
Categorical Büchi and Parity Conditions via
Alternating Fixed Points of Functors

Natsuki Urabe1 and Ichiro Hasuo2

1 University of Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

Abstract. Categorical studies of recursive data structures and their as-
sociated reasoning principles have mostly focused on two extremes: ini-
tial algebras and induction, and final coalgebras and coinduction. In this
paper we study their in-betweens. We formalize notions of alternating
fixed points of functors using constructions that are similar to that of
free monads. We find their use in categorical modeling of accepting run
trees under the Büchi and parity acceptance condition. This modeling
abstracts away from states of an automaton; it can thus be thought of as
the “behaviors” of systems with the Büchi or parity conditions, in a way
that follows the tradition of coalgebraic modeling of system behaviors.

1 Introduction

x y Ab

a
a

b

Büchi Automata The Büchi condition is a common acceptance
condition for automata for infinite words. Let xi ∈ X be a state of an
automaton A and ai ∈ A be a character, for each i ∈ ω. An infinite
run x0

a0−−→ x1
a1−−→ · · · satisfies the Büchi condition if xi is an accepting state

(usually denoted by) for infinitely many i. An example of a Büchi automaton
is shown on the right. The word (ba)ω is accepted, while baω is not. A function
that assigns each x ∈ X the set of accepted words from x is called the trace
semantics of the Büchi automaton.

FY // FZ

Y

d

OO

// Z

ζ ∼=
OOCategorical Modeling The main goal of this paper is to give a cat-

egorical characterization of such runs under the Büchi condition. This
is in the line of the established field of categorical studies of finite and
infinite datatypes: it is well-known that finite trees form an initial algebra, and
infinite trees form a final coalgebra; and finite/infinite words constitute a special
case. These categorical characterizations offer powerful reasoning principles of
(co)induction for both definition and proof. While the principles are categori-
cally simple ones corresponding to universality of initial/final objects, they have
proved powerful and useful in many different branches of computer science, such
as functional programming and process theory. See the diagram on the right
above illustrating coinduction: given a functor F , its final coalgebra ζ : Z

∼=→ FZ
has a unique homomorphism to it from an arbitrary F -coalgebra d : Y → FY .
In many examples, a final coalgebra is described as a set of “infinite F -trees.”

2

Extension of such (co)algebraic characterizations of data structures to the
Büchi condition is not straightforward, however. A major reason is the non-local
character of the Büchi condition: its satisfaction cannot be reduced to a local,
one-step property of the run. For example, one possible attempt of capturing
the Büchi condition is as a suitable subobject of the set Run(X) = (A×X)ω of
all runs (including nonaccepting ones). The latter set admits clean categorical

characterization as a final coalgebra Run(X)
∼=→ F

(
Run(X)

)
for the functor

F = (A×X)× . Specifying its subset according to the Büchi condition seems
hard if we insist on the coalgebraic language which is centered around the local
notion of transition represented by a coalgebra structure morphism c : X → FX.

There have been some research efforts in this direction, namely the categorical
characterization of the Büchi condition. In [5] the authors insisted on finality and
characterize languages of Muller automata (a generalization of Büchi automata)
by a final coalgebra in Sets2. Their characterization however relies on the lasso
characterization of the Büchi condition that works only in the setting of finite
state spaces. In [21] we presented an alternative characterization that covers
infinite state spaces and automata with probabilistic branching. The key idea
was the departure from coinduction, that is, reasoning that relies on the universal
property of greatest fixed points. Note that a final coalgebra ζ : Z

∼=→ FZ is a
“categorical greatest fixed point” for a functor F .

Our framework in [21] was built on top of the so-called Kleisli approach to
trace semantics of coalgebras [16, 12, 10, 11]. There a system is a coalgebra in
a Kleisli category K`(T), where T represents the kind of branching the system
exhibits (nondeterminism, probability, etc.). A crucial fact in this approach is
that homsets of the category K`(T) come with a natural order structure. Specif-
ically, in [21], we characterized trace semantics under the Büchi condition as in
the diagrams (1) below3, where i) X1 (resp. X2) is the set of nonaccepting (resp.
accepting) states of the Büchi automaton (i.e. X = X1 + X2), and ii) the two
diagrams form a hierarchical equation system (HES), that is roughly a planar
representation of nested and alternating fixed points. In the HES, we first cal-
culate the least fixed point for the left diagram, and then calculate the greatest
fixed point for the right diagram with u1 replaced by the obtained least fixed
point. Note that the order of calculating fixed points matters.

FX
�

F [u1, u2]
//

=µ

FZ

X1

_c1

OO

�u1 // Z

_Jζ ∼=
OO FX

�
F [u1, u2]

//

=ν

FZ

X2

_c2

OO

�u2 // Z

_Jζ ∼=
OO (1)

Contributions: Decorated Trace Semantics by Categorical Datatypes
In this paper we introduce an alternative categorical characterization to the one
in [21] for the Büchi conditions, where we do not need alternating fixed points
in homsets. This is made possible by suitably refining the value domain, from a

3 We write f : X→p Y for a Kleisli arrow f ∈ K`(T)(X,Y) and F : K`(T) → K`(T)
for a lifting of the functor F over K`(T), for distinction.

3

final coalgebra to a novel categorical datatypes F+⊕0 and F+(F+⊕0) that have
the Büchi condition built in them. Diagrammatically the characterization looks
as in (2) below. Note that we ask for the greatest fixed point in both squares.

FX
�

F (v1 + v2)
//

=ν

F (F+(F+⊕0) + F+⊕0)

X1

_c1

OO

� v1 // F+(F+⊕0)

_J(β1)0 ∼=
OO

FX
�

F (v1 + v2)
//

=ν

F (F+(F+⊕0) + F+⊕0)

X2

_c2

OO

�v2 // F+⊕0

_J(β2)0 ∼=
OO

(2)

The functors F+ and F+⊕ used in the datatypes are obtained by applying two
operations ()+ and ()⊕ to a functor F . For an endofunctor G on a category C
with enough initial algebras, G+X is given by the carrier object of a (choice of)
an initial G(+X)-algebra for each X ∈ C. The universality of initial algebras
allows one to define G+f : G+X → G+Y for each f : X → Y and extend G+ to
a functor G+ : C → C. This definition is much similar to that of a free monad
G∗, where G∗X is the carrier object of an initial G() +X-algebra for X ∈ C.
The operation ()⊕ is defined similarly: for G : C → C and X ∈ C, G⊕X is
given by the carrier object of a final G(+ X)-coalgebra. This construction
resembles to that of free completely iterative algebras [14].

The constructions of F+(F+⊕0) and F+⊕0 has a clear intuitive meaning.
For the specific example of A-labeled nondeterministic Büchi automata, T = P,
F = A × (), F+(F+⊕0) ∼= F+⊕0 ∼= (A+)ω. Hence an element in F+(F+⊕0)
or F+⊕0 is identified with an infinite sequence of finite words. We understand
it as an infinite word “decorated” with information about how accepting states
are visited, by considering that an accepting state is visited at each splitting
between finite words. For example, we regard (a0a1)(a2a3a4)(a5a6)(a7) . . . ∈
(A+)ω ∼= F+⊕0 as an infinite word decorated as follows.

a0 //
a1 //

a2 //
a3 //

a4 //
a5 //

a6 //
a7 // // · · ·

(3)

An element in F+(F+⊕0) is similarly understood, except that the initial state
is regarded as a nonaccepting state. We note that by its definition, the resulting
“decorated” word always satisfies the Büchi condition.

Thus the arrows v1 : X1→p F+(F+⊕0) and v2 : X2→p F+⊕0 in (2) are re-
garded as a kind of trace semantics that assigns each state x ∈ X the set of
infinite words accepted from x “decorated” with information about the corre-
sponding accepting run. Hence we shall call v1 and v2 a decorated trace semantics
for the coalgebra c. The generality of the category theory allows us to define dec-
orated trace semantics for systems with other transition or branching types, e.g.
Büchi tree automata or probabilistic Büchi automata.

In this paper, we also show the relationship between decorated trace seman-
tics and (ordinary) trace semantics for Büchi automata. For the concrete case of
Büchi automata sketched above, there exists a canonical function (A+)ω → Aω

that flattens a sequence and hence removes the “decorations”. It is easy to see
that if we thus remove decorations of a decorated trace semantics then we obtain
an ordinary trace semantics. We shall prove its categorical counterpart.

4

In fact, the framework in [21] also covered the parity condition, which gen-
eralizes the Büchi condition. A parity automaton is equipped with a function
Ω : X → [1, 2n] that assigns a natural number called a priority to each state
x ∈ X. Our new framework developed in the current paper also covers parity au-
tomata. In order to obtain the value domain for parity automata, we repeatedly
apply ()+ and ()⊕ to F like F+⊕···+⊕0.

Compared to the existing characterization shown in (1), one of the charac-
teristics of our new characterization as shown in (2) is that information about
accepting states is more explicitly captured in decorated trace semantics, as in
(3). This characteristics would be useful in categorically characterizing notions
about Büchi or parity automata. For example, we could use it for categorically
characterizing (bi)simulation notions for Büchi automata, e.g. delayed simula-
tion [8], a simulation notion which is known to be appropriate for state space
reduction.

To summarize, our contributions in this paper are as follows:

– We introduce a new categorical data type F+⊕0, an alternating fixed point
of a functor, for characterizing the Büchi acceptance condition.

– Using the data type, we introduce a categorical decorated trace semantics,
simply as a greatest fixed point.

– We show the categorical relationship with ordinary trace semantics in [21].
– We instantiate the framework to several types of concrete systems.
– We extend the framework to the parity condition (in the appendix).

Related Work As we have mentioned, a categorical characterization of Büchi
and parity conditions is also found in [5], but adaptation to infinite-state or
probabilistic systems seems to be difficult in their framework. There also exist
notions which are fairly captured by their characterization but seem difficult to
capture in the frameworks in [21] and this paper, such as bisimilarity.

The notion of alternating fixed point of functors is also used in [9, 2]. In [9]
the authors characterize the set of continuous functions from Aω to Bω as an
alternating fixed point νX. µY. (B × X) + Y A of a functor. Although the data
type and the one used in the current paper are different and incomparable,
the intuition behind them is very similar, because the former comes with a
Büchi-like flavor: if f(a0a1 . . .) = b0b1 . . . then each bi should be determined by
a finite prefix of a0a1 . . ., and therefore f is regarded as an infinite sequence of
such assignments. In [2, §7] a sufficient condition for the existence of such an
alternating fixed point is discussed.

Organization §2 gives preliminaries. In §3 we introduce a categorical data
type for decorated trace semantics as an alternating fixed point of functors. In
§4 we define a categorical decorated trace semantics, and show a relationship
with ordinary categorical trace semantics in [21]. In §5 we apply the framework
to nondeterministic Büchi tree automata. In §6, we briefly discuss systems with
other branching types. In §7, we conclude and give future work.

5

All the discussions in this paper also apply to the parity condition. However,
for the sake of simplicity and limited space, we mainly focus on the Büchi con-
dition throughout the paper, and defer discussions about the parity condition
to the appendix, that is found in the extended version [20] of this paper. We
omit a proof if an analogous statement is proved for the parity condition in the
appendix. Some other proofs and discussions are also deferred to the appendix.

2 Preliminaries

2.1 Notations

For m,n ∈ N, [m,n] denotes the set {i ∈ N | m ≤ i ≤ n}. We write πi :∏
i Xi → Xi and κi : Xi →

∐
i Xi for the canonical projection and injection

respectively. For a set A, A∗ (resp. Aω) denotes the set of finite (resp. infinite)
sequences over A, A∞ denotes A∗ ∪Aω, and A+ denotes A∗ \ {〈〉}. We write 〈〉
for the empty sequence. For a monotone function f : (X,v)→ (X,v), µf (resp.
νf) denotes its least (resp. greatest) fixed point (if it exists). We write Sets for
the category of sets and functions, and Meas for the category of measurable
sets and measurable functions. For f : X → Y and A ⊆ Y , f−1(A) denotes
{x ∈ X | f(x) ∈ A}.

2.2 Fixed Point and Hierarchical Equation System

In this section we review the notion of hierarchical equation system (HES) [6, 3].
It is a kind of a representation of an alternating fixed point.

Definition 2.1 (HES) A hierarchical equation system (HES for short) is a sys-
tem of equations of the following form.

E =

u1 =η1

f1(u1, . . . , um) ∈ (L1,v1)
u2 =η2 f2(u1, . . . , um) ∈ (L2,v2)

...
um =ηm fm(u1, . . . , um) ∈ (Lm,vm)

Here for each i ∈ [1,m], (Li,≤i) is a complete lattice, ui is a variable that ranges
over Li, ηi ∈ {µ, ν} and fi : L1 × · · · × Lm → Li is a monotone function.

Definition 2.2 (solution) Let E be an HES as in Def. 2.1. For each i ∈ [1,m]

and j ∈ [1, i] we inductively define f‡
i : Li×· · ·×Lm → Li and l

(i)
j : Li+1×· · ·×

Lm → Lj as follows (no need to distinguish the base case from the step case):

– f‡
i (ui, . . . , um) := fi(l

(i−1)
1 (ui, . . . , um), . . . , l

(i−1)
i−1 (ui, . . . , um), ui, . . . , um); and

– l
(i)
i (ui+1, . . . , um) := ηf‡

i (, ui+1, . . . , um) where η = µ if i is odd and η = ν

if i is even. For j < i, l
(i)
j (ui+1, . . . , um) := l

(i−1)
j (l

(i)
i (ui+1, . . . , um), ui+1, . . . , um).

If such a least or greatest fixed point does not exist, then it is undefined.

We call (l
(i)
1 , . . . , l

(i)
i) the i-th intermediate solution. The solution of the HES E

is a family (usol
1 , . . . , usol

m) ∈ L1 × · · · × Lm defined by usol
i := l

(m)
i (∗) for each i.

6

2.3 Categorical Finite and Infinitary Trace Semantics

We review [16, 11, 12, 18] and see how finite and infinitary traces of transition
systems are characterized categorically. We assume that the readers are familiar
with basic theories of categories and coalgebras. See e.g. [4, 13] for details.

We model a system as a (T, F)-system, a coalgebra c : X → TFX where T is
a monad representing the branching type and F is an endofunctor representing
the transition type of the system. Here are some examples of T and F :

Definition 2.3 (P, D, L and G) The powerset monad is a monad P = (P, ηP , µP)
on Sets where PX := {A ⊆ X}, Pf(A) := {f(x) | x ∈ A}, ηPX(x) := {x} and
µP
X(Γ) :=

⋃
A∈Γ A. The subdistribution monad is a monad D = (D, ηD, µD) on

Sets whereDX := {δ : X → [0, 1] | |{x | δ(x) > 0}| is countable, and
∑

x δ(x) ≤
1}, Df(δ)(y) :=

∑
x∈f−1({y}) δ(x), η

D
X(x)(x′) is 1 if x = x′ and 0 otherwise, and

µD
X(Φ)(x) :=

∑
δ∈DX Φ(δ) · δ(x). The lift monad is a monad L = (L, ηL, µL) on

Sets where LX := {⊥}+X, Lf(a) is f(a) if a ∈ X and ⊥ if a = ⊥, ηLX(x) := x
and µL

X(a) := a if a ∈ X and ⊥ if a = ⊥. The sub-Giry monad is a monad
G = (G, ηG , µG) on Meas where G(X,FX) is carried by the set of probability
measures over (X,FX), Gf(ϕ)(A) := ϕ(f−1(A)), ηGX(x)(A) is 1 if x ∈ A and 0
otherwise, and µG

X(Ξ)(A) :=
∫
δ∈GX δ(A)dΞ.

Definition 2.4 (polynomial functors) A polynomial functor F on Sets is
defined by the following BNF notation: F ::= id | A | F × F |

∐
i∈I F where

A ∈ Sets and I is countable. A (standard Borel) polynomial functor F on Meas
is defined by the following BNF notation: F ::= id | A | F × F |

∐
i∈I F where

A ∈Meas, I is countable, and the σ-algebras over products and coproducts are
given in the standard manner (see e.g. [18, Def. 2.2]).

A carrier of an initial F -algebra models a domain of finite traces [11] while
that of a final F -coalgebra models a domain of infinitary traces [12]. For example,
as we have seen in §1, for F = {X} + A × () on Sets, the carrier set of the
final F -coalgebra is A∞ while that of the initial F -algebra is A∗. The situation
is similar for a polynomial functor F = ({X},P{X}) + (A,PA)× () on Meas.
The carrier of an initial algebra is (A∗,PA∗), and that of a final coalgebra is
(A∞,FA∞) where FAω is the standard σ-algebra generated by the cylinder set.

In general, for a certain class of functors, an initial algebra and a final coal-
gebra are obtained by the following well-known construction.

Theorem 2.5 ([1]) 1. Let (A, (πi : F
i0 → A)i∈ω) be a colimit of an ω-chain

0

!

−→ F0
F

!

−−→ F 20
F 2

!

−−→ If F preserves the colimit, then the unique
mediating arrow ι : FA→ A from the colimit (FA, (Fπi : F

i+10→ FA)i∈ω)
to a cocone (A, (π′

i : F
i0→ A)i∈ω) where π′

i = πi+1 is an initial F -algebra.

2. Let (Z, (πi : A→ F i1)i∈ω) be a limit of an ωop-chain 1
!←− F1

F !←−− F 21
F 2!←−−

. . . . If F preserves the limit, then the unique mediating arrow ζ : Z → FZ
from a cone (Z, (π′

i : A→ F i1)i∈ω) where π′
i = πi+1 to the limit (FZ, (Fπi :

FZ → F i+11)i∈ω) is a final F -coalgebra. ut

7

We next quickly review notions about the Kleisli category K`(T).

Definition 2.6 (K`(T), J , U and F) Let T = (T, η, µ) be a monad on C. The
Kleisli category K`(T) is given by |K`(T)| = |C| and K`(T)(X,Y) = C(X,TY)
for X,Y ∈ |K`(T)|. An arrow f ∈ K`(T)(X,Y) is called a Kleisli arrow, and we
write f : X→p Y for distinction. Composition of arrows f : X→p Y and g : Y→p Z
is defined by µZ ◦Tg◦f , and denoted by g�f for distinction. The lifting functor
J : C→ K`(T) is defined by: JX := X and J(f) := ηY ◦ f for f : X → Y . The
forgetful functor U : K`(T)→ C is defined by: UX := TX and U(g) := µY ◦ Tg
for g : X→p Y . A functor F : K`(T) → K`(T) is called a lifting of F : C → C if
FJ = JF .

Example 2.7 Let T = P and F =
∑ω

n=0 Σn × ()n : Sets → Sets. A lifting
F over K`(T) is given by FX = FX for X ∈ Sets and Ff(σ, x0, . . . , xn−1) =
{(σ, y0, . . . , yn−1) | ∀i. yi ∈ f(xi)} for f : X→p Y , σ ∈ Σn and x0, . . . , xn−1 ∈ X.
(see e.g. [11]).

It is well-known that there is a bijective correspondence between a lifting F
and a distributive law, a natural transformation λ : FT ⇒ TF satisfying some
axioms [15]. See §D of the extended version [20] for the details.

In the rest of this section, let F be an endofunctor and T be a monad on a
category C, and assume that a lifting F : K`(T)→ K`(T) is given.

In [11], a finite trace semantics of a transition system was characterized as
the unique homomorphism to the final F -coalgebra in K`(T), which is obtained
by reversing and lifting the initial F -algebra in C.

Definition 2.8 (tr(c)) We say F and T constitute a finite trace situation wrt.
F if the following conditions are satisfied:

– An initial F -algebra ιF : FA→ A exists.

– J(ιF)−1 : A→p FA is a final F -coalgebra.

For c : X→p FX, the unique homomorphism from c to J(ιF)−1 is called the
(coalgebraic) finite trace semantics of c and denoted by tr(c) : X→p A.

In [11], a sufficient condition for constituting a finite trace situation is given.

Theorem 2.9 ([11]) Assume each homset of K`(T) carries a partial order v. If
the following conditions are satisfied, F and T constitute a finite trace situation.

– The functor F preserves ω-colimits in C.
– Each homset of K`(T) constitutes an ω-cpo with a bottom element ⊥.
– Kleisli composition � is monotone, and the lifting F is locally monotone,

i.e. f v g implies Ff v Fg.

– Kleisli composition � preserves ω-suprema and the bottom element ⊥.

8

Here by Thm. 2.5, the first condition above implies existence of an initial algebra.
In [11] it was shown that T ∈ {P,D,L} and a polynomial functor F satisfy

the conditions in Thm. 2.9 wrt. some appropriate orderings and liftings, and
hence constitute finite trace situations. We can see the result for T = D implies
T = G and a standard Borel polynomial functor F also satisfy the conditions.

An infinitary trace semantics was characterized in [12] as the greatest homo-
morphism to a weakly final coalgebra obtained by lifting a final coalgebra.

Definition 2.10 (infinitary trace situation) We further assume that each
homset of K`(T) carries a partial order v. We say that F and T constitute an
infinitary trace situation wrt. F and v if the following conditions are satisfied:

– A final F -coalgebra ζF : Z → FZ exists.
– JζF : Z→p FZ is a weakly final F -coalgebra that admits the greatest ho-

momorphism, i.e. for an F -coalgebra c : X→p FX, there exists the greatest
homomorphism from c to JζF wrt. v.

The greatest homomorphism from c to JζF is called the (coalgebraic) infinitary
trace semantics of c and denoted by tr∞(c) : X→p Z.

It is known that T ∈ {P,D,L,G} and a polynomial functor F constitute in-
finitary trace situations wrt. some orderings and liftings [18]. Differently from
finite trace situation, sufficient conditions for infinitary trace situation are not
unified. In [18], two families of sufficient conditions are given. One is applicable
for T = P, and the other is for T ∈ {L,G}. No condition is known for T = D.

Example 2.11 Let T = P and F = {X} + A × (). Then a TF -coalgebra
c : X → P({X} + A × X) is identified with an A-labeled nondeterministic
automaton whose accepting states are given by {x | X ∈ c(x)}. The arrow tr(c)
has a type X→p A∗ and assigns the set of accepted finite words to each state [11]:

tr(c)(x) =

{
a1a2 . . . an ∈ A∗

∣∣∣∣∣ ∃x0, . . . , xn ∈ X. ∀i ∈ [1, n− 1].

(ai+1, xi+1) ∈ c(xi) and X ∈ c(xn)

}
.

In contrast, tr∞(c) : X→p A∞ is given as follows [12]:

tr∞(c)(x) = tr(c)(x)

∪ {a1a2 . . . ∈ Aω | ∃x0, x1, . . . ∈ X. x = x0,∀i ∈ ω. (ai+1, xi+1) ∈ c(xi)} .

2.4 Büchi (T, F)-systems and its Coalgebraic Trace Semantics

The results in §2.3 was extended for systems with the parity acceptance condition
in [21]. We hereby review the results for the Büchi acceptance condition.

Definition 2.12 (Büchi (T, F)-system) Let n ∈ N. A Büchi (T, F)-system
is a pair (c, (X1, X2)) of a F -coalgebra c : X → FX in K`(T) and a partition
(X1, X2) ofX (i.e.X ∼= X1+X2). For i ∈ {1, 2}, we write ci for c◦κi : Xi → FX.

9

Their coalgebraic trace semantics is given by a solution of an HES.

Definition 2.13 (trBi (c)) Assume that each homset of K`(T) carries a partial
order v. We say that F and T constitute a Büchi trace situation wrt. F and v
if they satisfy the following conditions:

– A final F -coalgebra ζ : Z → FZ exists.
– For an arbitrary Büchi (T, F)-system X = (c, (X1, X2)), the following HES

has a solution.

Ec =

{
u1 =µ Jζ−1 � F [u1, u2]� c1 ∈ (K`(T)(X1, Z),vX1,Z)
u2 =ν Jζ−1 � F [u1, u2]� c2 ∈ (K`(T)(X2, Z),vX2,Z)

The solution
(
usol
1 : X1→p Z, usol

2 : X2→p Z
)
of Ec is called the (coalgebraic)

Büchi trace semantics of X . We write trBi (c) for u
sol
i for each i (see also Eq. (1)).

Example 2.14 Let T = P and F = A × (). Then a Büchi (T, F)-system (c :
X→p FX, (X1, X2)) is identified with an A-labeled Büchi automaton. Following
Def. 2.2 we shall sketch how the solution of the HES Ec in Def. 2.13 is calculated.
Note that Z ∼= Aω.

– We first calculate an intermediate solution l
(1)
1 (u2) : X1→p Aω as the least

fixed point of u1 7→ Jζ−1 � F [u1, u2]� c1 .

– We next define f‡
2 : K`(T)(X2, Z) → K`(T)(X2, Z) by f‡

2 (u2) := Jζ−1 �
F [l

(1)
1 (u2), u2]� c2 .

– We calculate l
(2)
2 (∗) : X2→p Aω as the greatest fixed point of f‡

2 .

– We let l
(2)
1 (∗) := l

(1)
1 (l

(2)
2) : X1→p Aω.

Then for each i, the solution trBi (c) = l
(2)
i (∗) is given as follows [21]:

trBi (c)(x) :=

{
a1a2 . . . ∈ Aω

∣∣∣∣∣ ∃x0, x1, . . . ∈ X. ∀i ∈ ω. (ai+1, xi+1) ∈ c(xi) and

xi ∈ X2 for infinitely many i

}
.

3 Alternating Fixed Points of Functors

3.1 Categorical Datatypes for Büchi Systems

We first introduce the categorical datatypes F+X and F⊕X, which are under-
stood as least and greatest fixed points of a functor F .

Definition 3.1 (F+, F⊕) For F : C→ C, we define functors F+, F⊕ : C→ C
as follows. Given X ∈ C, the object F+X is the carrier of (a choice of) an initial

algebra ιFX : F (F+X + X)
∼=→ F+X for the functor F (+ X). Similarly, the

object F⊕X is the carrier of a final coalgebra ζFX : F⊕X
∼=→ F (F⊕X +X). For

10

f : X → Y , F+f : F+X → F+Y is given as the unique homomorphism from ιFX
to ιFY ◦ F (idF+Y + f). We define F⊕f : F⊕X → F⊕Y similarly.

F (F+X +X)
F (F+f+id)

//

∼=ιFX

��

F (F+Y +X)
F (id+f)��

F (F+Y + Y)
∼=ιFY ��

F+X
F+f

//

=

F+Y

F (F⊕X + Y)
F (F⊕f+id)

// F (F⊕Y + Y)

F (F⊕X +X)

F (id+f)
OO

F⊕X

∼=ζFX
OO

F⊕f
//

=

F⊕Y

∼=ζFY

OO

Remark 3.2 The construction F+ resembles the free monad F ∗ over F . The
latter is defined as follows: given X ∈ C, the object F ∗X is the carrier of an
initial algebra F (F ∗X) +X

∼=→ F ∗X for the functor F () +X. The notations
generalize the usual distinction between ∗ and +. Indeed, for C = Sets and
F = Σ0 × (where Σ0 is an alphabet), we have F+1 = Σ+

0 (the set of finite
words of length ≥ 1) and F ∗1 = Σ∗

0 (the set of all finite words). Similarly, F⊕

resembles the free completely iterative monad [14].

Example 3.3 For F = A×(), by the construction in Thm. 2.5, F+X ∼= A+X,
F⊕X ∼= A+X + Aω and F+⊕X ∼= (A+)+X + (A+)ω. Especially, if we let X = 0
then F+⊕0 ∼= (A+)ω . We identify (a00a01 . . . a0n0

)(a10a11 . . . a1n1
) . . . ∈ F+⊕0 ∼=

(A+)ω with the following “decorated” sequence:

(a00,)(a01,) . . . (a0n0
,)(a10,)(a11,) . . . (a1n1

,) . . . ∈ (A×{ , })ω .

The second component of each element (i.e. decoration) represents a break of a
word: it is 2 iff it’s the beginning of a word in A+. It is remarkable that in the
sequence above, always appears infinitely many times. Hence w ∈ (A+)ω is
understood as an infinite word decorated so that the Büchi condition is satisfied.

We next define Kleisli arrows β1X and β2X that are used to define decorated
trace semantics (see the diagrams in (2)).

Definition 3.4 We define natural transformations β1 : F+(F+⊕+id)⇒ F (F+F+⊕+
F+⊕ + id) and β2 : F+⊕ ⇒ F (F+F+⊕ + F+⊕ + id) as follows.

β1X :=
(

F+(F+⊕X +X)
(ιF

F+⊕X
)−1

=======⇒ F (F+F+⊕X + F+⊕X +X)
)

β2X :=
(
F+⊕X

ζF+

X==⇒ F+(F+⊕X +X)
(ιF

F+⊕X
)−1

=======⇒ F (F+F+⊕X + F+⊕X +X)
)

Remark 3.5 As a final coalgebra ζF
+

X is an isomorphism, we can see from
Def. 3.4 that F+(F+⊕X+X) ∼= F+⊕X . For F = A×(), if we regard F+⊕X as
(A+)ω as in Ex. 3.3, F+(F+⊕X+X) would be understood as A+(A+)ω, which is
indeed isomorphic to (A+)ω. However, in this paper, mainly for the sake of sim-
plicity of notations, we explicitly distinguish them and later write types of a dec-
orated trace semantics of a Büchi (T, F)-system as dtr1(c) : X1→p F+(F+⊕0) and
dtr2(c) : X2→p F+⊕0. Because of this choice, while an element in F+⊕0 ∼= (A+)ω

11

F (F⊕F⊕X + F⊕X + X)
F (uX+idX)

// F (F⊕X +X)

F (F
⊕
F

⊕
X + F

⊕
X)

+ F (F
⊕
X + X)

[F [κ1,κ2],F [κ2,κ3]]

OO

F⊕F⊕X + F⊕X

ζF
F⊕X

+ζFX
∼=
OO

uX // F⊕X

final
∼= ζFX

OO

Fig. 1: the unique arrow uX

F
(
F

+
(F

+⊕
X + X)

+ F
+⊕

X + X
)F ([p

(2)
1 X

,p
(2)
2 X

]+idX)

// F (F⊕X +X)

F
+
(F

+⊕
X + X)

+ F
+⊕

X

[β1 X ,β2 X]

OO

[p
(2)
1 X

,p
(2)
2 X

]
// F⊕X

ζFX
final
∼=

OO

Fig. 2: the unique arrow [p
(2)
1 X , p

(2)
2 X]

is regarded as a decorated word whose first letter is decorated by (Ex. 3.3), an
element a0 . . . an

(
(a00a01 . . . a0n0

)(a10a11 . . . a1n1
) . . .

)
∈ F+(F+⊕0) ∼= A+(A+)ω

is understood as the following decorated sequence:

(a0,) . . . (an,)(a00,)(a01,) . . . (a0n0
,)(a10,)(a11,) . . . (a1n1

,)

3.2 Natural Transformations Regarding to F+ and F⊕

We introduce two natural transformations for later use. As mentioned in Rem. 3.2,
F+ resembles the free monad F ∗ while F⊕ is similar to the free completely iter-
ative monad. The first natural transformation we introduce is analogous to the
multiplication of those free monads.

Definition 3.6 (µF⊕
) We define a natural transformation µF⊕

: F⊕F⊕ ⇒
F⊕ by µF⊕

:= (uX ◦ κ1)X∈C, where uX is the unique homomorphism from
[F [κ1, κ2] ◦ ζFF⊕X , F [κ2, κ3] ◦ ζFX] to ζFX (see Fig. 1).

Example 3.7 Let F = A × (). According to the characterizations in Ex. 3.3

and Rem. 3.5, p
(1)
1X has a type (A+)+(A+)+X+(A+)+(A+)ω+(A+)ω → (A+)+X+

(A+)ω, and is given by the concatenating function that preserves each finite word.

The second natural transformation is for “removing” decorations.

Definition 3.8 (p
(i)
j) We define a natural transformation p

(1)
1 : F+ ⇒ F⊕ so

that p
(1)
1X : F+X → F⊕X is the unique homomorphism from J(ιFX)−1 to JζFX .

Similarly, we define natural transformations p
(2)
1 : F+(F+⊕ + id) ⇒ F⊕ and

p
(2)
2 : F+⊕ ⇒ F⊕ so that [p1X , p2X] : F+(F+⊕X +X) + F+⊕X → F⊕X is the

unique homomorphism from [β1X , β2X] to ζFX (see Fig. 2).

Example 3.9 Let F = A × (). According to the characterizations in Ex. 3.3

and Rem. 3.5, p
(1)
1X has a type A+X → A+X + Aω and is given by the natural

inclusion. In contrast, p
(2)
1 0 and p

(2)
2 0 have types A+(A+)ω → Aω and (A+)ω → Aω

respectively, and they are given by the flattening functions. See also Prop. 5.10.

12

3.3 Liftings F+ and F⊕ over K`(T)

Let F : K`(T)→ K`(T) be a lifting of of a functor F . We show that under certain
conditions, it induces liftings F+ : K`(T) → K`(T) of F+ and F⊕ : K`(T) →
K`(T) of F⊕. Note that a lifting F induces a lifting F (+A) : K`(T)→ K`(T) of
F (+A) which is defined by F (+A)f := F (f+idA) = F ([Tκ1, Tκ2]◦(f+ηA))
using the coproduct in K`(T).

Definition 3.10 1. Assume T and F constitute a finite trace situation. For
X ∈ C, we let F+X := F+X. For f : X→p Y , we define F+f : F+X→p F+Y
as the unique homomorphism from F (idF+X + f)� J(ιFX)−1 to J(ιFY)

−1.
2. Assume T and F constitute an infinitary trace situation. For X ∈ C, we

let F⊕X := F⊕X. For f : X→p Y , we define F⊕f : F⊕X→p F⊕Y as the
greatest homomorphism from F (idF⊕X + f)� JζFX to JζFY .

F (F+X + Y)
�

F (F+f+id
F+X

)

// F (F+Y + Y)

F (F+X +X)

_F (id+f)
OO

F+X

_∼=J(ιFX)−1 OO

�F+f
//

=

F+Y

_∼=J(ιFY)−1

OO
F (F⊕X + Y)

�
F (F⊕f+id

F⊕X
)

// F (F⊕Y + Y)

F (F⊕X +X)

_F (id+f)
OO

F⊕X

_∼=JζFX
OO

�F⊕f
//

=ν

F⊕Y

_∼=JζFY

OO

In the rest of this section, we check under which conditions F+ and F⊕ are
functors and form liftings of F+ and F⊕. Functoriality of F+ holds iff for each
f : X →p Y and g : Y →p W , F+g � F+f is the unique homomorphism from
F (id+g)�F (id+f)�J(ιFX)−1 to J(ιFW)−1. Similarly, functoriality of F⊕ holds
iff F⊕g�F⊕f is the greatest homomorphism from F (id+ g)�F (id+ f)� JζFX
to JζFW .

The former always holds by the finality. In contrast, the latter doesn’t nec-
essarily hold: a counterexample is T = D and F = {o} × ()2 (see Ex. ?? for
details). Hence we need an extra assumption to make F⊕ a functor. We hereby
assume a stronger condition than is needed for the sake of discussions in §4.

Definition 3.11 (Φc,σ) Let c : X→p FX and σ : FY→p Y . We define a function
Φc,σ : K`(T)(X,Y)→ K`(T)(X,Y) by Φc,σ(f) := σ � Ff � c.

FX
�Fl // FZ

�Fm // FY
_σ
��

X �l //

_c
OO

=ν

Z �m //

_JζF ∼=
OO

=ν

Y

Definition 3.12 Assume that T and F constitute
an infinitary trace situation. Let ζF : Z → FZ be
a final F -coalgebra. We say that T and F satisfy
the gfp-preserving condition wrt. an F -algebra σ :
FY →p Y if for each X ∈ C and c : X →p FX, if l : X →p Z is the greatest
homomorphism from c to JζF and the function ΦJζF ,σ has the greatest fixed
point m : Z→p Y , then m� l : X→p Y is the greatest fixed point of Φc,σ.

We next check if F+ and F⊕ are liftings of F+ and F⊕. It is immediate
by definition that F+JX = JF+X and F⊕JX = JF⊕X for each X ∈ C.
Let f : X → Y . By definition, F+Jf = JF+f holds iff JF+f is a unique
homomorphism from F (id+Jf)�J(ιFX)−1 to J(ζFY)−1. Similarly, F+Jf = JF+f
holds iff JF+f is the greatest homomorphism from F (id + Jf)� JζFX to JζFY .

13

The former is easily proved by the finality of J(ιFY)
−1, while the latter requires

an assumption again.

Definition 3.13 Assume T and F constitute an infinitary trace situation. Let
ζF : Z → FZ be a final F -coalgebra. We say that T and F satisfy the deterministic-
greatest condition if for c : X → FX in C, if u : X → Z is the unique homomor-
phism from c to ζF then Ju is the greatest homomorphism from Jc to JζF .

Concluding the discussions so far, we obtain the following proposition.

Proposition 3.14 1. If T and F (+A) constitute a finite trace situation for
each A ∈ C, the operation F+ is a functor and is a lifting of F+.

2. If T and F (+A) constitute an infinitary trace situation and satisfy the gfp-
preserving condition wrt. an arbitrary algebra and the deterministic-greatest
condition for each A ∈ C, then F⊕ is a functor and is a lifting of F⊕. ut

Hence under appropriate conditions, a lifting F : K`(T)→ K`(T) of F gives rise

to liftings of F+ and F⊕. By repeating this, we can define F
(i)
j for each i and j.

See §D of the extended version [20] for the distributive laws corresponding
to the liftings defined above.

Example 3.15 Let F = A × () and T = P. As we have seen in Ex. 3.3,
F+⊕X ∼= (A+)+X+(A+)ω. Let F be a lifting that is given as in Ex. 2.7. We can
construct a lifting F+⊕ using Prop. 3.14, and for f : X→p Y in K`(P), F+⊕f :
(A+)+X + (A+)ω→p (A+)+Y + (A+)ω is given by F+⊕f(w) = {w′y | y ∈ f(x)}
if w = w′x where w′ ∈ (A+)+ and x ∈ X, and {w} if w ∈ (A+)ω.

4 Decorated Trace Semantics of Büchi (T, F)-systems

4.1 Definition

Assumption 4.1 Throughout this section, let T be a monad and F be an
endofunctor on C, and assume that each homset of K`(T) carries a partial order
v. We further assume the following conditions for each A ∈ C.

1. F+, F+⊕ : C→ C are well-defined and liftings F, F+, F+⊕ : K`(T)→ K`(T)
are given.

2. T and F (+ A) satisfy the conditions in Thm. 2.9 wrt. F (+ A) and v,
and hence constitute a finite trace situation.

3. T and F+(+ A) constitute an infinitary trace situation wrt. F+(+ A)
and v.

4. T and F+(+A) satisfy the gfp-preserving condition wrt. an arbitrary σ.
5. T and F+(+A) satisfy the deterministic-greatest condition.
6. The liftings F+ and F+⊕ are obtained from F and F+ using the procedure

in Def. 3.10 respectively.
7. F+(+A) and F+⊕(+A) are locally monotone.

14

8. T and F constitute a Büchi trace situation wrt. the same v and F .

Using the categorical data type defined in §3, we now introduce a decorated
Büchi trace semantics dtr1(c) : X1→p F+(F+⊕0) and dtr2(c) : X2→p F+⊕0.

Definition 4.2 (dtri(c)) For a Büchi (T, F)-system (c, (X1, X2)), the decorated
Büchi trace semantics is a solution (dtr1(c) : X1→p F+(F+⊕0), dtr2(c) : X2→p
F+⊕0) of the following HES (see also Eq. (2)).{

v1 =ν J(β1 0)
−1 � F (v1 + v2)� c1 ∈ (K`(T)(X1, F

+(F+⊕0)),v)
v2 =ν J(β2 0)

−1 � F (v1 + v2)� c2 ∈ (K`(T)(X2, F
+⊕0),v)

Existence of a solution will be proved in the next section.

4.2 Trace Semantics vs. Decorated Trace Semantics

This section is devoted to sketching the proof of the following theorem, which
relates decorated trace semantics dtri(c) and Büchi trace semantics trBi (c) in [21]
via the natural transformation in Def. 3.8.

Theorem 4.3 For each i ∈ {1, 2}, trBi (c) = p
(2)
i 0 ◦ dtri(c). ut

To prove this, we introduce Kleisli arrows c‡2,
˜̀(1)
1 , ˜̀(2)

1 and ˜̀(2)
2 . They are

categorical counterparts to f‡
2 , l

(1)
1 , l

(2)
1 and l

(2)
2 (see Def. 2.2) for the HES defining

trBi (c) (see Def. 2.13), and bridge the gap between dtri(c) and trBi (c).

Definition 4.4 (c‡2,
˜̀(1)
1 , ˜̀(2)

1 , ˜̀(2)
2) We define Kleisli arrows ˜̀(1)

1 : X1→p F+X2,

c‡2 : X2→p F+X2, ˜̀
(2)
2 : X2→p F+⊕0 and ˜̀(2)

1 : X1→p F+⊕0 as follows:

– We define ˜̀(1)
1 : X1→p F+X2 as the unique homomorphism from an F (+

X2)-coalgebra c1 to J(ιFX2
)−1 (see the left diagram in Eq. (4) below).

– We define c‡2 : X2→p F+X2 by:

c‡2 :=
(
X2 pc2−→F (X1 +X2) pF (˜̀

(1)
1 +id)

−−−−−−−→F (F+X2 +X2) p
JιFX2−−−→F+X2

)
.

– We define ˜̀(2)
2 : X2→p F+⊕0 as the greatest homomorphism from c‡2 to JζF

+

0

(see the right diagram below).

F (X1 +X2)
�F (˜̀
(1)
1 +id)
// F

(
F+X2 +X2

)
X1

_c1

OO

�˜̀
(1)
1 //

=

F+X2

_J(ιFX2
)−1∼=

OO
F+(X2)

�F+(˜̀
(2)
2)
// F+

(
F+⊕0)

)
X2

_c
‡
2

OO

�˜̀
(2)
2 //

=ν

F+⊕0

_JζF
+

0
∼=
OO (4)

– We define ˜̀(2)
1 : X1→p F+(F+⊕0) as follows:

˜̀(2)
1 :=

(
X1 p

˜̀(1)
1−−→F+X2 pF+ ˜̀(2)

2−−−−−→F+(F+⊕0)
)
.

15

We explain an intuition why Kleisli arrows defined above bridge the gap be-
tween trBi (c) and dtri(c). One of the main differences between them is that trB1 (c)

is calculated from l
(1)
1 (u2) which is the least fixed point of a certain function,

while dtr1(c) is defined as the greatest homomorphism. The arrow ˜̀(1)
1 fills the

gap because it is defined as the unique fixed point, which is obviously both the
least and the greatest fixed point.

We shall prove Thm. 4.3 following the intuition above. The lemma below,

which is easily proved by the finality of a, shows that not only ˜̀(1)
1 but also ˜̀(2)

1

is characterized as the unique homomorphism.

Lemma 4.5 The Kleisli arrow
˜̀(2)
1 : X1→p F+(F+⊕0) is the unique

homomorphism from F (id+˜̀(2)
2)�c1

to J(ιFF+⊕0)
−1. ut

F (X1 + F+⊕0)
�

F (˜̀
(2)
1 +id)

// F (F+(F+⊕0) + F+⊕0)

F (X1 + X2)

_F (id+˜̀(2)
2)
OO

X1

_c1
OO

� ˜̀
(2)
1 //

=

F+(F+⊕0)

_∼=J(ιF
F+⊕0

)−1

OO

Together with the definition of ˜̀
(2)
2 , we have the following proposition.

Proposition 4.6 For each i ∈ {1, 2}, ˜̀(2)i = dtri(c). ut

This proposition implies the existence of a solution of the HES in Def. 4.2.

It remains to show the relationship between the ˜̀(i)
j and trpi (c). By using that

˜̀(1)
1 is the unique fixed point (and hence the least fixed point), we can prove the
following equality for an arbitrary u2 : X2→p F⊕0.

l
(1)
1 (u2) =

(
X1 p

˜̀(1)
1−−→F+X2 pF+u2−−−−→F+F⊕0 p

Jp
(1)

1 F⊕0−−−−−→F⊕F⊕0 pµF⊕
0−−−→F⊕0

)
The following equalities are similarly proved using the equality above.

l
(2)
1 (∗) =

(
X1 p

˜̀(2)
1−−−→F+F⊕0 p

F+F⊕

!

F+⊕0−−−−−−−−−−→F+F⊕(F⊕0) p
Jp

(2)

1 F⊕0−−−−−−→F⊕F⊕0 p
µF⊕
0−−−−→F⊕0

)
l
(2)
2 (∗) =

(
X2 p

˜̀(2)
2−−−→F⊕0 p

F⊕

!

F+⊕0−−−−−−−→F⊕(F⊕0) p
Jp

(2)

2 F⊕0−−−−−−→F⊕F⊕0 pµF⊕
0−−−→F⊕0

)
By the definition of trBi (c), these equalities imply the following proposition.

Proposition 4.7 For each i ∈ {1, 2}, trBi (c) = p
(2)
i 0 ◦ ˜̀

(2)
i . ut

Prop. 4.6 and Prop. 4.7 immediately imply Thm. 4.3.

5 Decorated Trace Semantics for Nondeterministic Büchi
Tree Automata

We apply the framework developed in §3–4 to nondeterministic Büchi tree au-
tomata (NBTA), systems that nondeterministically accept trees wrt. the Büchi
condition (see e.g. [17]). We show what datatypes F+(F+⊕0) and F+⊕0, and
dtri(c) characterize for an NBTA. We first review some basic notions.

16

5.1 Preliminaries on Büchi Tree Automaton

Definition 5.1 (ranked alphabet) A ranked alphabet is a set Σ equipped
with an arity function | | : Σ → N. We write Σn for {a ∈ Σ | |a| = n}.
For a set X, we regard Σ +X as a ranked alphabet by letting |x| = 0. We also
regard Σ ×X as a ranked alphabet by letting |(a, x)| = |a|.

Definition 5.2 (Σ-labeled tree, [7]) A tree domain is a set D ⊆ N∗ s.t.: i)
〈〉 ∈ D, ii) for w,w′ ∈ N∗, ww′ ∈ D implies w ∈ D (i.e. it is prefix-closed),
and iii) for w ∈ D and i, j ∈ N, wi ∈ D and j ≤ i imply wj ∈ D (i.e. it is
downward-closed). A Σ-labeled (infinitary) tree is a pair t = (D, l) of a tree
domain D and a labeling function l : D →

⋃
n∈N Σn s.t. for w ∈ D, |l(w)| = n

implies {i ∈ N | wi ∈ D} = [0, n−1]. A Σ-labeled tree t = (D, l) is finite if D is a
finite set. We write Tree∞(Σ) (resp. Treefin(Σ)) for the set of Σ-labeled infinitary
(resp. finite) trees. For w ∈ D, the w-th subtree tw of t is defined by tw = (Dw, lw)
where Dw := {w′ ∈ N∗ | ww′ ∈ D} and lw(w

′) := l(ww′). A branch of t is a
possibly infinite sequence i1i2 . . . ∈ N∞ s.t. i1i2 . . . ik ∈ D for each k ∈ N, and if
it is a finite sequence i1i2 . . . ik then |l(i0i1 . . . ik)| = 0. We sometimes identify a
branch i0i1 · · · ∈ N∞ with a sequence l(〈〉)l(i1)l(i1i2) · · · ∈ Σ∞.

Remark 5.3 For the sake of notational simplicity, we identify a Σ-labeled tree
with a Σ-term in a natural manner. For example, a {a, b}-term (a, (b, b)) denotes
an {a, b}-labeled finite tree t = ({〈〉, 0, 1}, [〈〉 7→ a, 0 7→ b, 1 7→ b]). Moreover, for
{a, b, c}-labeled trees t0 = (D0, l0) and t1 = (D1, l1), we write (c, t0, t1) for a tree
t = ({〈〉 ∪ {0w | w ∈ D0} ∪ {1w | w ∈ D1}, [〈〉 7→ c, 0w 7→ l0(w), 1w 7→ l1(w)]).

Definition 5.4 (NBTA) A nondeterministic Büchi tree automaton (NBTA) is
a tuple A = (X,Σ, δ,Acc) of a state space X, a ranked alphabet Σ, a transition
function δ : X → P(

∐
n∈N Σn ×Xn) and a set Acc ⊆ X of accepting states.

Definition 5.5 (LB
A) Let A = (X,Σ, δ,Acc) be an NBTA. A run

tree over A is a (Σ × X)-labeled tree ρ such that for each subtree
((a, x), ((a0, x0), t00, . . . , t0n0), . . . , ((an, xn), tn0, . . . , tnnn)), (a, x0, . . . , xn) ∈
δ(x) holds. A run tree is accepting if for each branch (a0, x0)(a1, x1) . . . ∈
(Σ×X)ω, xi ∈ Acc for infinitely many i. We write RunA(x) (resp. AccRunA(x))
for the set of run trees (resp. accepting run trees) whose root node is labeled
by x ∈ X. For A ⊆ X, RunA(A) denotes ∪x∈ARun(x). We define AccRunA(A)
similarly. If no confusion is likely, we omit the subscript A. We define DelSt :
Run(X)→ Tree∞(Σ) by DelSt(D, l) := (D, l′) where l′(w) := π1(l(w)). The lan-
guage LB

A : X → PTree∞(Σ) of A is defined by LB
A(x) = DelSt(AccRunA(x)).

5.2 Decorated Trace Semantics of NPTA

A ranked alphabet Σ induces a functor FΣ =
∐

n∈N Σn × ()n : Sets → Sets.
In [21], an NBTA A was modeled as a Büchi (P, FΣ)-system, and it was shown
that LB

A is characterized by a coalgebraic Büchi trace semantics trBi (c).

17

Proposition 5.6 ([21]) For X,Y ∈ Sets, we define an order v on K`(P)(X,Y)

by f v g
def.⇔ ∀x ∈ X. f(x) ⊆ g(x). We define FΣ : K`(P) → K`(P) by FΣX :=

X for X ∈ K`(P) and FΣf(a, x1, . . . , xn) := {(a, y1, . . . , yn) | yi ∈ f(xi)} for
f : X→p Y . It is easy to see that FΣ is a lifting of FΣ. Then we have:

1. P and FΣ constitute a Büchi trace situation (Def. 2.13) wrt. v and FΣ.
2. The carrier set of the final FΣ-coalgebra is isomorphic to Tree∞(Σ).
3. For an NBTA A = (X,Σ, δ,Acc), we define a Büchi (P, FΣ)-system (c :

X→p FΣX, (X1, X2)) by c := δ, X1 := X \ Acc and X2 := Acc. Then we
have: [trB1 (c), tr

B
2 (c)] = LB

A : X → PTree∞(Σ). ut

In the rest of this section, for an NBTA A = (X,Σ, δ,Acc) modeled as a
(P, FΣ)-system (c : X → PFΣX, (X1, X2)), we describe dtri(c) and show the
relationship with trBi (c) using Thm. 4.3.

We first describe datatypes F+
Σ (F+⊕

Σ 0) and F+⊕
Σ 0 referring to the construc-

tion of a final coalgebra in Thm. 2.5. We can easily see that F+
ΣA ∼= Tree+fin(Σ,A) :=

Treefin(Σ+A)\{(x) | x ∈ A}. Hence for each i ∈ ω, by a similar characterization
to Ex. 3.3, we have:

(F+
Σ (+ 0))i1 ∼= Tree+fin(Σ,Tree+fin(Σ, . . .Tree+fin(Σ,︸ ︷︷ ︸

i

{∗}) . . .)) ∼=

{
ξ ∈ Treefin(Σ × { , }

+ {∗})

∣∣∣∣ the root node is labeled by , and for each branch

whose last component is ∗, appears exactly i-times

}
.

Therefore F+⊕
Σ 0, a limit of the above sequence by Thm. 2.5, and F+

Σ (F+⊕
Σ 0) are

characterized as follows:

Proposition 5.7 We define AccTreei(Σ) ⊆ Tree∞(Σ × { , }) by:

AccTreei(Σ) :=

{
ξ ∈ Tree∞(Σ × { , }

+A)

∣∣∣∣ the root node is labeled by •, and for each
infinite branch appears infinitely often

}
.

where i ∈ {1, 2} and • is if i = 1 and if i = 2. Then AccTree1(Σ) ∼=
F+
Σ (F+⊕

Σ 0) and AccTree2(Σ,A) ∼= F+⊕
Σ 0. ut

We now show what dtri(c) characterizes for an NBTA wrt. the characteriza-
tion in Prop. 5.7. Firstly, the assumptions in the previous section are satisfied.

Proposition 5.8 Asm. 4.1 is satisfied by (T, F) = (P, FΣ). ut

By Prop. 5.7, for i ∈ {1, 2}, βi 0 (see Def. 3.4) has a type

βi 0 : AccTreei(Σ)→
∐

n∈ωΣn × (AccTree1(Σ) + AccTree2(Σ)) ,

and is given by βi A(ξ) = (a, ξ0, . . . , ξn−1) if the root of ξ is labeled by (a, •) ∈
Σn × { , }. Using this, we can show the following characterization of dtri(c).

18

Proposition 5.9 Let A = (X,Σ, δ,Acc) be an NBTA. We define Ω : Run(X)→
Tree∞(Σ × { , }) by Ω(D, l) := (D, l′) where for w ∈ D s.t. l(w) = (a, x),
l′(w) := (a,) if x /∈ Acc and (a,) if x ∈ Acc. We define a Büchi (P, FΣ)-system
(c : X→p FΣX, (X1, X2)) as in Prop. 5.6.3. Then for i ∈ [1, 2n] and x ∈ Xi,

dtri(c)(x) =
{
Ω(ρ) ∈ AccTreei(Σ) | ρ ∈ AccRunA(x)

}
. ut

We conclude this section by instantiating p
(2)
i A (Def. 3.8) for NBTAs.

Proposition 5.10 We overload DelSt and define DelSt : AccTree1(Σ)+AccTree2(Σ)→
Tree∞(Σ) by DelSt(D, l) := (D, l′) where l′(w) := π1(l(w)). Then with respect

to the isomorphism in Prop. 5.7, DelSt(ξ) = p
(2)
i A(ξ) for each i ∈ {1, 2} and

ξ ∈ AccTreei(Σ). ut

Hence Thm. 4.3 results in the following (obvious) equation for NBTAs:{
DelSt(Ω(ρ)) | ρ ∈ AccRunA(x)

}
= LB

A(x) .

6 Systems with Other Branching Types

In this section we briefly discuss other monads than T = P. As we have discussed
in §3.3, the framework does not apply to T = D.

Let T = L and F = FΣ . A Büchi (L, FΣ)-system (c : X→p FΣX, (X1, . . . , X2n))
is understood as a Σ-labeled deterministic Büchi tree automaton with an excep-
tion. In a similar manner to T = P we can prove that they satisfy Asm. 4.1. The
resulting decorated trace semantics has a type dtri(c) : Xi → {⊥}+AccTreei(Σ).
Note that once x ∈ X is fixed, either of the following occurs: a decorated tree is
determined according to c; or ⊥ is reached at some point. The function dtri(c)
assigns ⊥ to x ∈ Xi iff ⊥ is encountered from x or the resulting decorated tree
does not satisfy the Büchi condition: otherwise, the generated tree is assigned to
x. See §E.1 of the extended version [20] for detailed discussions, which includes
the case of parity automata.

We next let T = G. A Büchi (G, FΣ)-system is understood as a probabilistic
Büchi tree automaton. In fact, it is open if T = G and F = FΣ satisfy Asm. 4.1.
The challenging part is the gfp-preserving condition (Asm. 4.1.4). However, by
carefully checking the proofs of the lemmas and the propositions where the
gfp-preserving condition is used (i.e. Prop. 3.14, Lem. 4.5 and Prop. 4.7), we
can show that Asm. 4.1.4 can be relaxed to the following weaker but more
complicated conditions:

4’-1. T and F+(+A) satisfy the gfp-preserving condition wrt. an algebra F+(F+⊕B+

A) pF ‡
i (id+f)
−−−−−−→ F+(F+⊕B +B) pJ(ζF+

B)−1

−−−−−−−→ F+⊕B for each f : A→p B;
4’-2. T and F+(+A) satisfy the gfp-preserving condition wrt. an algebra F+(F⊕⊕A+

A) pJτ−−→ F⊕(F⊕⊕A+A) pJ(ζF⊕
A)−1

−−−−−−−→ F⊕⊕A where τ is the unique homomor-
phism from (ιFF⊕⊕A+A)

−1 to ζFF⊕⊕A+A; and

19

4’-3. T and F (+A) satisfy the gfp-preserving condition wrt. an algebra F (F⊕A+

F⊕A+A) pJF ([id,id]+id)−−−−−−−−−→ F (F⊕A+A) pJ(ζF
A)−1

−−−−−−→ F⊕A.

In fact, only the first condition is sufficient to prove Prop. 3.14 and Lem. 4.5.
We can show that T = G and F = FΣ on Meas satisfy the above weakened

gfp-preserving condition, and hence we can consider a decorated trace semantics
dtri(c) for a Büchi (G, FΣ)-system (c : X→p FΣX, (X1, X2)) and use Thm. 4.3.

Assume X is a countable set equipped with a discrete σ-algebra for sim-
plicity. Then the resulting decorated trace semantics dtri(c) has a type Xi →
G(AccTreei(Σ),FAccTreei(Σ)) where FAccTreei(Σ) is the standard σ-algebra gen-
erated by cylinders. The probability measure assigned to x ∈ Xi by dtri(c) is
defined in a similar manner to the probability measure over the set of run trees
generated by a probabilistic Büchi tree automaton (see e.g. [18]).

The situation is similar for parity (G, FΣ)-systems. See [20, §E.2] for details.

7 Conclusions and Future Work

We have introduced a categorical data type for capturing behavior of systems
with Büchi acceptance conditions. The data type was defined as an alternating
fixed point of a functor, which is understood as the set of traces decorated with
priorities. We then defined a notion of coalgebraic decorated trace semantics, and
compared it with the coalgebraic trace semantics in [21]. We have applied our
framework for nondeterministic Büchi tree automata, and showed that decorated
trace semantics is concretized to a function that assigns a set of trees decorated
with priorities so that the Büchi condition is satisfied in every branch. We have
focused on the Büchi acceptance condition for simplicity, but all the results can
be extended to the parity acceptance condition (see §A of [20] for the details).

Future Work There are some directions for future work. In this paper we
focused on systems with a simple branching type like nondeterministic or proba-
bilistic. Extending this so that we can deal with systems with more complicated
branching type like two-player games (systems with two kinds of nondeterminis-
tic branching) orMarkov decision processes (systems with both nondeterministic
and probabilistic branching) is a possible direction of future work.

Another direction would be to use the framework developed here to cate-
gorically generalize a verification method. For example, using the framework of
coalgebraic trace semantics in [21], a simulation notion for Büchi automata is
generalized in [19]. Searching for an existing verification method that we can
successfully generalize in our framework would be interesting.

Finally, it was left open in §6 if Asm. 4.1.4 is satisfied by T = G and F = FΣ .
Investigating this is clearly a future work.

Acknowledgments We thank Kenta Cho, Shin’ya Katsumata and the anony-
mous referees for useful comments. The authors are supported by JST ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and

20

JSPS KAKENHI Grant Numbers 15KT0012 & 15K11984. Natsuki Urabe is sup-
ported by JSPS KAKENHI Grant Number 16J08157.

References

1. Adámek, J., Koubek, V.: Least fixed point of a functor. J. Comput. Syst. Sci. 19(2),
163–178 (1979), http://dx.doi.org/10.1016/0022-0000(79)90026-6

2. Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. Journal of Logical and
Algebraic Methods in Programming 95, 41 – 81 (2018)

3. Arnold, A., Niwiński, D.: Rudiments of µ-Calculus. Studies in Logic and the Foun-
dations of Mathematics, Elsevier, Amsterdam (2001)

4. Borceux, F.: Handbook of Categorical Algebra, Encyclopedia of Mathematics and
its Applications, vol. 1. Cambridge University Press (1994)

5. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Proc. CMCS 2012.
Lecture Notes in Computer Science, vol. 7399, pp. 90–108. Springer (2012)

6. Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal mu-
calculus. In: Proc. CAV ’92. LNCS, vol. 663, pp. 410–422. Springer (1992)

7. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983), https://doi.org/10.1016/0304-3975(83)90059-2

8. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SICOMP 34(5), 1159–1175 (2005)

9. Ghani, N., Hancock, P., Pattinson, D.: Representations of stream processors using
nested fixed points. Logical Methods in Computer Science 5(3) (2009)

10. Hasuo, I., Jacobs, B.: Context-free languages via coalgebraic trace semantics. In:
Proc. CALCO 2005. LNCS, vol. 3629, pp. 213–231. Springer (2005)

11. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods in Computer Science 3(4) (2007)

12. Jacobs, B.: Trace semantics for coalgebras. Electr. Notes Theor. Comput. Sci. 106,
167–184 (2004), http://dx.doi.org/10.1016/j.entcs.2004.02.031

13. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoret. Comp. Sci., Cambridge Univ. Press (2016)

14. Milius, S.: Completely iterative algebras and completely iterative monads. Infor-
mation and Computation 196(1), 1 – 41 (2005)

15. Mulry, P.S.: Lifting theorems for Kleisli categories. In: Proc. MFPS IX. Lecture
Notes in Computer Science, vol. 802, pp. 304–319. Springer (1993)

16. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. Electr.
Notes Theor. Comput. Sci. 29, 259–274 (1999)

17. Thomas, W.: Languages, Automata, and Logic, pp. 389–455. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1997)

18. Urabe, N., Hasuo, I.: Coalgebraic infinite traces and Kleisli simulations. CoRR
abs/1505.06819 (2015), http://arxiv.org/abs/1505.06819

19. Urabe, N., Hasuo, I.: Fair Simulation for Nondeterministic and Probabilistic Buechi
Automata: a Coalgebraic Perspective. LMCS vol. 13, iss. 3 (2017)

20. Urabe, N., Hasuo, I.: Categorical Büchi and parity conditions via alternating fixed
points of functors. arXiv preprint (2018)

21. Urabe, N., Shimizu, S., Hasuo, I.: Coalgebraic trace semantics for Büchi and par-
ity automata. In: Proc. CONCUR 2016. LIPIcs, vol. 59, pp. 24:1–24:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

