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Message of the paper

Background

Coalgebra captures dynamics and stateful behavior

News

Coalgebra provides gauges to measure complexity
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Cartesian closed category

C (X , [A,B]) C(X × A,B)

εAB
X

�

λAB
X
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Monoidal computer

C (X , [A,B]) C(X × A,B)

εAB
X

�

λAB
X

C•(X , P) C(X ⊗ A,B)
γAB

X
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Monadic monoidal computer

C (X , [A,B]) C(X × A,B)

εAB
X

�

λAB
X

C(X , P) C(X × A,MB)
γAB

X

where M is a commutative monad on C
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Monadic monoidal computer coalgebraically

C (X , [A,B]) C(X × A,B)

εAB
X

�

λAB
X

C(X , P) C

(
X × A,M(X×B)

)νAB
X

where M : C→ C is a commutative monad
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From CC to MC

models static dynamic

extensional

models:

Cartesian

Closed

[A,B] × A B

X × A

ε

∀f∃! λf×A

abstractions
ε
←→
λ

applications

[A+,B] × B

[A+,B] × A X × B

X × A

ξ JqK×B

∀q∃! JqK×A

behaviors
J−K
←−−−− machines

intensional

models:

Monoidal

Computers

P ⊗ A B

X ⊗ A

{}

∀f∃F⊗A

programs→→ computations

P ⊗ B

P ⊗ A X ⊗ B

X ⊗ A

{| |} Q⊗B

∀q∃Q⊗A

adaptive prog’s⇀⇀ processes
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From CC to MMC

models static dynamic

extensional

models:

Cartesian

Closed

[A,B] × A B

X × A

ε

∀f∃! λf×A

abstractions
ε
←→
λ

applications

[A+,B] × B

[A+,B] × A X × B

X × A

ξ JqK×B

∀q∃! JqK×A

behaviors
J−K
←−−−− machines

intensional

models:

Monadic

Monoidal

Computers

P × A MB

X × A

{}

∀f∃F×A

programs→→ computations

M(P × B)

P × A M(X × B)

X × A

{| |} M(Q×B)

∀q∃Q×A

adaptive prog’s⇀⇀ processes
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MC structure

Proposition

The following structures are equivalent

a) X -natural transformation C(X , P) C(X × A,MB)
γAB

X

b) a universal evaluator {} ∈ C(P × A,MB), such that

◮ ∀g ∈ C(X × A,MB) ∃G ∈ C(X , P)

g(x , a) =
{
G(x)

}
a

B

g

AX

=

B

{}
G

AX
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MC structure

Proposition

The following structures are equivalent

a) X -natural transformation C(X , P) C(X × A,MB)
γAB

X

b) a universal evaluator {}
AB
∈ C(P × A,MB), and

a partial evaluator [](AB)C
∈ C(P × A, P), such that

◮ ∀f ∈ C(A,MB) ∃F ∈ C(X , P)

f (a) =
{
F
}
a

{
G

}
(a, b) =

{
[G]a

}
b

B

f

A

=

B

{}
F

A P A

{}

B

C

=

A

{}
[ ]

BP

C
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MC structure

Overview

P

[ ]

{}

A B

C C

BA

{}

G

G P

P

A B

C

g

A B

C

P
= == {}

{G}(x , y)
{
[G] x

}
y==

[G]x

g(x , y)
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MC structure

Definition

A monoidal computer (MC) is a

◮ monoidal category C with

◮ commutative comonoids A ⊗ A
∆
←− A

⊤
−→ I for all A

◮ a distinguished type P of programs

◮ equivalent structures from the Proposition.
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MMC structure

Definition

An monadic monoidal computer (MMC) is a

◮ cartesian category C with a

◮ commutative monad M : C→ C

◮ a distinguished type P of programs

◮ equivalent structures from the Proposition.
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Examples?
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Any computer is monoidal

D 2∗ (binaries)

D D × D

D D × D

run

〈κ0,κ1〉

�

J
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Computable universe C

◮ types: sets where each element is tagged by some

D-labels

|C| =
∐

A∈|S|

{
A |A| ⊆ D

ρA
}

◮ morphisms: functions that are traced on the tags by

D-implementable computations

C(A,B) =



f ∈ S(A,B)
∣∣∣ ∃F ∈ D.

|X | |B|

A B

ρA

run(F )

ρB

f
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Computable monads: Maybe

? : C → C

A 7−→

(
1 + A |?A|

run(−,0)
)

where

|?A| =
{
F ∈ D | run(F , 0)↓ =⇒ run(F , 0) ∈ A

}
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Computable monads: Power

℘ : C → C

A 7−→

(
℘A |℘A|

)

where

|℘A| =
{
F ∈ D | ∀a ∈ A. run(F , a)↓ ∧ run(F , a) ∈ {0, 1}

}

℘A = |℘A|
/
≡ where

F ≡ G ⇐⇒ run(F ) = run(G)
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The Fundamental Theorem of Computability

Theorem

For every computation g ∈ C(P × A,MB) there is a

program Γ ∈ C(P) such that

B

A

{}

Γ

=

B

A

Γ

g

P P

g(Γ, a) {Γ} a=

Γ is Kleene’s fixed point of g.
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The Fundamental Theorem of Computability

Proof

B

A

{}

G

=

B

A

g

G G

B

A

{}=

G

B

A
G

{}=

[ ] [ ]

Γ Γ

= = = =g(Γ, a) g
(
[G,G], a

)
{G}(G, a)

{
[G,G]

}
a {Γ} a
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Complete MCs

Proposition about idempotents

An MC is finitely complete and cocomplete if and only if it

is Cauchy complete, i.e. if the idempotents split in it.
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Computability monads are partial

Proposition about partiality

Every MC contains partial maps.
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Computability monads are partial

Proposition about partiality

Every MC contains partial maps.

If there is an MMC over a monad M : C→ C, then

? ⊆ M
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Natural numbers in MCs

Branching

if (b, x , y) =


x if b = ⊤

y if b = ⊥

=

=
⊤

⊥

if

if
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Natural numbers in MCs

Pairing

Define 〈−,−〉 : P × P→ P

〈−,−〉

ĩf

ĩf

if=

=

where

[−]

{−}

bx ybx y

x y x y
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Natural numbers in MCs

Projections

Define (−)0, (−)1 : P→ P

=

=

(−)0

(−)1

⊤

⊥

{−}

{−}
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Natural numbers in MCs

Numbers as programs

=

=

{−}

〈−,−〉

n+1 n
⊥

〈−,−〉

⊤0 0

{−}
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Natural numbers in MCs

Successor, predecessor, and zero test

=

=
(−)0

(−)1

⊤

⊥

{−}

{−}

=

=

=
〈−,−〉ς

ρ

0?

⊥



Complexity by

Coalgebra

DP and MY

Intro

CC to MC

Structure

Examples

Fundamental Theorem

Some consequences

MMC to CMC

Step counting

Speedup etc

Work

Natural numbers in MCs

N as idempotent splitting

The type N can be defined as the domain of ρ.

P

ρ

P
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Natural numbers in MCs

Proposition about N

Every complete MC has a natural numbers object.
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Step computations

Definition

An M-step computation from A to B is a morphism

X × A
q
−−−−→ M(X × B)

in an MMC C with a commutative monad M, where

◮ A is the type of inputs

◮ B is the type of outputs

◮ X is the state space
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Step computations

Definition

A step evaluation of the M-step computation

X × A
q
−−−−→ M(X × B) in another M-step computation

Y × A
r
−−−→ M(Y × B), is a morphism f ∈ C(X ,Y ) with

B

r

f

X

Y

A

Y

=

B

q

f

X A

Y

X

M(Y × B)

Y × A M(X × B)

X × A

object r M(f×B)

q fobjectmorphism f×A
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Step computations

Definition

A step evaluation of the M-step computation

X × A
q
−−−−→ M(X × B) in another M-step computation

Y × A
r
−−−→ M(Y × B), is a morphism f ∈ C(X ,Y ) with

B

r

f

X

Y

A

Y

=

B

q

f

X A

Y

X

M(Y × B)

Y × A M(X × B)

X × A

object r M(f×B)

q fobjectmorphism f×A

CMAB denotes the category of M-step computations from A to B

with step evaluations as morphisms.
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Universal state space

Definition

A type S in an MMC C is a universal state space if for every A

and B there is a weakly final M-step computation

{| |} ∈ C
(
S × A,M(S × B)

)

B

{| |}

∃Q

X

S

A

S

=

B

∀q

Q

X A

S

X

M(S × B)

S × A M(X × B)

X × A

{| |} M(Q×B)

∀q∃Q×A
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Universal step evaluator

Definition

A type S in an MMC C is a universal state space if for every A

and B there is a weakly final M-step computation

{| |} ∈ C
(
S × A,M(S × B)

)

B

{| |}

∃Q

X

S

A

S

=

B

∀q

Q

X A

S

X

M(S × B)

S × A M(X × B)

X × A

{| |} M(Q×B)

∀q∃Q×A

This weakly final step computation {| |} is a universal step

evaluator.
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Monoidal computer coalgebraically

Proposition

A cartesian category C with a commutive monad M is an

MMC if and only if it has universal step evaluators.
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Monoidal computer coalgebraically

Proposition

A cartesian category C with a commutive monad M is an

MMC if and only if it has universal step evaluators.

There is a bijective correspondence between the families

◮ universal evaluators {} ∈ C(P × A,MB)

◮ universal step evaluators {| |} ∈ C
(
S × A,M(S × B)

)

indexed over A and B in C.
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Monoidal computer coalgebraically

Proposition

A cartesian category C with a commutive monad M is an

MMC if and only if it has universal step evaluators.

There is a bijective correspondence between the families

◮ universal evaluators {} ∈ C(P × A,MB)

◮ universal step evaluators {| |} ∈ C
(
S × A,M(S × B)

)

indexed over A and B in C.

The types P and S can be taken to coincide.
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Monoidal computer coalgebraically

Proof (1)

Given

◮ universal evaluator {} ∈ C(P × A,MB)

◮ partial evaluator [] ∈ C(P × A, P) derived from {},

◮ a step computation q ∈ C
(
X × A,M(X × B)

)
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Monoidal computer coalgebraically

Proof (2)

. . . construct a Kleene fixed point Q̂ of q̂

B

A

{}

Q̂

=

B

A

q

Q̂

PP

X X

X

q̂[]
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Monoidal computer coalgebraically

Proof (3)

The step evaluation Q ∈ C(X , P) is Q(x) =
[
Q̂

]
x .

B

A

{}=

B

A

q

Q̂

PP

X X

[]

Q

Q̂

[]

Q
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Recursion and approximation theorems

Applications: Speedup, gap, approximation, . . . coalgebraically
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Ideas beyond Turing machine complexity

◮ Kleene’s normal form: traces as a hardness

measure

◮ Cobham’s intrinsic hardness: it should only

depend on functions, not on models

◮ Blum’s abstract complexity: machine independent

complexity through step counting

◮ time, space, alternations. . .

◮ Kleene’s trace

◮ project to universal evaluators!
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Complexity evaluators

Definition

A complexity evaluator is a computation

ΞAB ∈ C
(
P × A,M(N × B)

)
, such that

◮

B

Ξ

AP

N

is a universal evaluator

◮

B

Ξ

AP

N

≤n

{⊥,⊤}

is decidable
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Step-counting functions

Definition

A step-counting function ΦAB ∈ C
(
P × A,MN

)
is the first

projection of a comlexity evaluator

ΞAB ∈ C
(
P × A,M(N × B)

)

AP

N B

Ξ

AP

N

=Φ
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Step-counting functions project to evaluators

Theorem 1

There is a family of step-counting functions K such that

a) for every step-counting function Φ there is a primitive

recursive function f with

Φ = f ◦ K

b) for every universal evaluator {−} there is a primitive

recursive function u with

{−} = u ◦ K
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Complexity evaluators

Theorem 2

Every complete MC contains all step counting functions.
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Not presented
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Work

Question

Why yet another model of computation?
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Work

Question

Why yet another model of computation?

Answer

Why is it that

◮ practice of computation has been revolutionized by

high level programming languages, but

◮ theory of computation is still confined to low level

machine languages

?
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Work

Task 1

Teach computability and complexity to 2nd year students:

http://www.asecolab.org/courses/ics-222/

Task 2

Develop a reasonable theory of absolute one-way

functions.
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