Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages

Ulrich Dorsch Stefan Milius Lutz Schröder Thorsten Wißmann

Friedrich-Alexander-Universität Erlangen-Nürnberg

CMCS 2018

Introduction

- Expression languages describe system behaviour:
 - Regular expressions
 - Kleene algebra with tests
 - Languages for LTS
- Coalgebraic expression languages
 - Silva et al. 2009a/b: Kripke polynomial functors
 - Silva et al. 2009c: Quantitative polynomial functors
 - Silva et al. 2010: Finitary set functors
 - Myers 2013: Finitary functors on varieties.

Introduction

- The μ -calculus contains an expression language for LTS
- ► Here: Generalize this to set coalgebras
- ► Use strongly expressive sets of singleton-preserving predicate liftings
- Conversions between predicate liftings and functor operations (Moss liftings)
- Kleene theorem

Characteristic Formulas in the μ -Calculus

Kripke frame

described by greatest fixpoint of

$$x_1 = \Diamond x_2 \land \Box x_2 \qquad \qquad = \nabla \{x_2\}$$

$$x_2 = \Diamond x_1 \land \Diamond x_3 \land \Box (x_1 \lor x_3) \qquad \qquad = \nabla \{x_1, x_3\}$$

$$x_3 = \Box \bot \qquad \qquad = \nabla \emptyset.$$

(Graf/Sifakis 1986, Godskesen/Ingólfsdottir/Zeeberg 1987, Steffen/Ingólfsdottir 1994)

Functor Presentations

▶ Functor operation for T = natural transformation $X^n \rightarrow TX$

ightharpoonup Functor presentation of T = jointly surjective set of operations

T is finitary iff it has a presentation

Functor Presentations – Examples

- ▶ Finite powerset: $(x_1,...,x_n) \mapsto \{x_1,...,x_n\}$
- ► Finite distributions: $(x_1,...,x_n) \mapsto p_1 x_1 + \cdots + p_n x_n$
- Finitary monotone neighbourhoods:

$$(\mathcal{M}(X) = {\mathfrak{A} \in \mathcal{Q}(\mathcal{Q}(X)) \mid \mathfrak{A} \text{ upclosed}}, \mathcal{Q} \text{ contravariant powerset)}$$

$$((x_{i1},\ldots,x_{ik_i})_{i=1,\ldots,n})\mapsto \{A\subseteq X\mid \exists i.\, \{x_{i1},\ldots,x_{ik_i}\}\subseteq A\}\in \mathcal{M}_\omega(X)$$

Predicate Liftings

... of arity *n* are natural transformations

$$Q^n \to QT^{op}$$

where Q denotes contravariant powerset.

Standard examples:

- ▶ Powerset: $\Box_X(A) = \{B \in \mathcal{P}(X) \mid B \subseteq A\}$ $\diamondsuit_X(A) = \{B \subseteq X \mid B \cap A \neq \emptyset\}$
- ▶ Distributions: $(L_p)_X(A) = \{\mu \in \mathcal{D}(X) \mid \mu(A) \geq p\}$
- ► Monotone neighbourhoods: $\Box_X(A) = \{\mathfrak{A} \mid A \in \mathfrak{A}\}\$ $\diamondsuit_X(A) = \{\mathfrak{A} \mid \forall B \in \mathfrak{A}. A \cap B \neq \emptyset\}.$

Singleton-preserving Predicate Liftings

 λ/n preserves singletons if, well,

$$|\lambda(\{x_1\},...,\{x_n\})|=1$$

for all x_1, \ldots, x_n .

Example:

$$\lambda_X^n(A_1,\ldots,A_n) = \{B \in \mathcal{P}(X) \mid B \subseteq A_1 \cup \cdots \cup A_n, \forall i. A_i \cap B \neq \emptyset\}$$

- then

$$\lambda_X^n(\{x_1\},\ldots,\{x_n\})=\{x_1,\ldots,x_n\}$$

Strong Expressivity

Set ∧ of predicate liftings strongly expressive ⇔

$$\forall t \in TX \ \exists \lambda/n \in \Lambda, x_1, \dots, x_n \in X. \ \{t\} = \lambda_X(\{x_1\}, \dots, \{x_n\}).$$

(stronger than separation)

E.g. $\Lambda = \{\lambda^n \mid n \in \mathbb{N}\}$ as above.

Functor Operations From Predicate Liftings

Given a monotone singleton-preserving λ/n ,

$$\tau^{\lambda}(x_1,\ldots,x_n)\in\lambda(\{x_1\},\ldots,\{x_n\})$$

defines a functor operation.

 \rightarrow strongly expressive sets of monotone singleton-preserving predicate liftings induce functor presentations.

Lax Extensions

(Marti/Venema 2012, 2015)

$$\dots$$
 map $R \subseteq X \times Y$ to

$$LR \subseteq TX \times TY$$

subject to monotonicity, lax preservation of composition, $Tf \subseteq Lf$

Diagonal-preserving lax extensions capture behavioural equivalence; e.g. Barr extension if T preserves weak pullbacks.

Lax nabla

$$\nabla_X^L : TQX \to QT^{op}X$$

$$\Phi \mapsto \{t \in TX \mid t \ L(\in_X) \ \Phi\}$$

Moss Liftings

From operation $\tau: (-)^n \to T$ obtain Moss lifting (Kurz/Leal 2009, Marti/Venema 2012, 2015)

$$\lambda^{\tau} = (\mathcal{Q}^n \stackrel{\tau\mathcal{Q}}{\Longrightarrow} T\mathcal{Q} \stackrel{\nabla^L}{\Longrightarrow} \mathcal{Q}T^{op}),$$

that is,

$$\lambda_X^\tau(X_1,\dots X_n) = \{t \in TX \mid t \ L(\in_X) \ \tau_{\mathcal{Q}X}(X_1,\dots,X_n)\}.$$

E.g.
$$T = \mathcal{P}_{\omega}$$
, $\tau(x_1, \dots, x_n) = \{x_1, \dots, x_n\}$, $L = \text{Barr extension yields}$

$$\lambda^{\tau}(A_1,\ldots,A_n)=\{B\in\mathcal{P}_{\omega}(X)\mid B\subseteq A_1\cup\cdots\cup A_n, \forall i.\, B\cap A_i\neq\emptyset\}.$$

Theorem Moss liftings (for a presentation) preserve singletons and are strongly expressive

Example: Monotone Neighbourhoods

Above presentation + standard lax extension induce

$$\lambda_X((A_{ij})) = \bigcap_i \Box_X(\bigcup_i A_{ij}) \cap \bigcap_{\pi} \diamondsuit_X(\bigcup_i A_{i\pi(i)})$$

where π ranges over functions such that $\pi(i) \in \{1, \dots, k_i\}$ for all i

An Expression Language

- Fix set \mathcal{L} of finitary modalities L, interpreted by predicate liftings $\llbracket L \rrbracket$
- ► Require the [L] to be singleton-preserving and strongly expressive
- ▶ Given T-coalgebra $C = (X, \xi)$, valuation $\kappa : V \to \mathcal{P}(X)$: extension $\llbracket \phi \rrbracket_C^{\kappa} \subseteq X$,

$$[\![L(\phi_1,\ldots,\phi_n)]\!]_C^{\kappa} = \xi^{-1}[\![\![L]\!]_X([\![\phi_1]\!]_C^{\kappa},\ldots,[\![\phi_n]\!]_C^{\kappa})]$$

Fragment of the coalgebraic μ -calculus

A Kleene Theorem

Theorem Closed and guarded expressions ϕ correspond to states in finite coalgebras, i.e.

- \triangleright All states satisfying ϕ are behaviourally equivalent.
- Every φ has a finite model.
- Every state in a finite coalgebra satisfies some ϕ .

A Canonical Model

Coalgebra structure ε on $\mathcal{E}_0 :=$ closed and guarded expressions:

$$\varepsilon(L(\phi_1,\ldots,\phi_n)) \in \llbracket L \rrbracket (\{\phi_1\},\ldots,\{\phi_n\})$$
$$\varepsilon(vx.\phi) = \varepsilon(\phi[vx.\phi/x]).$$

Then $(\mathcal{E}_0, \varepsilon)$ is locally finite, and

Theorem

$$x \in \llbracket \phi \rrbracket_C$$
 iff x is behaviourally equivalent to ϕ

(Similar constructions *define* the semantics in previous coalgebraic languages.)

Conclusions

- Expression language for set coalgebras
- Fragment of the coalgebraic μ -calculus
- Abstractly: Strongly expressive sets of singleton-preserving predicate liftings
- Concretely:
 Functor presentation + diagonal-preserving lax extension
- Kleene theorem, canonical model construction
- Future work:
 - Extend to algebraic base categories
 - Coarser equivalences, maybe via graded monads