Alternating Automata via Weak Distributive Laws

Alexandre Goy
Université Paris-Saclay, CentraleSupélec, MICS, France
alexandre.goy@centralesupelec.fr

Abstract
We make use of a weak notion of distributive law to take a second look at the coalgebraic modeling of alternating automata, especially determinization.

In a recent paper from Garner [4] interesting insights are brought in Beck’s theory of distributive laws [1]. In order to see the Vietoris monad as a lifting of the powerset monad, Garner is led to make use of a notion of weak distributive law already stated in [3].

Definition 1 (Weak distributive law). A weak distributive law of a monad $S = (S, \nu, \omega)$ over a monad $T = (T, \eta, \mu)$ is a natural transformation $\delta : TS \Rightarrow ST$ such that $\delta \circ \mu_S = S\mu \circ \delta T \circ T\delta$, $\delta \circ T\omega = \omega T \circ S\delta \circ \delta S$, and $\delta \circ T\eta = \nu T$.

Together with this weak variant of distributive laws come weak notions of liftings and extensions of monads [4], along with a bijective correspondence between weak distributive laws, weak extensions, and (whenever idempotents split in the base category) weak liftings.

Definition 2 (Weak lifting). A weak lifting of S to $EM(T)$ is a monad \tilde{S} on $EM(T)$ along with two natural transformations $\pi : SU^\tilde{T} \Rightarrow U^\tilde{T}\tilde{S}$, $\iota : U^\tilde{T}\tilde{S} \Rightarrow SU^\tilde{T}$ such that $\pi \circ \iota = 1$ and the following diagrams commute.

Such a weak lifting yields a monad $\tilde{S}T = U^\tilde{T}\tilde{F}T$ on the base category. Examples include identifying the Vietoris monad [4] (resp. the convex powerset monad [5]) as the weak lifting of the powerset monad with respect to the ultrafilter monad (resp. the finite distribution monad).

Alternating automata can be defined as coalgebras for the Set-endofunctor $2 \times (PP^-)^A$, where A is an alphabet. The semantics of alternating automata is guided by the following interpretation: an element $A \in PPX$ is seen as a disjunctive normal form $\bigvee_{U \in A} \bigwedge_{y \in U} y$, where there
is an arbitrary number of clauses of arbitrary length. In concrete terms, given an alternating
automaton \(\langle a, N \rangle : X \to 2 \times (PPX)^A \):
\[
\llbracket x \rrbracket (x) = a(x) \\
\llbracket x \rrbracket (aw) = \bigvee_{u \in N(x)(a)} \bigwedge \llbracket y \rrbracket (w)
\]
(3)

This modelling opens the chase of a possible distributive law of \(P \) over itself. As proved recently
[6], this does not exist, and actually there is no possible monad structure on \(PP \) at all; however
it still is possible to model alternating automata coalgebraically, e.g. by looking into Poset [2].

Coming back to our weak framework, Garner points out that there is a weak distributive law \(\delta \)
of the finite powerset monad \(P_f \) over \(P \) given by
\[
\delta_X(A) = \{ B \subseteq X \text{ finite} \mid B \subseteq \bigcup A \text{ and } \forall A \in A, A \cap B \neq \emptyset \}
\]
(4)

This paves the way for a new modelling of alternating automata as coalgebras for the functor
\(2 \times (P_f)^-A \) — modelling that coincides with the usual one for finite systems. Let \(G = 2 \times (\cdot)^A \).

This modelling yields determinization for alternating automata as in the following diagram:

\[
\begin{array}{ccc}
\text{Coalg}(GPP_f) & \xrightarrow{F_f^G} & \text{Coalg}(\bar{G}\bar{P}) \\
\downarrow & & \downarrow \circ \delta_f \\
\text{Set} & \xrightarrow{F_f^G} & \text{EM}(P_f) \\
\end{array}
\]

where \(\bar{G} \) is the lifting of \(G \) to \(EM(P_f) \) arising from the known monad-functor distributive
law \(\lambda_X(S) = \langle \wedge (b, f) \in S, b, a \to \{ f(a) \mid (b, f) \in S \} \rangle \). The lifted \(F_f^G \) consists in transforming a
coalgebra \(c : X \to GPP_fX \) into \(X \xrightarrow{c} GPP_fX \xrightarrow{G_{\bar{P}f}} GU_{\bar{P}f}\bar{P}f^G \bar{P}f^G \bar{P}f^G X \) and
then taking the adjoint transpose \(c^\# : F_f^G X \xrightarrow{\bar{G}\bar{P}f} \bar{G}\bar{P}f^G X \). The lifted \(U_{\bar{P}f} \) maps \(c : (X, x) \to \bar{G}\bar{P}f(X, x) \)
to \(U_{\bar{P}f}(X, x) \xrightarrow{\bar{G}\bar{P}f^G} \bar{G}\bar{P}f(X, x) \Rightarrow \bar{G}\bar{P}f(\bar{G}f^G, x) \Rightarrow \ PU_{\bar{P}f}(X, x) \).

Further research includes considering semantics arising from such determinizations, looking at
potential weak distributive laws from \(P \) over itself, and investigating compositionality of
weak distributive laws in order to model more complex systems.

References

weak distributive laws. Submitted.