Picturing Quantum Processes II: ZX-calculus and automation

Aleks Kissinger

Radboud University

Coalgebraic Methods in Computer Science
Thessalonaki 2018

The setting: symmetric monoidal categories

$$
\begin{aligned}
& f: A \rightarrow B:=\frac{\left.\right|_{f} ^{B}}{\overbrace{A}}
\end{aligned}
$$

$$
\begin{aligned}
& f \otimes g:=\begin{array}{|c}
\stackrel{\perp}{f} \\
\underset{\square}{g}
\end{array} \\
& 1_{A}:=\left|A \quad 1_{l}:=\quad \sigma_{A, B}:=\int_{A}^{B}\right|_{B}^{A}
\end{aligned}
$$

Symmetric monoidal theories

- We work with (co)algebraic structures inside an SMC, via symmetric monoidal theories
- Symmetric monoidal theories generalise (universal) algebraic theories
- They consist of a set of generators with input/output arities e.g.

$$
\Sigma:=\{\rho: 2 \rightarrow 1, \quad \supset: 0 \rightarrow 1\}
$$

- And a set of relations, which are pairs of (formal) compositions in the SMC, respecting arities, e.g.

Symmetric monoidal theories

- Relations $(L=R) \in E$ extend to larger diagrams via substitution
- In the usual (term-like) picture, we can see this is rewriting modulo the SMC axioms:

$$
L=R \vdash G=H \quad \Longleftrightarrow \quad \exists C_{1}, C_{2}, X \cdot\left\{\begin{array}{l}
G \stackrel{s m c}{=} C_{1} \circ(L \otimes 1 X) \circ C_{2} \\
H \stackrel{\text { smc }}{=} C_{1} \circ\left(R \otimes 1_{X}\right) \circ C_{2}
\end{array}\right.
$$

- Rewriting modulo is hard in general
- Simpler to perform substitution directly on string diagrams

Equational reasoning with diagram substitution

- For example:

- and be applied as:

Models

- A model of (Σ, E) consists of an object $A \in \mathcal{C}$ and morphisms:

$$
\llbracket f \rrbracket: \underbrace{A \otimes \ldots \otimes A}_{m} \rightarrow \underbrace{A \otimes \ldots \otimes A}_{n}
$$

for all $f: m \rightarrow n \in \Sigma$, such that compositions satisfy the equations in E.

- Equivalently, we can define models of (Σ, E) in terms of its associated PROP.
- A PROP is an SMC whose objects are $\mathbb{N}(:=(c o)$ arities $)$.
- The syntactic PROP $\operatorname{Syn}(\Sigma, E)$ of a theory (Σ, E) has as mophisms string diagrams of Σ-generators, modulo E
- Models are strong monoidal functors $\llbracket-\rrbracket: \operatorname{Syn}(\Sigma, E) \rightarrow \mathcal{C}$

Semantic PROPs

- Equality in $\operatorname{Syn}(\Sigma, E)$ is undecidable in general
- However, some theories have particularly nice, 'semantic' PROPs with decidable equality.
- e.g. for commutative monoids, $\operatorname{Syn}(\Sigma, E) \simeq($ FinSet,+$)$

Example

(Special commutative) Frobenius algebras:

n.b. $\operatorname{Syn}(\Sigma, E) \simeq(\operatorname{Csp}($ FinSet $),+)$

Example

Commutative bialgebras:

n.b. $\operatorname{Syn}(\Sigma, E) \simeq(\operatorname{Mat}[\mathbb{N}], \oplus)$

The system $\mathbb{I B}$

- It is interesting to consider multiple, interacting theories
- $\mathbb{I B}$ (for interacting bialgebras) consists of two bialgebras that interact with each other as Frobenius algebras
- equivalently, it's two Frobenius algebras that interact as bialgebras
- Formally, it consists of:

$$
\Sigma_{\mathbb{I B}}=\{, \dot{\alpha}, b, \dot{\phi}, q, \phi, b, \dot{\phi}, \varphi\}
$$

such that these are Frobenius algebras:

$$
(,, b, \phi, \varphi)
$$

$$
(k, b, \phi, \varphi)
$$

these are bialgebras:

$$
(,, b, \gamma, \varphi) \quad(, \phi, b, \psi, \varphi)
$$

and caps/cups coincide:

$$
\cap:=\dot{\beta}=\dot{\beta}
$$

Interacting bialgebras are linear relations

$$
\operatorname{Syn}\left(\sum_{\mathbb{I B}}, E_{\mathbb{I B}}\right) \cong \operatorname{LinRel}_{\mathbb{Z}_{2}} \quad\left[\mathrm{BSZ}^{\prime} 14\right]^{1}
$$

- $\operatorname{LinRel}_{\mathbb{Z}_{2}}$ has:
- objects: \mathbb{N}
- morphisms: $R: m \rightarrow n$ is a subspace:

$$
R \subseteq \mathbb{Z}_{2}^{m} \times \mathbb{Z}_{2}^{n} \cong \mathbb{Z}_{2}^{m+n}
$$

- composition is relation-style. For $R: m \rightarrow n, S: n \rightarrow k$:

$$
(u \mid w) \in S \circ R \quad \Longleftrightarrow \quad \exists v \in \mathbb{Z}_{2}^{n} .(u \mid v) \in R \wedge(v \mid w) \in S
$$

- tensor is $\times($ aka. $\oplus)$

Semantic picture

- We can define an interpretation $\llbracket-\rrbracket: \operatorname{Syn}\left(\sum_{\mathbb{I B}}, E_{\mathbb{I B}}\right) \rightarrow \operatorname{LinRel}_{\mathbb{Z}_{2}}$ as:

$$
\begin{gathered}
\llbracket \bigvee \rrbracket=\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} \subseteq \mathbb{Z}_{2}^{1+2} \quad \llbracket \uparrow \rrbracket=\{(0),(1)\} \subseteq \mathbb{Z}_{2}^{1+0} \\
\llbracket \hat{\rrbracket}=\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\} \subseteq \mathbb{Z}_{2}^{2+1} \quad \llbracket b \rrbracket=\{(0)\} \subseteq \mathbb{Z}_{2}^{0+1}
\end{gathered}
$$

- BSZ showed that $\llbracket-\rrbracket$ extends to a PROP iso
- They used the techique of composing PROPs via distributive laws

Syntactic picture

- Can also show this syntactically, by string diagram rewriting
- For this, its useful to switch to unbiased presentations of Frobenius algebras and bialgebras, via spiders:

Unbiased Frobenius algebras

All Frobenius equations are subsumed by 'spider fusion':

Unbiased bialgebras

All bialgebra laws are subsumed by replacing two connected spiders by a complete biparitte graph:

The three basic laws are special cases:

Cups and caps

Coincidence of cups and caps:

...can be subsumed by treating string diagrams as undirected, i.e. we can flip wires at will:

A simple rewriting strategy ${ }^{2}$

An arbitrary $\mathbb{I B}$ diagram has many alternating layers of O / O :

GOAL: make just 3 layers $\bigcirc-\bigcirc — \bigcirc$.
${ }^{2}$ F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinksi, F. Zanasi. Rewriting with Frobenius Aleks Kissinger

A simple rewriting strategy

STRATEGY: find an interior \bigcirc-spider, apply generalised bialgebra, then fuse as much as possible.

A simple rewriting strategy

Every iteration removes at least one interior O, and doesn't introduce any new ones, so it terminates, with just three layers, e.g.

We can read off the subspace from this pseudo-NF:

- O-spiders are 'placeholders'
- O-spiders are 'basis vectors'
- edges represent 1 's in the basis vectors at a given place.

Pseudo-normal forms

- Subspaces can be represented as:

- The 1's indicate where edges appear for each vector.
- Not unique! We can always add or remove a vector that is the sum of two other spanning vectors and get the same space:

The dual normal form

- We can also pass to the dual normal form (grey-white-grey), using the colour-reversed strategy
- This describes the subspace dually, as a system of linear equations:

$$
\leftrightarrow \quad\left\{\begin{array}{l}
x_{1}=y_{1} \oplus y_{2} \\
x_{1} \oplus x_{2}=y_{2} \\
x_{3}=0
\end{array}\right.
$$

Automated simplication for $\mathbb{I B}$

We would like to automated simplication for $\mathbb{I B}$:

...by turning equations $L=R$ into (directed) rules $L \Rightarrow R$.

...but we have a problem

- (Biased) AC rules are not terminating:

- Solution: use unbiased simplifications, like spider-fusion:

- \Longrightarrow need infinitely many rules, or rule schemas

!-boxes: simple diagram schemas

!-boxes: simple diagram rule schemas

!-boxes

Unbiased rules with !-boxes

Unbiased rules with !-boxes

Unbiased rules with !-boxes

A !-box presentation of $\mathbb{I B}$

30 rules $\rightsquigarrow 7$ rules

A !-box presentation of $\mathbb{I B}$

Time to fire up Quantomatic.

Quantum computation: the circuit model

- Focus on:

$$
U: \underbrace{\mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}_{m} \rightarrow \underbrace{\mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}_{n}
$$

where U is a unitary linear map $\left(U^{\dagger}=U^{-1}\right)$ in Vect ${ }_{C}$.

- We can decompose U into smaller unitaries, called gates, which we know how to implement on a quantum computer.

The 'quantum trick': unitary oracles

- We have:

$$
\underbrace{\mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}_{n} \cong \mathbb{C}^{2^{n}}
$$

- So, we fix a basis of bitstrings called the computational basis:

$$
\{|00 . .0\rangle,|0 . .01\rangle, \ldots,|11 . .1\rangle\} \subseteq \mathbb{C}^{2^{n}}
$$

- This lets us encode classical functions $F:\{0,1\}^{N} \rightarrow\{0,1\}$ as linear maps:

$$
f\left(\left|b_{1} . . b_{N}\right\rangle\right):=\left|F\left(b_{1}, . ., b_{N}\right)\right\rangle
$$

The 'quantum trick': unitary oracles

- The $\mathbb{I B}$ generators have an interpretation into (Vecte,\otimes)
- ...which we can use make the linear map f into a unitary with one weird trick:

which is called the quantum oracle of f.

Q: How much does an oracle know?

- If we plug in the right state, quite a bit!

- By a good choice of measurements, we can extract global properties of f.
- Main trick behind Grover search, Shor's factoring algorithm, etc.

Efficient classical simulation

- The the 'quantum hardness' is in $U: \mathbb{C}^{2^{n}} \rightarrow \mathbb{C}^{2^{n}}$.
- Some U can be represented/computed efficiently, depending on the choice of gates
- Simplest non-trivial 2-qubit gate: CNOT

$$
\begin{aligned}
\mathrm{L} \mid \\
\hline \mathrm{CNOT}
\end{aligned}:\left\{\begin{aligned}
|00\rangle & \mapsto|00\rangle \\
|01\rangle & \mapsto|01\rangle \\
|10\rangle & \mapsto|11\rangle \\
|11\rangle & \mapsto|10\rangle
\end{aligned}\right.
$$

- The $\mathbb{I B}$ generators have a model in $\left(\operatorname{Vect}_{\mathbb{C}}, \otimes\right)$ where:

$\bullet \Longrightarrow$ CNOT circuits are efficiently classically simulable

Adding single-qubit gates

- A single system is a qubit, which can be pictured on a sphere:

$$
\psi=\binom{c}{d} \propto\binom{\cos \left(\frac{\theta}{2}\right)}{e^{i \alpha} \sin \left(\frac{\theta}{2}\right)}
$$

- Unitaries on single qubits \leftrightarrow rotations of the sphere

Adding single-qubit gates

- Adding NOT (180° around X-axis) still gives efficient classical simulation

$$
\operatorname{LinRel}_{\mathbb{Z}_{2}} \rightsquigarrow \operatorname{AffRel}_{\mathbb{Z}_{2}}
$$

- More interesting/quantum: add all rotations preserving this octahedron:

- Gives interesting quantum behaviour (quantum uncertainty/completementarity, non-locality, ...)
- But still classically simulable (by Gottesman-Knill theorem)

A complete set of gate identities

- Octahedron rotations are 2-generated (call generators H and S). Adding to CNOT gives Clifford circuits
- The following is a complete set of equations of Clifford circuits:

(Selinger 2013)

As an equational theory

- The good:
- complete for Clifford circuits:

$$
\llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \quad \Longrightarrow \quad C_{1}=E_{E} \quad C_{2}
$$

- unique normal forms
- relatively compact (3 generators, 15 rules)
- The bad:
- rules are large, and don't carry any intuition or algebraic structure
- rewrite strategy is complicated (17 derived gates, 100 derived rules)
- The ugly:
- proof of completeness is extremely complicated (> 100 pages long! though mostly machine-generated)
- Can we do better by extending $\mathbb{I B}$?

ZX-calculus, presentation 1

Generators:

$$
\Sigma_{\mathbb{I I}}+\{\underset{\square}{\boxed{S}}, \stackrel{\mid}{\square}\}
$$

Equations:

$$
\begin{aligned}
\underbrace{+}_{0}= & \stackrel{+}{H}=\frac{1}{H}=
\end{aligned}
$$

ZX-calculus, unbiased presentation

Generators:

These are related to the other generators by:

$$
\frac{1}{\frac{\pi}{2}}=\frac{1}{5}
$$

ZX-calculus, presentation 2

$$
=\frac{1 \cdots}{(\alpha+\beta}
$$

Completeness

Theorem (Backens'10)
The ZX-calculus is complete for Clifford quantum computation.

T gates and universality

- Adding one more generator:

$$
\frac{1}{T}=\frac{\frac{1}{4}}{T}
$$

gives us (approximately) everything.

- For any unitary U, we can find U^{\prime} built with our generators such that for any $\epsilon>0$, we have:

$$
U \stackrel{\epsilon}{=} U^{\prime}
$$

Completeness, take 2

Theorem (JPV'17 ${ }^{3}$)
The $Z X$-calculus is complete for Clifford + T quantum computation.

The rules are $\mathrm{ZX}+3$ more:

[^0]
...and even more completeness

	Calculus	Family	Num. Rules
Backens'10	ZX	Clifford	4
Backens'14	ZX	1-qubit Clifford + T	5
Hadzihasanavic'15	ZW	Z-matrices	19
JPV''17	Y	CNOT + Y($\left.\frac{\pi}{2}\right)$	11
JPV'17	ZX+	Clifford+T	12
Wang \& Ng'17	ZX+	ALL	32
JPV'18	ZX+	ALL	13
Wang \& Ng'18	ZX+	2-qubit Clifford + T	8
AK \& Backens'18	ZH	ALL	11

TODO NOW:

Completeness theorems \Rightarrow (efficent) simplication

Application of techniques beyond QT^{4}

[^1]Thanks for your attention

http://quantomatic.github.io

PICTURING QUANTUM PROCESSES

A First Course in Quantum Theory and Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

http://cambridge.org/pqp

[^0]: ${ }^{3}$ Jeandel, Perdrix, and Vilmart. A Complete Axiomatisation of the ZX-Calculus for Clifford $+T$ Quantum Mechanics

[^1]: ${ }^{4}$ Signal flow diagrams, classical circuits, Petri nets, ...

