both Turing and von Neumann devoted a lot of attention to studying life as a com-
putational process. Their ideas have been adopted in biology [3], but most computer
scientists remain skeptical.

12

phism is a C-morphism X
f
−→ Y such that (f ⊗ A) ; r = p ; (f ⊗ B). We denote

the category of AB-processes by CAB.

Definition 8. A universal process in a monoidal category C is carried by a
universal state space S ∈ |C|, which comes with a weakly final AB-process

SA
{| |}
−−→ SB for every pair A,B ∈ |C|. The weak finality means that for ev-

ery p ∈ C(X ⊗A,X ⊗B) there is an X-adaptive program P ∈ C•(X,S) where

{|P (x)|}
S
a = P (pX (x, a))

{|P (x)|}B a = pB(x, a)

B

{| |}

P

X

S

A

S

=

B

p

X

P

X

A

S

S ⊗ B

S⊗ A X ⊗ B

X ⊗ A

{| |} P⊗B

pP⊗A

Theorem 9. Let C be a symmetric monoidal category with data services. Then
C is a monoidal computer if and only if it has a universal process. The type P

of programs coincides with the universal state space S.

Proof. Given a weakly final AB-process S⊗A
{| |}
−−→ S⊗B, we show that

{}AB =

(
S⊗ A

{| |}AB

−−−−−→ S⊗ B
⊤⊗B
−−−−→ B

)

is a universal evaluator, and thus makes C into a monoidal computer. Towards

proving (2), suppose that we are given a computation X⊗A
h
−→ B, and consider

the process

ĥ =

(
X ⊗ A

∆⊗A
−−−−→ X ⊗X ⊗ A

X⊗h
−−−−→ X ⊗ B

)

By Def. 8, there is then an X-adaptive program Ξ = JhK ∈ C•(X,S) satisfying
the rightmost equation in the next diagram.

X A

B

{| |}

Ξ
X A

B

=h

X A

B

h

ĥ

=

X
{}S

S

=

X A

h

ĥ

Ξ
S

B

The middle equation holds because JhK is in C•, i.e. a comonoid homomorphism.
Deleting the state update from the process yields (2). The other way around, if
C is a monoidal computer, with universal evaluators for all pairs of types, we
claim that the weakly final AB-process is

{| |}AB =

(
P⊗ A

{}A(PB)

−−−−−−→ P⊗ B

)

13

To prove the claim, take an arbitrary AB-process X ⊗ A
p
−→ X ⊗ B, and post-

compose it with the partial evaluator on X , to get

p̂ =

(
P⊗X ⊗ A

P⊗p
−−−→ P⊗X ⊗ B

[]XBP⊗B
−−−−−−−→ P⊗ B

)

Using the Fundamental Theorem of Computability, Thm. 6, construct a Kleene’s
fixed point P̂ ∈ C(P) of p̂.

B

A

{}

P̂

=

B

A

p

P̂

PP

X X

X

p̂[]

TheX-adaptive programP ∈ C•(P) corresponding to the process p ∈ C(XA,XB)

is now P (x) =
[
P̂ , x

]XBP

.

B

A

{}=

B

A

m

M̂

PP

X X

[]
P

M̂

[]
P

This completes the proof that {}A(BP) satisfies definition 8 of weakly final AB-
process, and that P is thus not only a type of programs, but also a universal
state space.

5 Computability

In the remaining two sections we show how to run Turing machines in a monoidal
computer, and how to measure their complexity. But a coalgebraic treatment of
Turing machines as machines, in the sense discussed at the beginning of Sec. 4,
would only display their behaviors, i.e. what rewrite and which move of the ma-
chine head will happen on which input, and it obliterates the configurations of
the tape, where the actual computation happens. In terms of Sec. 4, a Turing
machine as a model of actual computation should not be viewed as a machine,
but as a process. So we call them Turing processes here. While changing well
established terminology is seldom a good idea, and we may very well regret this
decision, the hope is that it will be a useful reminder that we are doing something
unusual: relating Turing machines with adaptive programs, coalgebraically. The
presented constructions go through in an arbitrary monoidal computer, but re-
quire spelling out a suitable representation of the integers, and some arithmetic.
This was done in [36], and can be done more directly; but for the sake of brevity,

14

we work here with the category C of recursively enumerable sets and computable
partial functions from Sec. 3.2. The monoidal structure and the data services are
induced by the cartesian products of sets, which are, however, not categorical
products any more, since the singleton set, providing the tensor unit, is not a
terminal object for partial functions. The monoidal category (C,⊗, I) will thus
henceforth be (C,⊗,1).

Recall that Turing’s definition of his machines can be recast [40, Appendix]

to processes in the form Qρ ⊗Σ
ρ
⇀ Qρ ⊗Σ ⊗Θ, where

– Qρ is the finite set of states, always including the final state X ∈ Qρ;
– Σ is a fixed alphabet, always including the blank symbol ⊔ ∈ Σ;
– Θ = {⊳,�, ⊲} are the directions in which the head can move along the tape.

Let us recall the execution model: how these machines and processes compute. A
Mealy machine Qκ×I

κ
⇀ Qκ×O inputs a string n

ι
−→ I, where n = {0, 1, . . . , n−

1} sequentially, e.g. it reads the inputs ι0, then ι1 etc, and it outputs a string

n
ω
−→ O in the same order, i.e. ω0, ω1, etc. In contrast, a Turing process in

principle overwrites its inputs, and outputs the results of overwriting when it
halts; therefore, in a Turing process, the input alphabet I and its output alphabet
O must be the same, say I = O = Σ. Both the inputs, and the outputs, and
the intermediary data of a Turing process are in the form w : Z −→ Σ, where
all but finitely many values w(z) must be ⊔. So each word w : Z −→ Σ is still
a finite string of symbols, like in the Mealy machine model. The difference is
that w is written on the infinite ’tape’, here represented by the set of integers
Z, which allows the processing ’head’ to move in both directions, or to stay
stationary (while in a Mealy machine the head moves in the same direction at
each step). We represent the position of the head by the integer 0, and the
symbol that the head reads on that position is thus denoted by w(0). If the

process Qρ ⊗ Σ
ρ
⇀ Qρ ⊗Σ ⊗Θ, which is a triple of functions ρ = 〈ρQ, ρΣ, ρΘ〉,

is defined on a given state q ∈ Qρ and a given input σ = w(0), then it will

– overwrite σ with σ′ = ρΣ(q, σ),
– transition to the state q′ = ρQ(q, σ), and
– move the head to the next cell in the direction θ = ρΘ(q, σ).

If q = X, then ρ(X, σ) = 〈X, σ,�〉, which means that the process must halt at
the state X, if it ever reaches it. To capture this execution model formally, we
extend Turing processes over the alphabet Σ, first to processes over the set Σ̃ of
Σ-words written on a tape, and then to computations with the inputs and the
outputs from Σ̃

Qρ ⊗Σ
ρ
⇀ Qρ ⊗Σ ⊗ Θ

Qρ ⊗ Σ̃
ρ̃
⇀ Qρ ⊗ Σ̃

Qρ ⊗ Σ̃
ρ
⇀ Σ̃

where Σ̃ =
{
w : Z −→ Σ | supp(w) < ∞

}
is the set of Σ-words written on a

tape, and supp(w) = {z | w(z) 6= ⊔} . The elements of Σ̃ are often also called
the tape configurations. Writing the tuples in the form ρ̃ = 〈ρ̃Q, ρ̃Σ̃〉, define

15

ρ̃Q(q, w) = ρQ(q, w(0))

ρ̃
Σ̃
(q, w) = w

′ where w
′(z) =

w̃(z − 1) if ρΘ (q, w(0)) = ⊳

w̃(z) if ρΘ (q, w(0)) = �

w̃(z + 1) if ρΘ (q, w(0)) = ⊲

and

w̃(z) =

{
ρΣ (q, w(0)) if z = 0

w(z) otherwise

}

ρ(q, w) =

{
w if q = X

ρ
(
ρ̃(q, w)

)
otherwise

The execution of all Turing processes can now be captured as a single process

Q⊗ Σ̃
p
⇀ Q⊗ Σ̃, where the state space Q is the disjoint union of the state spaces

Qρ of all Turing processes ρ ∈ T , i.e. Q =
∐

ρ∈T Qρ where T = {Qρ ⊗ Σ
ρ
⇀

Qρ ⊗ Σ ⊗ Θ}, so that the elements of Q are the pairs 〈ρ, q〉, where q ∈ Qρ, and

Q ⊗ Σ̃
p
⇀ Q ⊗ Σ̃ is the pair p = 〈pQ, pΣ̃〉 which, when applied to 〈ρ, q〉 ∈ Q and

w ∈ Σ̃, gives p
(
〈ρ, q〉, w

)
=

〈
〈ρ, q′〉, w′

〉
where q′ = ρ̃Q(q, w) and w′ = ρ̃

Σ̃
(q, w).

By applying Thm. 9 to the process Q⊗ Σ̃
p
⇀ Q⊗ Σ̃, we get the following

Proposition 10. There is an adaptive program P̃ ∈ C•(Q,P) such that P̃ (ρ, q)
executes any Turing process ρ starting from the initial state q ∈ Qρ. This means

that for every tape configuration w ∈ Σ̃ holds {|P̃ (ρ, q)|}P w = P̃ (ρ, q′) and

{|P̃ (ρ, q)|}
Σ̃
w = w′, where q′ = ρQ

(
q, w(0)

)
is the next state of ρ, and w′ =

ρ̃
Σ̃

(
q, w

)
is the next tape configuration. (The string diagram is the same as the

one in Def. 8.)

Corollary 1. The monoidal computer C is Turing complete.

6 Complexity

6.1 Evaluating Turing processes

Using the process Q⊗Σ̃
p
⇀ Q⊗Σ̃, which according to Prop. 10 executes the single

step transitions of Turing processes, we would now like to define a computation

Q ⊗ Σ̃
p
⇀ Σ̃ that will evaluate Turing processes all the way; i.e. should execute

all transitions that a process executes, and halt and deliver the output if the
process halts, or diverge if the process diverges. The idea is to run something
like the following pseudocode

p
(
〈ρ, q〉, w

)
=
(
x := 〈ρ, q〉; y := w; (3)

while
(
pQ(x, y) 6= X

)
{
x := pQ(x, y); y := p

Σ̃
(x, y)

}
;

print y
)

16

We implement this program using the Fundamental Theorem of Computability.
The function p is derived as a Kleene’s fixed program for an intermediary function
p̃, lifting the derivation from Sec. 5, as follows

Q⊗ Σ̃
p
⇀ Q⊗ Σ̃

P ⊗ Q⊗ Σ̃
p̃
⇀ Σ̃

Q⊗ Σ̃
p
⇀ Σ̃

where p̃
(
Υ, 〈ρ, q〉, w

)
=

w if ρQ (q, w(0)) = X

{Υ}
(
〈ρ, q′〉, w′

)
otherwise

where q′ = ρQ

(
q, w(0)

)

and w′ = p
Σ̃

(
〈ρ, q〉, w

)

Using the if-branching from Sec. 3.1, this schema can be expressed in a monoidal
computer, as illustrated in the following figure

{}¬X?

if = {}

p

P

Q Σ̃

Σ̃

Σ̃Q

P Σ̃

Σ̃

P̃

p̃

=

Σ̃

{}
P

Σ̃Q

P̃
p

=

Σ̃

{}

Σ̃Q

P̃

[]

P

(4)

The first equation is obtained by setting Υ to be Kleene’s fixed program P̃ of
p̃, and defining p = {P̃}. Given 〈ρ, q〉 ∈ Q and w ∈ Σ̃, this p thus runs ρ on w,
starting from q and halting at X, at which point it outputs the current w. If it
does not reach X, then ρ runs forever. The second equation proves the following
proposition.

Proposition 11. There is an adaptive program P ∈ C•(Q,P) that evaluates any
Turing process ρ starting from a given initial state q ∈ Qρ. This means that for

every tape configuration w ∈ Σ̃ holds
{
P (ρ, q)

}
w = ρ(q, w).

6.2 Counting time

To count the steps in the executions of Turing processes, we add a counter
i ∈ N to the Turing process evaluator p. The counter gets increased by 1 at each
execution step, and thus counts them. We call t the computation which outputs
the final count. If p halts, then t outputs the value of the counter i; if p does not
halt, then t diverges as well. The pseudocode for t could thus look something
like this:

t
(
〈ρ, q〉, w

)
=
(
x := 〈ρ, q〉; y := w; i := 0; (5)

while
(
pQ(x, y) 6= X

)
{
x := pQ(x, y); y := p

Σ̃
(x, y); i := i + 1

}
;

print i
)

17

The implementation of t in a monoidal computer is similar to the implementation
of p. It follows a similar derivation pattern:

Q⊗ Σ̃
p
⇀ Q⊗ Σ̃

P ⊗ Q⊗ Σ̃ ⊗ N
t̃
⇀ N

Q⊗ Σ̃
t
⇀ N

where t̃
(
Υ, 〈ρ, q〉, w, i

)
=

{
i if ρQ (q, w(0)) = X

{Υ}
(
〈ρ, q′〉, w′, i + 1

)
otherwise

with q′ = ρQ
(
q, w(0)

)
and w′ = p

Σ̃

(
〈ρ, q〉, w

)
. Like before, we set t

(
〈ρ, q〉, w

)
={

T̃
}(
〈ρ, q〉, w, 0

)
, where and T̃ is a Kleene fixed program of t̃. It is easy to see,

and prove, that t
(
〈ρ, q〉, w

)
halts if and only if ρ(q, w) halts, and if it does halt,

then it outputs the number of steps that ρ made before halting, having started
from q and w. The string diagrams that implement t̃, T̃ , t and T are similar to
those in figure (4): just rename ps to ts and P s to T s, and add a string of type N

on the right, with the successor operation on it, to increase the counter at each
run. The added string outputs the time complexity t. Hence

Proposition 12. There is an adaptive program T ∈ C•(Q,P) that outputs the
number of steps that a Turing process ρ makes in any run from a given initial
state q ∈ Qρ to the halting state X. If the Turing process ρ starting from q

diverges, then the computation {T (ρ, q)} diverges as well. This means that, for

every tape configuration w ∈ Σ̃ holds
{
T (ρ, q)

}
w = t

(
〈ρ, q〉, w

)
.

6.3 Counting space

So far, we used the integers Z as the index set for the tape configurations w :
Z −→ Σ. The position of the head has always been 0 ∈ Z, and whenever the head
moves, the tape configuration w gets updated to w′ = ρ̃

Σ̃
(q, w), where w′(0) is

the new position of the head, and the rest of the word w is reindexed accordingly,
as described in Sec. 5. At each point of the computation w thus describes the
tape content relative to the current position of the head ; there is no record of
the prior positions or contents. To count the tape cells used by Turing processes,
we must make the tape itself into a first class citizen. The simplest way to do
this seems to be to add a counter m ∈ Z, which denotes the offset of the current
position of the head with respect to the initial position. This allows us to record
how far up and down the tape, how far from its original position, does the head
ever travel in either direction during the computation. To record these maximal
offsets of the head, we need two more counters: let r ∈ Z be the highest value
that the head offset m ever takes; and let ℓ ∈ Z be the lowest value that the
head offset m ever takes. The number of cells that the head has visited during
the computation is then clearly r− ℓ. To implement this space counting idea, we
need to run a program roughly like this:

18

s
(
〈ρ, q〉, w

)
=

(
x := 〈ρ, q〉; y := w; ℓ,m, r := 0; (6)

while
(
pQ(x, y) 6= X

)
{
x := pQ(x, y); y := p

Σ̃
(x, y);

if
(
ρΘ

(
q, w(0)

)
= ⊳
)

{
if (m = ℓ){ℓ := ℓ− 1}; m := m− 1

}

if
(
ρΘ

(
q, w(0)

)
= ⊲
)

{
if (m = r){r := r + 1}; m := m + 1

}}

print r − ℓ

)

The derivation now becomes

Q⊗ Σ̃
p
⇀ Q⊗ Σ̃

P⊗ Q⊗ Σ̃ ⊗ Z
3 s̃
⇀ N

Q⊗ Σ̃
s
⇀ N

where s̃
(
Υ, 〈ρ, q〉, w, ℓ,m, r

)
=

r − ℓ if ρQ (q, w(0)) = X

{Υ}
(
〈ρ, q′〉, . . .

. . . w′, ℓ′,m′, r′
)

otherwise

and where

q
′ = ρQ

(
q, w(0)

)
ℓ
′ =

{
ℓ− 1 if m = ℓ and ρΘ

(
q, w(0)

)
= ⊳

ℓ otherwise

w
′
= p

Σ̃

(
〈ρ, q〉, w

)
m

′
=

m − 1 if ρΘ

(
q, w(0)

)
= ⊳

m if ρΘ

(
q, w(0)

)
= �

m + 1 if ρΘ

(
q, w(0)

)
= ⊲

r
′ =

{
r + 1 if m = r and ρΘ

(
q, w(0)

)
= ⊲

r otherwise

Kleene’s fixed point S̃ of s̃ defines s
(
〈ρ, q〉, w

)
=

{
S̃
}(
〈ρ, q〉, w, 0, 0, 0

)
. The con-

struction is summarized in the following figure:

{}¬X?

if = {}

p

P

Q

N

Q

P

N

S̃

s̃

=

N

{}
P

Q

S̃

s

=

N

{}

Q

S̃

[]

S0

Σ̃

Σ̃

Σ̃ Σ̃
0

−

()′

Z3 Z3

Z3

ℓ′ r′
m′

ℓ r

r−ℓ

(7)

The box ()′, which computes ℓ′, m′ and r′ in figure (7), is implemented by com-
posing several branching commands, e.g. as described at the end of Sec. 3.1.
Implementing this box is an easy but instructive exercise in programming mo-
noidal computers. Together, these constructions prove the following proposition.

19

Proposition 13. There is an adaptive program S ∈ C•(Q,P) that outputs the
number of cells that a Turing process ρ uses in any run from a given initial state
q ∈ Qρ to the halting state X. If the Turing process ρ starting from q diverges,
then the computation {S(ρ, q)} diverges as well. This means that, for every tape

configuration w ∈ Σ̃ holds
{
S(ρ, q)

}
w = s

(
〈ρ, q〉, w

)
.

Remark. There are many variations of the above definitions in the literature,
and several different counting conventions. E.g., an alternative to the above
definition of s would be something like

s
′(
〈ρ, q〉, w

)
=
{
S̃
}(
〈ρ, q〉, w,wℓ, 0, wr

)
where

wℓ = min{i ∈ Z | w(i) 6= ⊔} wr = max{i ∈ Z | w(i) 6= ⊔}

In contrast with s, where the space counting convention is that a memory cell
counts as used if and only if it is ever reached by the head, the space counting
convention behind s′ is that every computation uses at least |w| = wr−wℓ cells,
on which its initial input is written. If a Turing process halts without reading all
of its input w, or even without reading any of it, the space used will still be |w|.
Some textbooks adhere to the s-counting convention, some to the s′-counting
convention, but many do not describe the process in enough detail to discern
this difference. This is perhaps justified by the fact that the resulting complexity
classes and their hierarchies are the same for all such subtly different counting
conventions. E.g., the difference between s and s′ is absorbed by the O-notation,
and only arises for computations that do not read their inputs.

7 Final comments

A bird’s eye view of algebra and coalgebra in computer science suggests that
algebra provides denotational semantics of computation, whereas coalgebra pro-
vides operational semantics [23,40,45]. Denotational semantics goes beyond the
purely extensional view of computations (as maps from inputs to outputs), and
models certain computational effects (such as non-termination, exceptions, non-
determinism, etc.). Operational semantics goes further, and models computa-
tional operations. While computational effects are thus presented using the suit-
able algebraic operations in denotational semantics, computational behaviors
are represented as elements of final coalgebras in operational semantics. But
although both the denotational and the operational approaches go beyond the
purely extensional view, neither has supported a genuinely intensional view,
envisioned by Turing and von Neumann, where programs are data. Therefore,
in spite of the tremendous successes in understanding and systematizing com-
putational structures and behaviors, categorical semantics of computation has
remained largely disjoint from theories of computability and complexity.

The claim put forward in this paper is that coalgebra provides a natural cate-
gorical framework for a fully intensional categorical theory of computability and
complexity. The crucial step that enables this theory leads beyond final coalge-
bras, that assign unique descriptions to computational behaviors of fixed types,

20

to universal coalgebras, that assign non-unique descriptions to computations
of arbitrary types. These descriptions are what we usually call programs. Our
message is thus that programmability is a coalgebraic property, just like compu-
tational behaviors are coalgebraic. This message is formally expressed through
universal processes ; it can perhaps be expressed more generally through uni-
versal coalgebras, as families of weakly final coalgebras, all carried by the same
universal state space. Thm. 9 spells out in the framework of monoidal computer
the fact that every Turing complete programming language provides a universal
coalgebra for computable functions of all types; and vice versa, every universal
coalgebra induces a corresponding notion of program. Just like abstract compu-
tational behaviors of a given type are precisely the elements of a final coalgebra
of that type, abstract programs are precisely the elements of a universal coalge-
bra. Just like final coalgebras can be used to define semantics of computational
behaviors [40], universal coalgebras can be used to define semantics of programs.
From a slightly different angle, the fact that universal coalgebras characterize
monoidal computers, proven in Thm. 9, can also be viewed as a coalgebraic
characterization of computability. There are, of course, many characterizations
of computability. The upshot of this one is, however, in Propositions 12 and 13:
the coalgebaic view of computability opens an alley towards complexity. In any
universe of computable functions, normal complexity measures [38] can be pro-
grammed coalgebraically. Combining this coalgebraic view of complexity with
the algebraic view of randomized computation seems to open up a path towards
a categorical model of one-way functions, and towards categorical cryptography,
which has been the original goal of this project [34].

References

1. Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be
endofunctors. Logical Methods in Computer Science, 11(1), 2015.

2. Andrea Asperti. The intensional content of Rice’s Theorem. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, pages 113–119, New York, NY, USA, 2008. ACM.

3. Marecello Barbieri. Code Biology: A New Science of Life. Springer, 2015.

4. H.P. Barendregt. The lambda calculus: its syntax and semantics, volume 103. North
Holland, 1984.

5. Miklós Bartha. The monoidal structure of Turing machines. Math. Struct. Comput.
Sci., 23(2):204–246, 2013.

6. Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings
of the twenty-fifth annual ACM Symposium on Theory of computing, pages 11–20.
ACM, 1993.

7. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. J. ACM, 14(2):322–336, April 1967.

8. Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. Coalgebraic
logic and synthesis of Mealy machines. In Roberto M. Amadio, editor, Proceedings
of FOSSACS 2008, volume 4962 of Lecture Notes in Computer Science, pages 231–
245. Springer, 2008.

21

9. R. Bruni and U. Montanari. Models of Computation. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer International Publishing, 2017.

10. Alonzo Church. An unsolvable problem of elementary number theory. The Amer-
ican Journal Of Mathematics, 58:345–363, 1936.

11. J. Robin B. Cockett, Joaqúın Dı́az-Böıls, Jonathan Gallagher, and Pavel Hrubes.
Timed sets, functional complexity, and computability. Electr. Notes Theor. Com-
put. Sci., 286:117–137, 2012.

12. J. Robin B. Cockett and Pieter J. W. Hofstra. Introduction to Turing categories.
Ann. Pure Appl. Logic, 156(2-3):183–209, 2008.

13. S. Eilenberg and C.C. Elgot. Recursiveness. ACM Monograph. Academic Press,
1970.

14. Helle Hvid Hansen, David Costa, and Jan J. M. M. Rutten. Synthesis of Mealy
machines using derivatives. Electr. Notes Theor. Comput. Sci., 164(1):27–45, 2006.

15. Susumu Hayashi. Adjunction of semifunctors: Categorical structures in nonexten-
sional lambda calculus. Theoretical Computer Science, 41:95 – 104, 1985.

16. Pieter J. W. Hofstra and Michael A. Warren. Combinatorial realizability models
of type theory. Ann. Pure Appl. Logic, 164(10):957–988, 2013.

17. W.M.L. Holcombe. Algebraic Automata Theory. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1982.

18. Raymond Hoofman. Comparing models of the intensional typed λ-calculus. The-
oretical Computer Science, 166(1):83 – 99, 1996.

19. Martin Hyland. The effective topos. In Anne Sjerp Troelstra and Dirk van Dalen,
editors, L. E. J. Brouwer Centenary Symposium, number 110 in Studies in Logic
and the Foundations of Mathematics, pages 165–216. North-Holland, 1982.

20. Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016.

21. Neil D. Jones. Computability and Complexity: From a Programming Perspective.
Foundations of Computing. The MIT Press, 1997.

22. Stephen C. Kleene. On notation for ordinal numbers. Journal of Symbolic Logic,
3(4):150–155, 1938.

23. Bartek Klin. Bialgebras for structural operational semantics. Theor. Comput. Sci.,
412(38):5043–5069, September 2011.

24. Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic.
Number 7 in Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1986.

25. Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

26. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55–92, 1991.

27. Yiannis N. Moschovakis. Kleene’s amazing second recursion theorem. Bulletin of
Symbolic Logic, 16(2):189–239, 2010.

28. John von Neumann and Arthur W. Burks. Theory of Self-Reproducing Automata.
University of Illinois Press, Champaign, IL, USA, 1966.

29. Piergiorgio Odifreddi. Classical Recursion Theory : The Theory of Functions and
Sets of Natural Numbers, volume 125 of Studies in logic and the foundations of
mathematics. North-Holland, Amsterdam, New-York, Oxford, Tokyo, 1989.

30. Jaap van Oosten. Realizability: An Introduction to its Categorical Side, volume 152
of Studies in Logic and the Foundations of Mathematics. Elsevier Science, 2008.

31. Robert A. Di Paola and Alex Heller. Dominical Categories: Recursion Theory
without Elements. J. Symbolic Logic, 52(3):594–635, 1987.

22

32. Dusko Pavlovic. Categorical logic of names and abstraction in action calculus.
Math. Structures in Comp. Sci., 7:619–637, 1997.

33. Dusko Pavlovic. Quantum and classical structures in nondeterministic computa-
tion. In Peter Bruza, Don Sofge, and Keith van Rijsbergen, editors, Proceedings of
Quantum Interaction 2009, volume 5494 of Lecture Notes in Artificial Intelligence,
pages 143–158. Springer Verlag, 2009. arxiv.org:0812.2266.

34. Dusko Pavlovic. Gaming security by obscurity. In Carrie Gates and Cormac
Hearley, editors, Proceedings of NSPW 2011, pages 125–140, New York, NY, USA,
2011. ACM. arxiv:1109.5542.

35. Dusko Pavlovic. Geometry of abstraction in quantum computation. Proceedings
of Symposia in Applied Mathematics, 71:233–267, 2012. arxiv.org:1006.1010.

36. Dusko Pavlovic. Monoidal computer I: Basic computability by string diagrams.
Information and Computation, 226:94–116, 2013. arxiv:1208.5205.

37. Dusko Pavlovic. Chasing diagrams in cryptography. In Claudia Casadio et.
al., editor, Categories and Types in Logic, Language and Physics, volume 8222
of Lecture Notes in Computer Science, pages 353–367. Springer Verlag, 2014.
arXiv:1401.6488.

38. Dusko Pavlovic. Monoidal computer II: Normal complexity by string diagrams.
Technical report, ASECOLab, January 2014. arxiv:1402.5687.

39. Dusko Pavlovic and Bertfried Fauser. Smooth coalgebra: testing vector analysis.
Math. Structures in Comp. Sci., 26:1–41, 2 2016. arxiv:1402.4414.

40. Dusko Pavlovic, Michael Mislove, and James Worrell. Testing semantics: Connect-
ing processes and process logics. In Michael Johnson and Varmo Vene, editors,
Proceedings of AMAST 2006, volume 4019 of Lecture Notes in Computer Sci-
ence, pages 308–322. Springer Verlag, 2006. full version at dusko.org/semantics-
of-computation/.

41. Dusko Pavlovic and Muzamil Yahia. Basic Concepts of Computer Science (with
Pictures), December 2018. draft textbook; chapters available as lecture notes at
http://www.asecolab.org/courses/ics-222/.

42. Duško Pavlović and Mart́ın Escardó. Calculus in coinductive form. In Vaughan
Pratt, editor, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Com-
puter Science, pages 408–417. IEEE Computer Society, 1998.

43. Hartley Rogers, Jr. Theory of recursive functions and effective computability. MIT
Press, Cambridge, MA, USA, 1987.

44. Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sci., 249(1):3–80, 2000.

45. Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational seman-
tics. In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science (LICS 1997), pages 280–291. IEEE Computer Society Press, June 1997.

46. Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society. Second Series,
42:230–265, 1936.

47. Alan M. Turing. The chemical basis of morphogenesis. Philosophical Transactions
of the Royal Society of London Series B, Biological sciences, B 237(641):37–72,
August 1952.

48. G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
Foundations of computing. Zone Books, U.S., 1993.

