Steps and Traces

Bart Jacobs, Paul Levy, Jurriaan Rot

CMCS 2018

Trace semantics

I mean, for instance:

- language of a non-deterministic automaton
- (finite) traces of a labelled transition systems
- language accepted by a tree automaton

• ...

Coalgebraic bisimilarity is stronger than the intended (finite) trace semantics

This makes sense: captures behavioural equivalence – but traces abstract away from certain things

Coalgebraic trace semantics

Many different approaches . . .

- "Branching type" a monad *T* (powerset for non-determinism in LTSs and automata, distribution for probabilities, etc)
 - move to coalgebras in $\mathcal{K}\ell(\mathcal{T})$, use finality (Hasuo et al.)
 - move to coalgebras in $\mathcal{EM}(T)$, use finality ('determinisation', Silva et al.)
 - iteration-based approaches
- "Logic/tests" based:
 - move to *algebras*, use *initiality* (Klin/Rot, Pavlovic et al.)
- Finality (or initiality) in a different category in most approaches
- Some approaches more 'canonical', others more parametric

Corecursiveness and steps

Our work: two unifying ideas:

- 1. All approaches give trace semantics via a corecursive algebra on the set of 'languages'
- 2. In all cases, this corecursive algebra is constructed from a single abstract setting (adjunction together with a so-called step); using a final coalgebra in another category.

Corecursive algebra

An algebra $a: H(A) \rightarrow A$ is *corecursive* when for every coalgebra $c: X \rightarrow H(X)$ there is a coalgebra-to-algebra morphism:

$$\begin{array}{c} X - -^{f} - \geq A \\ c \\ \downarrow & \uparrow^{a} \\ H(X) - - + H(A) \end{array}$$

Non-deterministic automata

$$\begin{array}{c|c} X - - - - \stackrel{L}{\longrightarrow} - - \stackrel{P}{\Rightarrow} 2^{A^*} \\ & & \uparrow^{a} \\ 2 \times \mathcal{P}(X)^A \xrightarrow[id \times (\mathcal{P}L)^A]{} 2 \times \mathcal{P}(2^{A^*})^A \end{array}$$

$$L(x)(\varepsilon) = o(x)$$
 $L(x)(aw) = \bigvee_{y \in d(x)(a)} L(y)(w)$

The algebra a encodes the disjunction/union \lor

Alternating automata

$$\begin{array}{c|c} X - - - - \stackrel{L}{-} - - \stackrel{>}{\rightarrow} 2^{A^*} \\ & & & \uparrow a \\ 2 \times (\mathcal{PPX})^A \xrightarrow[id \times (\mathcal{PPL})^A]{} 2 \times (\mathcal{PP}(2^{A^*}))^A \end{array}$$

$$L(x)(\varepsilon) = o(x)$$
 $L(x)(aw) = \bigvee_{S \in d(x)(a)} \bigwedge_{y \in S} L(y)(w)$

The algebra a encodes $\bigvee \bigwedge$

Tree automata

For $\Sigma\colon \mathbb{N}\to \mathsf{Set}$ a signature, define

$$H_{\Sigma}(X) = \prod_{n \in \mathbb{N}} \Sigma(n) \times X^n$$

Tree automata:

- Σ^* the set of trees
- a again, a corecursive algebra

Trace semantics via corecursive algebras

Corecursive algebras arise from a final coalgebra in a different category, in:

- the 'Eilenberg-Moore' approach ٠
- the 'logical' approach •
- the 'Kleisli' approach •

Unified by abstract setting of an adjunction and a "step"

General setting: step-and-adjunction

Gives rise to a lifting:

$$\begin{array}{ccc} \operatorname{Alg}(H) \stackrel{G_{\rho}}{\longleftarrow} \operatorname{Alg}(L) & & G_{\rho}\left(L(A) \stackrel{a}{\rightarrow} A\right) := \\ & & \downarrow & & \begin{pmatrix} HG(A) \stackrel{\rho}{\rightarrow} GL(A) \stackrel{G(a)}{\longrightarrow} G(A) \end{pmatrix}. \end{array}$$

Capretta/Uustalu/Vene: G_{ρ} preserves corecursive algebras

Step-induced algebra liftings of right adjoints preserve corecursiveness

General setting: step-and-adjunction

Theorem

Suppose that L has a final coalgebra $\zeta : \Psi \stackrel{\simeq}{\Rightarrow} L(\Psi)$. Then for every H-coalgebra (X, c) there is a unique coalgebra-to-algebra map c^{\dagger} in:

$$\begin{array}{c} X - -c^{\dagger} \rightarrow G(\Psi) \\ c \downarrow & \uparrow G_{\rho}(\Psi, \zeta^{-1}) \\ H(X) - - \rightarrow HG(\Psi) \end{array}$$

We focus on instances where c^{\dagger} captures traces, and call it the *trace* semantics map.

Eilenberg-Moore and Steps

- 1. A functor $B: \mathbf{C} \to \mathbf{C}$ with a final coalgebra $\zeta: \Theta \stackrel{\simeq}{\Rightarrow} B(\Theta)$
- 2. A monad (T, η^T, μ^T) on **C**

3. A lifting \overline{B} of B to $\mathcal{EM}(T)$

$$\rho \colon BTU \Longrightarrow U\overline{B} \text{ where } \\ \rho_{(X,a)} = \left(BTX \xrightarrow{Ba} BX\right)$$

Gives rise to a corecursive algebra $\ell_{\rm em}:$

$$\begin{array}{c} X - -\stackrel{\mathrm{em}_{c}}{-} \to \Theta \\ c \\ BT(X)_{\overline{BT(\mathrm{em}_{c})}} BT(\Theta) \end{array}$$

Transpose of em_c arises by 'determinisation'

Kleisli and Steps

- 1. A functor $B: \mathbf{C} \to \mathbf{C}$ with an initial algebra $\beta: B(\Psi) \stackrel{\simeq}{\to} \Psi$.
- 2. A monad (T, η^T, μ^T) on **C**
- 3. An extension \overline{B} of B to $\mathcal{K}\ell(T)$
- 4. $(\Psi, J(\beta^{-1}))$ is a final \overline{B} -coalgebra.

$$TB \bigcap \mathbf{C} \underbrace{\downarrow}_{U} \mathcal{K}\ell(T) \bigcap \overline{B} \quad \text{with} \quad \begin{array}{c} \rho \colon TBU \Longrightarrow U\overline{B} \quad \text{where } \rho_X = \\ \left(TBTX \xrightarrow{T(\lambda)} T^2BX \xrightarrow{\mu^T} TBX\right) \end{array}$$

$$\begin{array}{c|c} X - - \stackrel{\mathsf{kl}_c}{-} \succ T(\Psi) \\ c \\ c \\ TB(X) \stackrel{TB(\mathsf{kl}_c)}{-} \stackrel{TB(\mathsf{kl}_c)}{-} TBT(\Psi) \end{array}$$

Logic and Steps

- 1. An adjunction $F \dashv G$ between categories $\mathbf{C} \leftrightarrows \mathbf{D}^{\mathrm{op}}$.
- 2. A functor T on **C** with a step τ : $TG \Rightarrow G$.
- 3. A functor $B: \mathbf{C} \to \mathbf{C}$ and a functor $L: \mathbf{D} \to \mathbf{D}$ with a step $\delta: BG \Rightarrow GL$.
- 4. An initial algebra $\alpha \colon L(\Phi) \stackrel{\simeq}{\Rightarrow} \Phi$.

$$H \bigcirc \mathbf{C} \underbrace{\downarrow}_{G} \mathbf{D}^{\mathrm{op}} \bigcirc U$$

where H = BT or H = TB (1)

 $\begin{array}{c|c} X - - & \frac{\log_c}{-} \ge G(\Phi) & Y - - & \frac{\log_d}{-} \ge G(\Phi) \\ c & & & \downarrow \\ TB(X) & \frac{TB(\log_c)}{-} & TBG(\Phi) & & BT(Y) & \frac{BT(\log_d)}{-} & BTG(\Phi) \end{array}$

Relating the approaches

In the paper: under certain assumptions, algebra morphisms of the form

relating different approaches to trace semantics (Logic/EM and Logic/Kleisli)

Conclusions

- Trace semantics captured through corecursive algebras
- These corecursive algebras are constructed from a final coalgebra on another category using an adjunction and a step
- Encompasses the main approaches to coalgebraic trace semantics
- Compare logical approaches to both Eilenberg-Moore and Kleisli approaches