Stateful Structural Operational Semantics

Sergey Goncharov, Stefan Milius, Lutz Schröder, **Stelios Tsampas**, Henning Urbat

GSOS Laws (Turi-Plotkin Semantics)

Let endofunctors Σ and B, modelling syntax and behavior

GSOS laws are nat. transformations $\rho_X \colon \Sigma(X \times BX) \Rightarrow B\Sigma^*X$

More generally, any distributive law of a monad T over a comonad S, although these tend to be (co)freely generated

Bialgebras

Any and all transitions of a composite term are determined by the transitions of its subterms

Bialgebras

There is the category ρ -bialg of ρ -bialgebras:

- \Box Objects of *ρ*-bialg are ρ-bialgebras
- Morphisms are maps that are both algebra and coalgebra homomorphisms at the same time

The initial Σ -algebra (A, α) extends to the initial ρ -bialgebra

The final B-coalgebra (Z,z) extends to the final ρ -bialgebra

Corollary. There is a unique bialgebra map beh : $A \rightarrow Z$, mapping terms to their behaviors. Hence, **bisimilarity is a congruence***.

An example

$$\begin{array}{ccc}
P \xrightarrow{\delta} P' & Q \xrightarrow{\delta} Q' \\
P + Q \xrightarrow{\delta} P' & P + Q \xrightarrow{\delta} Q' \\
BX = \mathcal{P}_f(\Delta_\tau \times X), \Sigma X = X \times X \\
\rho : \Sigma(\operatorname{Id} \times B) \Longrightarrow B\Sigma^* \\
(x, X) + (y, Y) & \mapsto X \cup Y
\end{array}$$

A While language

$$\frac{\text{skip}}{s, \text{skip} \downarrow s}$$

while
$$1 - \frac{[e]_s = 0}{s$$
, while $e \ p \downarrow s$

$$seq1 \frac{s, p \downarrow s'}{s, (p; q) \rightarrow s', q}$$

$$asn s, (x := e) \downarrow s_{[x \leftarrow [e]_s]}$$

while2
$$\frac{[e]_s \neq 0 \quad q = \text{while } e \ p}{s, q \rightarrow s, (p; \ q)}$$

$$seq2 \frac{s, p \to s', p'}{s, (p; q) \to s', (p'; q)}$$

Imperative languages

- Originally, Turi considered functor $(S \times (X+1))^S$ to model the behavior of imperative languages
- For instance, sequential composition had a component of the type $S \times (X \times (S \times (X+1))^S)^2 \to S \times (\Sigma^*X+1)$

$$s, (x, f), (y, g) \mapsto \begin{cases} (s', (x'; y)) & \text{if } f(s) = (s', x') \\ (s', y) & \text{if } f(s) = (s', \checkmark). \end{cases}$$

Imperative languages

- Originally, Turi considered functor $(S \times (X+1))^S$ to model the behavior of imperati
- For instance, sequentin1

type
$$S \times (X)$$

For instance, sequential mponent of the type
$$S \times (X)$$
 $(\Sigma^*X + 1)$ $(x'; y)$ if $f(s) = (s', x')$ (s', y) if $f(s) = (s', \sqrt{})$.

if
$$f(s) = (s', x')$$

if
$$f(s) = (s', \checkmark)$$

Imperative languages

A behavior of
$$(S \times (X+1))^S$$
 implies contexts are far more capable than what they really are. For a omparison:
$$s, p \downarrow s' \\ seq1 \\ \hline s, (p; q) \rightarrow s', q \\ \hline s, (p; q) \rightarrow s', p' \\ \hline s, (p; q) \rightarrow s', (p'; q) \\ \hline sb \\ \hline s, [p] \rightarrow s_4, p'_3 \\ \hline s, [p] \rightarrow s_4, p'_3 \\ \hline$$

Something simpler

$$S \times (X \times S \times (X+1))^2 \to (S \times \Sigma^* X + 1)$$

 $(s, (x, s', *), (y, _, _)) \mapsto (s', y)$
 $(s, (x, s', x'), (y, _, _)) \mapsto (s', (x'; y))$

Stateful SOS laws and specifications

Definition 3.7. A stateful SOS law is a natural transformation

$$\delta_X \colon S \times \Sigma(X \times S \times (X+1)) \to S \times (\Sigma^*X+1) \qquad (X \in \mathbf{Set}).$$

Stateful SOS laws are in a bijective correspondence with *stateful SOS specifications*, i.e. systems whose rules look like (for $W \subseteq \{1, ..., n\}$)

$$\frac{(s, x_j \to s'_j, y_j)_{j \in W} \qquad (s, x_j \downarrow s'_j)_{j \in \{1, \dots, n\} \setminus W}}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t}$$

Compositionality in imperative languages

• Thing is, one can still have wonky, "concurrency" rules like

$$\frac{s, p \to s', p'}{s, p \triangleleft q \to s', q \triangleleft p'} \qquad \frac{s, p \downarrow s'}{s, p \triangleleft q \to s', q}$$

- Let $BX = S \times (X+1)$ and $TX = (BX)^S$
- \circ Stateful SOS specification exhibit compositionality in domain vT (the final coalgebra of T), which is typically too fine-grained

Compositionality in imperative languages

- Let $BX = S \times (X+1)$ and $TX = (BX)^S$
- Standard choices for semantic domain are *trace semantics* $(\nu B)^S$ and *termination semantics* $(S+1)^S$
- When is trace semantics compositional?
- When is termination semantics compositional?
- These questions are outright undecidable and compositionality is challenging to prove in a per-case basis

How about restricting the rule format for compositionality?

- Compositional trace semantics $(\nu B)^S$
- Receiving rules have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t} \quad \text{where } t = \mathsf{f}(x_1, \dots, x_n)[y_j/x_j] \text{ or } t = y_j;$$

- \circ Compositional trace semantics $(\nu B)^S$
- Receiving rules have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t} \quad \text{where } t = \mathsf{f}(x_1, \dots, x_n)[y_j/x_j] \text{ or } t = y_j;$$

$$\frac{s, p \to s', p'}{s, p \triangleleft q \to s', q \triangleleft p'} \qquad \frac{s, p \downarrow s'}{s, p \triangleleft q \to s', q}$$

- Compositional trace semantics $(\nu B)^S$
- Receiving rules have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t} \quad \text{where } t = \mathsf{f}(x_1, \dots, x_n)[y_j/x_j] \text{ or } t = y_j;$$

$$\frac{s, p \to s', p'}{s, p \triangleleft q \to s', q \triangleleft p'} \qquad \frac{s, p \downarrow s'}{s, p \triangleleft q \to s', q}$$

- \circ Compositional trace semantics $(\nu B)^S$
- Receiving rules have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t} \quad \text{where } t = \mathsf{f}(x_1, \dots, x_n)[y_j/x_j] \text{ or } t = y_j;$$

$$\frac{s, p \to s', p' \quad [i]_s \neq 0 \quad \neg P(s')}{s, (p; q) \to s', (p'; q)}$$

- \circ Compositional trace semantics $(\nu B)^S$
- Receiving rules have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', t} \quad \text{where } t = \mathsf{f}(x_1, \dots, x_n)[y_j/x_j] \text{ or } t = y_j;$$

$$\frac{s, p \to s', p' \quad [\mathbf{i}]_s \neq 0 \quad \neg P(s')}{s, (p; q) \to s', (p'; q)}$$

- Compositional termination semantics $(S+1)^S$
- All rules with a progressing premiss have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', \mathsf{f}(x_1, \dots, x_n)[y_j/x_j]}$$

- Compositional termination semantics $(S+1)^S$
- All rules with a progressing premiss have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', \mathsf{f}(x_1, \dots, x_n)[y_j/x_j]}$$

- Compositional termination semantics $(S+1)^S$
- All rules with a progressing premiss have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', \mathsf{f}(x_1, \dots, x_n)[y_j/x_j]}$$

$$\frac{s, p \to s', p'}{s, p \triangleleft q \to s', q \triangleleft p'}$$

$$\frac{s, p \downarrow s'}{s, p \triangleleft q \rightarrow s', q}$$

- Compositional termination semantics $(S+1)^S$
- All rules with a progressing premiss have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', \mathsf{f}(x_1, \dots, x_n)[y_j/x_j]}$$

$$\frac{s, p \to s', p' \quad [i]_s \neq 0 \quad P(s')}{s, (p; q) \to s', q}$$

- Compositional termination semantics $(S+1)^S$
- All rules with a progressing premiss have to be as follows

$$\frac{s, x_j \to s', y_j}{s, \mathsf{f}(x_1, \dots, x_n) \to s', \mathsf{f}(x_1, \dots, x_n)[y_j/x_j]}$$

NOPE
$$\frac{s,p\to s',p' \quad [\mathtt{i}]_s\neq 0 \quad P(s')}{s,(p;\ q)\to s',q}$$

Thank you

Full paper at https://arxiv.org/pdf/2202.10866.pdf