
Graphical calculi Automation Quantum circuits The ZX-calculus

Picturing Quantum Processes II:
ZX-calculus and automation

Aleks Kissinger

Coalgebraic Methods in Computer Science

Thessalonaki 2018

Aleks Kissinger PQP 2 CMCS 2018 1 / 50



Graphical calculi Automation Quantum circuits The ZX-calculus

The setting: symmetric monoidal categories

f : A→ B := f

B

A

g ◦ f :=
g

f
f ⊗ g := gf

1A := A 1I := σA,B :=
A B

B A
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Symmetric monoidal theories

• We work with (co)algebraic structures inside an SMC, via symmetric monoidal
theories

• Symmetric monoidal theories generalise (universal) algebraic theories

• They consist of a set of generators with input/output arities e.g.

Σ :=
{

: 2→ 1 , : 0→ 1
}

• And a set of relations, which are pairs of (formal) compositions in the SMC,
respecting arities, e.g.

E :=

 = , = , = , =


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Symmetric monoidal theories

• Relations (L = R) ∈ E extend to larger diagrams via substitution

• In the usual (term-like) picture, we can see this is rewriting modulo the SMC
axioms:

L = R ` G = H ⇐⇒ ∃C1,C2,X .

{
G

smc
= C1 ◦ (L⊗ 1X ) ◦ C2

H
smc
= C1 ◦ (R ⊗ 1X ) ◦ C2

• Rewriting modulo is hard in general

• Simpler to perform substitution directly on string diagrams
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Equational reasoning with diagram substitution

• For example:

=

• and be applied as:
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Models

• A model of (Σ,E ) consists of an object A ∈ C and morphisms:

Jf K : A⊗ . . .⊗ A︸ ︷︷ ︸
m

→ A⊗ . . .⊗ A︸ ︷︷ ︸
n

for all f : m→ n ∈ Σ, such that compositions satisfy the equations in E .

• Equivalently, we can define models of (Σ,E ) in terms of its associated PROP.

• A PROP is an SMC whose objects are N (:= (co)arities).

• The syntactic PROP Syn(Σ,E ) of a theory (Σ,E ) has as mophisms string
diagrams of Σ-generators, modulo E

• Models are strong monoidal functors J−K : Syn(Σ,E )→ C
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Semantic PROPs

• Equality in Syn(Σ,E ) is undecidable in general

• However, some theories have particularly nice, ‘semantic’ PROPs with
decidable equality.

• e.g. for commutative monoids, Syn(Σ,E ) ' (FinSet,+)
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Example

(Special commutative) Frobenius algebras:

= = = =

=
= = =

= = =

n.b. Syn(Σ,E ) ' (Csp(FinSet),+)
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Example

Commutative bialgebras:

= = = =

=
= = =

= = =

n.b. Syn(Σ,E ) ' (Mat[N],⊕)
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The system IB
• It is interesting to consider multiple, interacting theories

• IB (for interacting bialgebras) consists of two bialgebras that interact with
each other as Frobenius algebras

• equivalently, it’s two Frobenius algebras that interact as bialgebras

• Formally, it consists of:

ΣIB =
{

, , , , , , ,
}

such that these are Frobenius algebras:

( , , , ) ( , , , )

these are bialgebras:

( , , , ) ( , , , )

and caps/cups coincide:

:= = := =
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Interacting bialgebras are linear relations

Syn(ΣIB,EIB) ∼= LinRelZ2
[BSZ’14]1

• LinRelZ2 has:
• objects: N
• morphisms: R : m→ n is a subspace:

R ⊆ Zm
2 × Zn

2
∼= Zm+n

2

• composition is relation-style. For R : m→ n, S : n→ k:

(u|w) ∈ S ◦ R ⇐⇒ ∃v ∈ Zn
2. (u|v) ∈ R ∧ (v |w) ∈ S

• tensor is × (aka. ⊕)

1F. Bonchi, P. Sobocinksi, F. Zanasi. Interacting bialgebras are Frobenius
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Semantic picture

• We can define an interpretation J−K : Syn(ΣIB,EIB)→ LinRelZ2 as:

J K =


0

0
0

 ,

1

1
1

 ⊆ Z1+2
2 J K =

{(
0
)
,
(
1
)}
⊆ Z1+0

2

J K =


0

0

0

 ,

0
1

1

 ,

1
0

1

 ,

1
1

0

 ⊆ Z2+1
2 J K =

{(
0
)}
⊆ Z0+1

2

• BSZ showed that J−K extends to a PROP iso

• They used the techique of composing PROPs via distributive laws
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Syntactic picture

• Can also show this syntactically, by string diagram rewriting

• For this, its useful to switch to unbiased presentations of Frobenius algebras
and bialgebras, via spiders:

...

...
:=

...

...

...

...
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Unbiased Frobenius algebras

All Frobenius equations are subsumed by ‘spider fusion’:

...

=

...
...

...

...

...

...
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Unbiased bialgebras

All bialgebra laws are subsumed by replacing two connected spiders by a complete
biparitte graph:

...

...

=
... ...

... ...

...

...

The three basic laws are special cases:

= = =
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Cups and caps

Coincidence of cups and caps:

:= = := =

...can be subsumed by treating string diagrams as undirected, i.e. we can flip wires
at will:

...

=

... ...

... ...

...

...

...
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A simple rewriting strategy2

An arbitrary IB diagram has many alternating layers of / :

GOAL: make just 3 layers — — .

2F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinksi, F. Zanasi. Rewriting with Frobenius
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A simple rewriting strategy

STRATEGY: find an interior -spider, apply generalised bialgebra, then fuse as
much as possible.
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A simple rewriting strategy

Every iteration removes at least one interior , and doesn’t introduce any new
ones, so it terminates, with just three layers, e.g.

We can read off the subspace from this pseudo-NF:

• -spiders are ‘placeholders’

• -spiders are ‘basis vectors’

• edges represent 1’s in the basis vectors at a given place.
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Pseudo-normal forms

• Subspaces can be represented as:

↔

〈
0
1
0

1
1

,


1
0
0

0
1


〉

• The 1’s indicate where edges appear for each vector.
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Pseudo-normal forms

• Not unique! We can always add or remove a vector that is the sum of two
other spanning vectors and get the same space:

↔

〈
0
1
0

1
1

 ,


1
0
0

0
1

 ,


1
1
0

1
0


〉
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The dual normal form

• We can also pass to the dual normal form (grey-white-grey), using the
colour-reversed strategy

• This describes the subspace dually, as a system of linear equations:

x3x1 x2

y1 y2

↔


x1 = y1 ⊕ y2

x1 ⊕ x2 = y2

x3 = 0
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Automated simplication for IB

We would like to automated simplication for IB:

Frobenius Frobenius
bialgebrabialgebra

...by turning equations L = R into (directed) rules L⇒ R.
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...but we have a problem

• (Biased) AC rules are not terminating:

= =

• Solution: use unbiased simplifications, like spider-fusion:

⇒ ⇐

• =⇒ need infinitely many rules, or rule schemas
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!-boxes: simple diagram schemas

⇒
...

= · · ·, ,, ,

{ }
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!-boxes: simple diagram rule schemas

...

=
...

...

⇒ =
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!-boxes

=

= ⇒ =
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Unbiased rules with !-boxes

...

=

...
...

...

...

...

⇒ =
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Unbiased rules with !-boxes

...

=

...
...

...

...

...

... ⇒ = =
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Unbiased rules with !-boxes

...

...

=
... ...

... ...

...

...

⇒ =
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A !-box presentation of IB

= = =

= = =

=

30 rules  7 rules
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A !-box presentation of IB

Time to fire up Quantomatic.
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Quantum computation: the circuit model

0

U

0 00 0

• Focus on:
U : C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

m

→ C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n

where U is a unitary linear map (U† = U−1) in VectC.

• We can decompose U into smaller unitaries, called gates, which we know how
to implement on a quantum computer.
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The ‘quantum trick’: unitary oracles

• We have:
C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n

∼= C2n

• So, we fix a basis of bitstrings called the computational basis:

{|00..0〉 , |0..01〉 , . . . , |11..1〉} ⊆ C2n

• This lets us encode classical functions F : {0, 1}N → {0, 1} as linear maps:

f (|b1..bN〉) := |F (b1, .., bN)〉
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The ‘quantum trick’: unitary oracles

• The IB generators have an interpretation into (VectC,⊗)

• ...which we can use make the linear map f into a unitary with one weird trick:

f

...

...
Uf

...

...

:=

which is called the quantum oracle of f .
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Q: How much does an oracle know?

• If we plug in the right state, quite a bit!

f

...

...
= f

...

• By a good choice of measurements, we can extract global properties of f .

• Main trick behind Grover search, Shor’s factoring algorithm, etc.
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Efficient classical simulation

• The the ‘quantum hardness’ is in U : C2n → C2n .

• Some U can be represented/computed efficiently, depending on the choice of
gates

• Simplest non-trivial 2-qubit gate: CNOT

CNOT ::


|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

• The IB generators have a model in (VectC,⊗) where:

CNOT = := =

• =⇒ CNOT circuits are efficiently classically simulable
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Adding single-qubit gates

• A single system is a qubit, which can be pictured on a sphere:

ψ

0

1

α

θ

ψ =

(
c
d

)
∝
(

cos( θ2)

e iα sin( θ2)

)

• Unitaries on single qubits ↔ rotations of the sphere
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Adding single-qubit gates

• Adding NOT (180◦ around X-axis) still gives efficient classical simulation

LinRelZ2  AffRelZ2

• More interesting/quantum: add all rotations preserving this octahedron:

• Gives interesting quantum behaviour (quantum uncertainty/completementarity,
non-locality, ...)

• But still classically simulable (by Gottesman-Knill theorem)
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A complete set of gate identities

• Octahedron rotations are 2-generated (call generators H and S). Adding to
CNOT gives Clifford circuits

• The following is a complete set of equations of Clifford circuits:

(Selinger 2013)
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As an equational theory

• The good:
• complete for Clifford circuits:

JC1K = JC2K =⇒ C1 =E C2

• unique normal forms
• relatively compact (3 generators, 15 rules)

• The bad:
• rules are large, and don’t carry any intuition or algebraic structure
• rewrite strategy is complicated (17 derived gates, 100 derived rules)

• The ugly:
• proof of completeness is extremely complicated (> 100 pages long! though

mostly machine-generated)

• Can we do better by extending IB?
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ZX-calculus, presentation 1

Generators:

ΣIB +

{
S , H

}

Equations:

H

H H
= H =

S

S
=

(
H

)2

=


S

H


3

=

(
S

)4

=
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ZX-calculus, unbiased presentation

Generators: ...

α

... ...
α

...

These are related to the other generators by:

π
2 = S π

2 =

H

S

H

...

α

...
=

...

...
α

...
α

...

=

...

...
α
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ZX-calculus, presentation 2

α
... =

β

......

......

α+β

...

...
...

β

...
...

...

α+β

...

...

α

=...

=

... ...

........

=

-π
2

π
2

π
2

-π
2

π
2

-π
2

-π
2
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Completeness

Theorem (Backens’10)

The ZX-calculus is complete for Clifford quantum computation.
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T gates and universality

• Adding one more generator:

T = π
4

gives us (approximately) everything.

• For any unitary U, we can find U ′ built with our generators such that for any
ε > 0, we have:

U
ε
= U ′
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Completeness, take 2

Theorem (JPV’173)

The ZX-calculus is complete for Clifford+T quantum computation.

The rules are ZX + 3 more:

3Jeandel, Perdrix, and Vilmart. A Complete Axiomatisation of the ZX-Calculus for Clifford+T
Quantum Mechanics
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...and even more completeness

Calculus Family Num. Rules

Backens’10 ZX Clifford 4
Backens’14 ZX 1-qubit Clifford+T 5

Hadzihasanavic’15 ZW Z-matrices 19
JPV’17 Y CNOT + Y (π2 ) 11
JPV’17 ZX+ Clifford+T 12

Wang & Ng’17 ZX+ ALL 32
JPV’18 ZX+ ALL 13

Wang & Ng’18 ZX+ 2-qubit Clifford+T 8
AK & Backens’18 ZH ALL 11
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TODO NOW:

Completeness theorems ⇒ (efficent) simplication

Application of techniques beyond QT4

4Signal flow diagrams, classical circuits, Petri nets, ...
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Thanks for your attention

http://quantomatic.github.io

http://cambridge.org/pqp
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