Undecidability of Equality for Codata Types

Ulrich Berger and Anton Setzer

Swansea University CMCS'18 Thessaloniki, Greece 15 April 2018

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Goal Directed Theorem Prover (Here Coq)

Ulri

000	Coqlde
🔂 🗶 👎 🏠 🌳 ዥ 👱 🛛 😂 🖨	• 🕕
Coquette.v	
<pre>Inductive bool := true : bool false : bool. Definition and b1 b2 := match b1 with true => b2 false : false </pre>	<pre>2 subgoal Case := "b = true" : String.string c : bool H : and true c = true true = true false = true</pre>
<pre> false => false end. Theorem and true elim1 :</pre>	
<pre>∀ b c : bool, and b c = true → b = true. Proof. intros b c H. destruct b. Case "b = true".</pre>	
<pre>reflexivity. Case "b = false". rewrite <- H. reflexivity. Oed.</pre>	
ich Berger and <u>Anton Setzer</u> (Swansea) Undecidability of Equality f	for Codata Types 4/ 29

Theorems as Functional Programs with Holes (Agda)

emacs24@csetzer-laptopToshiba File Edit Options Buffers Tools Adda Help 🗅 🗁 🗐 🗶 🔚 | 🥱 | 🐰 ҧ 🛅 | 🗬 data N : Set where zero : N suc : $\mathbb{N} \to \mathbb{N}$ + : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ n + zero = nn + (suc m) = suc (n + m) \equiv : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \text{Set}$ zero ≡ zero = T zero ≡ suc m = 1 suc $n \equiv zero = 1$ suc $n \equiv suc m = n \equiv m$ zerolem : (n : N) → zero + n ≡ n

```
zerolem : (n : N) → zero + n ≡ n

zerolem n = \{ \} 0

com+ : (n m : N) → n + m ≡ m + n

com+ zero m = zerolem m

\forall com+ (suc n) m = \{ \} 1

[U:**- exampleCode.agda Bot L27 (Agda Abbrev) 12:24 0.59]
```

Need for Decidability of Equality

- Agda's approach requires decidability of type checking.
- Type checking for dependently typed programs relies on a decidable equality:

 $\lambda X.\lambda x.x: \Pi_{X:A
ightarrow {
m Set}}(X \ a
ightarrow X \ b) \Leftrightarrow a \ {
m and} \ b \ {
m are} \ {
m equal} \ {
m elements} \ {
m of} \ A$

Three Equalities in Agda

 Definitional equality - decidable equality used during type checking.

 $f = g : \mathbb{N} \to \mathbb{N} \Leftrightarrow f, g$ are "equivalent" programs.

► User-defined equalities.

- Can be **undecidable**.
- Can be used to prove correctness of programs.
- For coalgebras the standard choice is **bisimilarity** defined coinductively.

► Propositional equality.

- Generic equality type based on definitional equality.
- Not relevant for this talk.

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Codata Types

Algebraic data types introduce least fixed points:

data \mathbb{N} : Set where $0 \quad : \quad \mathbb{N}$ suc $: \quad \mathbb{N} \to \mathbb{N}$

Codata types introduce largest fixed point:

 $\begin{array}{l} \mathrm{codata}\ \mathrm{Stream}: \mathrm{Set}\ \mathrm{where}\\ _::_: \mathbb{N} \to \mathrm{Stream} \to \mathrm{Stream} \end{array}$

fun2Stream : $(\mathbb{N} \to \mathbb{N}) \to \text{Stream}$ fun2Stream $f = f \ 0$:: fun2Stream $(f \circ \text{suc})$

► Infinite terms + non normalisation unless we restrict expansion:

$$\begin{array}{rcl} \text{fun2Stream } f &=& f \ 0 ::: \text{fun2Stream} \ (f \circ \text{suc}) \\ &=& f \ 0 ::: f \ 1 :: \text{fun2Stream} \ (f \circ \text{suc}^2) \\ &=& f \ 0 ::: f \ 1 ::: f \ 2 :: \text{fun2Stream} \ (f \circ \text{suc}^3) \end{array}$$

Problems of Codata Types

This implies that if for some n

$$\forall k < n \, f \, k = g \, k$$
$$f \circ \operatorname{suc}^n = g \circ \operatorname{suc}^n$$

then

• But this makes the equality **undecidable**.

Problems of Codata Types

Definition of functions by pattern matching:

inc : Stream \rightarrow Stream inc (n :: s) = (n + 1) :: inc s

- Assumes every s: Stream is of the form s = n :: s' for some t.
- We will see that this results in undecidability of equality.
- Problem was fixed in Coq and early versions of Agda by applying special restrictions on when to expand the defining equations for fun2Stream. Resulted in subject-reduction problem

Coalgebras as Observations + Copattern Matching

- ▶ New approach (Abel, Pientka, Setzer, Thibodeau, POPL'13):
- Coinductive Types defined by observations:

coalg Stream : Set where head : Stream $\rightarrow \mathbb{N}$ tail : Stream \rightarrow Stream

Elements of Stream defined by copattern matching:

$$\begin{split} & \text{fun2Stream} : (\mathbb{N} \to \mathbb{N}) \to \text{Stream} \\ & \text{head} (\text{fun2Stream} f) = f \ 0 \\ & \text{tail} \quad (\text{fun2Stream} f) = \text{fun2Stream} (f \circ \text{suc}) \end{split}$$

- (fun2Stream f) is in normal form, if f in normal form.
- Reductions are only carried out after applying head or tail to it.

Constructor as Defined Operation

:: is not a constructor but defined by copattern matching:

We don't have

 $s = head \ s :: tail \ s$

Applications of the Copattern Approach

Examples of projects of using copattern matching for proving theorems in Agda

- With Chuang: Representation of constructive reals using coalgebras. (PhD thesis Chi Ming Chuang).
- ► With Bashar Igried: CSP-Agda.
 - Representation of the process algebra CSP in Agda in a coalgebraic way.
 - Proof of algebraic laws using trace semantics, stable failures semantics, failures divergences infinite traces semantics, bisimilarity, and divergence respecting weak bisimilarity.
- With Peter Hancock IO monad as coalgebra.
- With Andreas Abel and Stephan Adelsberger: Representations of objects and GUIs as coalgebras. (Abel, Adelsberger, Setzer, J Functional Programming 2017)

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Encoding of Streams

Definition

(a) An encoding of streams (Stream, head, tail, ==) is given by:

- 1. A subset $Stream \subseteq \mathbb{N}$.
- 2. An equivalence relation $== \subseteq \operatorname{Stream} \times \operatorname{Stream}$ written infix.
- 3. Functions head : Stream $\rightarrow \mathbb{N}$, tail : Stream \rightarrow Stream that are congruences.
- (b) An encoding of streams is injective if $\langle {\rm head}, {\rm tail} \rangle$ is injective i.e.

 $\forall s, s' : \text{Stream} . \text{head}(s) = \text{head}(s') \land ext{tail}(s) == ext{tail}(s')
ightarrow s == s'$

- (c) An encoding of streams is <u>universal</u> if it allows to define functions by primitive corecursion.
- (c) An encoding of streams is <u>coiteratively universal</u> if it allows to define functions by primitive coiteration.

Equalities Extending ==

Definition

Assume an encoding of streams.

$$egin{aligned} s ==_{<\omega} t & \Leftrightarrow & \exists n. (orall i < n.(s)_i = (t)_i) \wedge ext{tail}^n(s) == ext{tail}^n(t) \ s \sim t & \Leftrightarrow & orall i \in \mathbb{N} \,.\, (s)_i = (t)_i \end{aligned}$$

Injectivity does not imply Bisimilarity

Lemma

- (a) $==_{<\omega}$ is the least injective equivalence relation containing == and respecting head, tail.
- (b) $== \subseteq ==_{<\omega} \subseteq \sim$.
- (c) For the standard model of streams in Agda we have that == $\neq ==_{<\omega} \neq \sim$.

Decidable Streams Not Determined by head, tail

Theorem

- (a) Every injective universal encoding of streams has an undecidable equality.
- (b) The same applies to injective coiteratively universal encodings.

Decidable Streams Not Always of Form cons(n, s)

Corollary

(a) Assume a universal or coiteratively universal encoding of streams together with a cons function respecting equalities. If

 $\forall s : \text{Stream.} s == \text{cons}(\text{head}(s), \text{tail}(s))$

then == is undecidable.

(b) Assume cons as in (a). Assume

 $\forall s : \text{Stream}, n : \mathbb{N} . \text{head}(\text{cons}(n, s)) = n \land \text{tail}(\text{cons}(n, s)) == s \\ \forall s : \text{Stream} . \exists n, s' . s == \text{cons}(n, s')$

Then == is undecidable.

(c)
$$==_{<\omega}$$
 and \sim are both undecidable.

- A proof of undecidability of \sim is easy since extensional equality on $\mathbb{N} \to \mathbb{N}$ is undecidable by undecidability of Turing halting problem.
- ▶ We cannot use this fact, since in general $==_{<\omega} \neq \sim$.
- Instead we use the following theorem from computability theory, where {e} is the partial function defined by the eth Turing Machine:

Theorem

(Rosser, Kleene, Novikov, Trakhtenbrot) Let $A := \{e \mid \{e\} \simeq 0\}$ and $B := \{e \mid \{e\} \simeq 1\}$. Then A and B are recursively inseparable: There is no (total) computable function $f : \mathbb{N} \to \{0, 1\}$ such that $\forall e \in A . f(e) = 0$ and $\forall e \in B . f(e) = 1$

- ► Assume a universal injective encoding of streams.
- We define f : N → Stream mapping Turing Machines with code e to streams as follows.

If we had codata types the definition would be:

If e terminates after k steps with result r

$$f(e) = \underbrace{0 :: 0 :: \cdots :: 0}_{k} :: r :: r :: r :: r$$

If e never terminates then

$$f(e) = 0 :: 0 :: \cdots$$

• f(e) = g(e, 0) where

$$head(g(e, n)) = 0$$

$$tail(g(e, n)) = \begin{cases} g(e, n+1) & \text{if } e \text{ has not terminated} \\ & \text{after } k \text{ steps} \\ const(r) & \text{if } e \text{ has terminated} \\ & \text{after } k \text{ steps with result } r \end{cases}$$

where const(r) is a fixed constant stream returning always r.

- g defined by primitive corecursion.
 It can be defined with some extra effort by primitive coiteration.
- ► It is crucial that after having terminated we give back the same stream const(r), not only a stream bisimilar to const(r).

- Assume that the encoding of streams is injective.
- If $\{e\} \simeq 0$, then $f(e) == \operatorname{const}(0)$.

• If
$$\{e\} \simeq 1$$
 then $\neg(f(e) == \operatorname{const}(0))$.

▶ So if == were decidable, the function

$$\lambda e.f(e) == const(0)$$

would separate $\{e \mid \{e\} \simeq 0\}$ from $\{e \mid \{e\} \simeq 1\}$, a contradiction.

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

- Decidable type checking requires decidable definitional equality.
- With decidable equality we cannot assume for weakly final coalgebras that
 - streams are determined by head and tail
 - or that every stream is of the form cons(n,s).
- Proof using advanced result from computability theorem, not just undecidability of halting problem for Turing Machines.
- Codata approach implicitly assumes that every stream is of the form cons(n, s), resulting in an undecidable equality.

- Problem of codata types can be fixed by defining coinductive types by observations and copattern matching.
 - However streams are not always of the form cons(n, s).
- Defining coalgebras by observations and copattern matching has been used in Agda successfully for large scale implementation and verification of processes, IO programs, objects and GUIs.
- In Agda there exist a musical approach to codata types, which can be considered as syntactic sugar for coalgebras while behaving as close as possible to codata types.
 - Currently not much used.
 - ► See discussion in CMCS'18 paper.

Conclusion

One Referee: Is the paper nothing but another nail in the coffin of the co-data approach?

Coalgebras to the Rescue

